
Foundations of Artificial Intelligence
B13. State-Space Search: IDA∗

Malte Helmert

University of Basel

March 26, 2025

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 1 / 20

Foundations of Artificial Intelligence
March 26, 2025 — B13. State-Space Search: IDA∗

B13.1 IDA∗: Idea

B13.2 IDA∗: Algorithm

B13.3 IDA∗: Properties

B13.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 2 / 20

State-Space Search: Overview

Chapter overview: state-space search

▶ B1–B3. Foundations

▶ B4–B8. Basic Algorithms
▶ B9–B15. Heuristic Algorithms

▶ B9. Heuristics
▶ B10. Analysis of Heuristics
▶ B11. Best-first Graph Search
▶ B12. Greedy Best-first Search, A∗, Weighted A∗

▶ B13. IDA∗

▶ B14. Properties of A∗, Part I
▶ B15. Properties of A∗, Part II

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 3 / 20

B13. State-Space Search: IDA∗ IDA∗: Idea

B13.1 IDA∗: Idea

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 4 / 20



B13. State-Space Search: IDA∗ IDA∗: Idea

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

▶ depth-limited search with increasing limits

▶ instead of depth we limit f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

⇝ IDA∗ (iterative-deepening A∗)

▶ tree search, unlike the previous best-first search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 5 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

B13.2 IDA∗: Algorithm

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 6 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

Reminder: Iterative Deepening Depth-first Search

reminder from Chapter B8: iterative deepening depth-first search

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution ̸= none:

return solution

function depth limited search(s, depth limit):

if is goal(s):
return ⟨⟩

if depth limit > 0:
for each ⟨a, s ′⟩ ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution ̸= none:

solution.push front(a)
return solution

return none

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 7 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

First Attempt: IDA∗ Main Function

first attempt: iterative deepening A∗ (IDA∗)

IDA∗ (First Attempt)

for f limit ∈ {0, 1, 2, . . . }:
solution := f limited search(init(), 0, f limit)
if solution ̸= none:

return solution

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 8 / 20



B13. State-Space Search: IDA∗ IDA∗: Algorithm

First Attempt: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return none

if is goal(s):
return ⟨⟩

for each ⟨a, s ′⟩ ∈ succ(s):
solution := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return solution

return none

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 9 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

IDA∗ First Attempt: Discussion

▶ The pseudo-code can be rewritten to be even more similar
to our IDDFS pseudo-code. However, this would make
our next modification more complicated.

▶ The algorithm follows the same principles as IDDFS,
but takes path costs and heuristic information into account.

▶ For unit-cost state spaces and the trivial heuristic h : s 7→ 0
for all states s, it behaves identically to IDDFS.

▶ For general state spaces, there is a problem
with this first attempt, however.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 10 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

Growing the f Limit

▶ In IDDFS, we grow the limit from the smallest limit
that gives a non-empty search tree (0) by 1 at a time.

▶ This usually leads to exponential growth of the tree
between rounds, so that re-exploration work can be amortized.

▶ In our first attempt at IDA*, there is no guarantee that
increasing the f limit by 1 will lead to a larger search tree
than in the previous round.

▶ This problem becomes worse if we also allow non-integer
(fractional) costs, where increasing the limit by 1 would be
very arbitrary.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 11 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

Setting the Next f Limit

idea: let the f -limited search compute the next sensible f limit

▶ Start with h(init()), the smallest f limit
that results in a non-empty search tree.

▶ In every round, increase the f limit to the smallest value
that ensures that in the next round at least one
additional path will be considered by the search.

⇝ f limited search now returns two values:
▶ the next f limit that would include at least one new node

in the search tree (∞ if no such limit exists;
none if a solution was found), and

▶ the solution that was found (or none).

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 12 / 20



B13. State-Space Search: IDA∗ IDA∗: Algorithm

Final Algorithm: IDA∗ Main Function

final algorithm: iterative deepening A∗ (IDA∗)

IDA∗

f limit = h(init())
while f limit ̸= ∞:

⟨f limit, solution⟩ := f limited search(init(), 0, f limit)
if solution ̸= none:

return solution
return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 13 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

Final Algorithm: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return ⟨g + h(s),none⟩

if is goal(s):
return ⟨none, ⟨⟩⟩

new limit := ∞
for each ⟨a, s ′⟩ ∈ succ(s):

⟨child limit, solution⟩ := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return ⟨none, solution⟩

new limit := min(new limit, child limit)
return ⟨new limit,none⟩

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 14 / 20

B13. State-Space Search: IDA∗ IDA∗: Algorithm

Final Algorithm: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return ⟨g + h(s),none⟩

if is goal(s):
return ⟨none, ⟨⟩⟩

new limit := ∞
for each ⟨a, s ′⟩ ∈ succ(s):

⟨child limit, solution⟩ := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return ⟨none, solution⟩

new limit := min(new limit, child limit)
return ⟨new limit,none⟩

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 15 / 20

B13. State-Space Search: IDA∗ IDA∗: Properties

B13.3 IDA∗: Properties

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 16 / 20



B13. State-Space Search: IDA∗ IDA∗: Properties

IDA∗: Properties

Inherits important properties of A∗ and depth-first search:

▶ semi-complete if h safe and cost(a) > 0 for all actions a

▶ optimal if h admissible
▶ space complexity O(ℓb), where

▶ ℓ: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)

▶ b: branching factor

We state these without proof.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 17 / 20

B13. State-Space Search: IDA∗ IDA∗: Properties

IDA∗: Discussion

▶ compared to A∗ potentially considerable overhead
because no duplicates are detected

⇝ exponentially slower in many state spaces
⇝ often combined with partial duplicate elimination

(cycle detection, transposition tables)

▶ overhead due to iterative increases of f limit
often negligible, but not always
▶ especially problematic if action costs vary a lot:

then it can easily happen that each new f limit
only considers a small number of new paths

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 18 / 20

B13. State-Space Search: IDA∗ Summary

B13.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 19 / 20

B13. State-Space Search: IDA∗ Summary

Summary

▶ IDA∗ is a tree search variant of A∗

based on iterative deepening depth-first search

▶ main advantage: low space complexity

▶ disadvantage: repeated work can be significant

▶ most useful when there are few duplicates

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 26, 2025 20 / 20


	IDA*: Idea
	

	IDA*: Algorithm
	

	IDA*: Properties
	

	Summary
	


