Foundations of Artificial Intelligence B10. State-Space Search: Analysis of Heuristics

Malte Helmert

University of Basel

March 19, 2025

Summary 00

State-Space Search: Overview

Chapter overview: state-space search

- B1–B3. Foundations
- B4–B8. Basic Algorithms
- B9-B15. Heuristic Algorithms
 - B9. Heuristics
 - B10. Analysis of Heuristics
 - B11. Best-first Graph Search
 - B12. Greedy Best-first Search, A*, Weighted A*
 - B13. IDA*
 - B14. Properties of A*, Part I
 - B15. Properties of A*, Part II

Examples 00 Connections

Summary 00

Reminder: Heuristics

Definition (heuristic)

Let S be a state space with states S. A heuristic function or heuristic for S is a function

$$h: S \to \mathbb{R}_0^+ \cup \{\infty\},\$$

mapping each state to a nonnegative number (or ∞).

Perfect Heuristic

Definition (perfect heuristic)

Let S be a state space with states S.

The perfect heuristic for \mathcal{S} , written h^* , maps each state $s \in S$

- to the cost of an optimal solution for s, or
- to ∞ if no solution for s exists.

German: perfekte Heuristik

Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for S is called

- safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$
- goal-aware if h(s) = 0 for all goal states s
- admissible if $h(s) \le h^*(s)$ for all states $s \in S$
- consistent if $h(s) \leq cost(a) + h(s')$ for all transitions $s \xrightarrow{a} s'$

German: sicher, zielerkennend, zulässig, konsistent

Summary

Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for S is called

- safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$
- goal-aware if h(s) = 0 for all goal states s
- admissible if $h(s) \leq h^*(s)$ for all states $s \in S$
- consistent if $h(s) \leq cost(a) + h(s')$ for all transitions $s \xrightarrow{a} s'$

German: sicher, zielerkennend, zulässig, konsistent

Examples

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Route Planning in Romania

straight-line distance:

- safe
- goal-aware
- admissible
- consistent

Why?

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Blocks World misplaced blocks: • safe? • goal-aware? • admissible? • consistent?

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Missionaries and Cannibals

people on wrong river bank:

- safe?
- goal-aware?
- admissible?
- consistent?

Examples 00 Connections ●000

Summary 00

Connections

Examples 00 Connections

Summary 00

Properties of Heuristics: Connections (1)

Theorem (admissible \implies safe + goal-aware)

Let h be an admissible heuristic.

Then h is safe and goal-aware.

Why?

Connections

Properties of Heuristics: Connections (2)

Theorem (goal-aware + consistent \implies admissible)

Let h be a goal-aware and consistent heuristic. Then h is admissible.

Why?

Examples 00 Connections

Summary 00

Showing All Four Properties

How can one show most easily that a heuristic has all four properties?

Examples 00 Connections

Summary •0

Summary

- perfect heuristic *h**: true cost to the goal
- important properties: safe, goal-aware, admissible, consistent
- connections between these properties
 - $\bullet \ \ \mathsf{admissible} \Longrightarrow \mathsf{safe} \ \mathsf{and} \ \mathsf{goal}\mathsf{-}\mathsf{aware}$
 - $\bullet \ \ {\sf goal-aware \ and \ } {\sf consistent} \Longrightarrow {\sf admissible}$