

Foundations of Art March 26, 2025 — B13. Sta	tificial Intelligence ate-Space Search: IDA*		
B13.1 IDA*: Ide	22		
R13.2 IDA*• AI	rorithm		
	···		
B13.3 IDA": Pr	operties		
B13.4 Summary	,		
M. Helmert (University of Basel)	Foundations of Artificial Intelligence	March 26, 2025	2 / 20

B13. State-Space Search: IDA*

IDA*: Idea

IDA*

The main drawback of the presented best-first graph search algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

- depth-limited search with increasing limits
- ▶ instead of depth we limit *f* (in this chapter f(n) := g(n) + h(n.state) as in A^{*})
- \rightarrow IDA^{*} (iterative-deepening A^{*})
- **tree search**, unlike the previous best-first search algorithms

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 26, 2025

5 / 20

13. State-Space Search: IDA*		IDA*: /	Algorithm
First Attempt: <i>f</i> -L	imited Search		
function f limited se	earch(s,g,flimit):		
if $g + h(s) > f_{-}limit$:		
if is_goal(s): return $\langle \rangle$			
for each $\langle a, s' \rangle \in su$ solution := f_lin if solution \neq no solution.pu return solu	cc(s): nited_search(s', g + cost(a), f_l me: sh_front(a) ution	'imit)	
return none			
M. Helmert (University of Basel)	Foundations of Artificial Intelligence	March 26, 2025	9 / 20
State-Space Search: IDA*		IDA*.	Algorithm
Growing the <i>f</i> Lim	iit		
č			
► In IDDFS, we g	row the limit from the smalles	t limit	
 In IDDFS, we g that gives a nor 	row the limit from the smalles n-empty search tree (0) by 1 a	t limit t a time.	

- This usually leads to exponential growth of the tree between rounds, so that re-exploration work can be amortized.
- ▶ In our first attempt at IDA*, there is no guarantee that increasing the f limit by 1 will lead to a larger search tree than in the previous round.
- ▶ This problem becomes worse if we also allow non-integer (fractional) costs, where increasing the limit by 1 would be very arbitrary.

IDA* First Attempt: Discussion

- ▶ The pseudo-code can be rewritten to be even more similar to our IDDFS pseudo-code. However, this would make our next modification more complicated.
- ▶ The algorithm follows the same principles as IDDFS, but takes path costs and heuristic information into account.
- For unit-cost state spaces and the trivial heuristic $h: s \mapsto 0$ for all states *s*, it behaves identically to IDDFS.
- ▶ For general state spaces, there is a problem with this first attempt, however.

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 26, 2025 10 / 20

IDA*: Algorithm

M. Helmert (University of Basel)

B13. State-Space Search: IDA*

Final Algorithm: *f*-Limited Search

tunction t_limited_s	earch(<i>s</i> , <i>g</i> , <i>t_limit</i>):		
if $g + h(s) > f_{limit}$: return $\langle g + h(s) \rangle$, none $ angle$		
if is_goal(s):			
return (none, ()))		
<i>new_limit</i> := ∞			
for each $\langle a, s' \rangle \in \text{suc}$ $\langle child_limit, solut$	$c(s):$ $ ion \rangle := f_limited_search(s', g + c)$	$ost(a), f_limit)$	
if solution \neq nor	Ie:		
<i>solution</i> .pus	$h_{front}(a)$		
return (non	$\mathbf{e}, solution \rangle$		
<i>new_limit</i> := min return (<i>new_limit</i> , no)	(<i>new_limit, child_limit</i>) ne〉		

IDA*: Algorithm

