
Foundations of Artificial Intelligence
B11. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 19, 2025

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 1 / 21

Foundations of Artificial Intelligence
March 19, 2025 — B11. State-Space Search: Best-first Graph Search

B11.1 Introduction

B11.2 Best-first Search

B11.3 Algorithm Details

B11.4 Reopening

B11.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 2 / 21

State-Space Search: Overview

Chapter overview: state-space search

▶ B1–B3. Foundations

▶ B4–B8. Basic Algorithms
▶ B9–B15. Heuristic Algorithms

▶ B9. Heuristics
▶ B10. Analysis of Heuristics
▶ B11. Best-first Graph Search
▶ B12. Greedy Best-first Search, A∗, Weighted A∗

▶ B13. IDA∗

▶ B14. Properties of A∗, Part I
▶ B15. Properties of A∗, Part II

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 3 / 21

B11. State-Space Search: Best-first Graph Search Introduction

B11.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 4 / 21



B11. State-Space Search: Best-first Graph Search Introduction

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

▶ this chapter: short introduction

▶ next chapters: more thorough analysis

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 5 / 21

B11. State-Space Search: Best-first Graph Search Best-first Search

B11.2 Best-first Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 6 / 21

B11. State-Space Search: Best-first Graph Search Best-first Search

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

▶ decision which node is most promising uses heuristics. . .

▶ . . . but not necessarily exclusively.

Best-first Search
A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

▶ implementation essentially like uniform cost search

▶ different choices of f ⇝ different search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 7 / 21

B11. State-Space Search: Best-first Graph Search Best-first Search

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

▶ decision which node is most promising uses heuristics. . .

▶ . . . but not necessarily exclusively.

Best-first Search
A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

▶ implementation essentially like uniform cost search

▶ different choices of f ⇝ different search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 8 / 21



B11. State-Space Search: Best-first Graph Search Best-first Search

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

▶ f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

▶ f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

▶ f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 9 / 21

B11. State-Space Search: Best-first Graph Search Best-first Search

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

▶ now: graph search (i.e., with duplicate elimination),
which is the more common case

▶ Chapter B13: a tree search variant

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 10 / 21

B11. State-Space Search: Best-first Graph Search Algorithm Details

B11.3 Algorithm Details

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 11 / 21

B11. State-Space Search: Best-first Graph Search Algorithm Details

Reminder: Uniform Cost Search

reminder from Chapter B7:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 12 / 21



B11. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search without Reopening (1st Attempt)

reminder from Chapter B7:

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by f
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 13 / 21

B11. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

▶ discard states considered unsolvable by the heuristic
⇝ saves memory in open

▶ if multiple search nodes have identical f values,
use h to break ties (preferring low h)
▶ not always a good idea, but often
▶ obviously unnecessary if f = h (greedy best-first search)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 14 / 21

B11. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 15 / 21

B11. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search: Properties

properties:

▶ complete if h is safe (Why?)

▶ optimality depends on f ⇝ next chapters

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 16 / 21



B11. State-Space Search: Best-first Graph Search Reopening

B11.4 Reopening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 17 / 21

B11. State-Space Search: Best-first Graph Search Reopening

Reopening

▶ reminder: uniform cost search expands nodes
in order of increasing g values

⇝ guarantees that cheapest path to state of a node
has been found when the node is expanded

▶ with arbitrary evaluation functions f in best-first search
this does not hold in general

⇝ in order to find solutions of low cost,
we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 18 / 21

B11. State-Space Search: Best-first Graph Search Reopening

Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
distances := new HashMap
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

⇝ distances controls reopening and replaces closed

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 19 / 21

B11. State-Space Search: Best-first Graph Search Summary

B11.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 20 / 21



B11. State-Space Search: Best-first Graph Search Summary

Summary

▶ best-first search: expand node with minimal value
of evaluation function f
▶ f = h: greedy best-first search
▶ f = g + h: A∗

▶ f = g + w · h with parameter w ∈ R+
0 : weighted A∗

▶ here: best-first search as a graph search

▶ reopening: expand duplicates with lower path costs
to find cheaper solutions

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 19, 2025 21 / 21


	Introduction
	

	Best-first Search
	

	Algorithm Details
	

	Reopening
	

	Summary
	


