
Foundations of Artificial Intelligence
B8. State-Space Search: Depth-first Search & Iterative

Deepening

Malte Helmert

University of Basel

March 17, 2025

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 1 / 35

Foundations of Artificial Intelligence
March 17, 2025 — B8. State-Space Search: Depth-first Search & Iterative Deepening

B8.1 Depth-first Search

B8.2 Iterative Deepening

B8.3 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 2 / 35

State-Space Search: Overview

Chapter overview: state-space search

▶ B1–B3. Foundations
▶ B4–B8. Basic Algorithms

▶ B4. Data Structures for Search Algorithms
▶ B5. Tree Search and Graph Search
▶ B6. Breadth-first Search
▶ B7. Uniform Cost Search
▶ B8. Depth-first Search and Iterative Deepening

▶ B9–B15. Heuristic Algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 3 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

B8.1 Depth-first Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 4 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Idea of Depth-first Search

depth-first search:

▶ expands nodes in opposite order of generation (LIFO)

▶ open list implemented as stack

⇝ deepest node expanded first

German: Tiefensuche

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 5 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open: 1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

1

11

222

333

444

555

666

1

4

9

6

5

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 6 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

1

1

1

2

22

333

444

555

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 7 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

2

2

2

3

33

444

555

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 8 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

3

3

3

4

44

555

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 9 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

4

4

4

5

55

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 10 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

44

4

5

5

5

6

66

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 11 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

44

4

55

5

6

6

6

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 12 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

44

4

55

5

66

6

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 13 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search: Some Properties

▶ almost always implemented as a tree search (we will see why)

▶ not complete, not semi-complete, not optimal (Why?)

▶ complete for acyclic state spaces,
e.g., if state space directed tree

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 14 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 15 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push back(make root node())
while not open.is empty():

n := open.pop back()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 16 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Non-recursive Depth-first Search: Discussion

discussion:

▶ there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

▶ however, depth-first search as a recursive algorithm
is simpler and more efficient

⇝ CPU stack as implicit open list

⇝ no search node data structure needed

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 17 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search (Recursive Version)

function depth first search(s)

if is goal(s):
return ⟨⟩

for each ⟨a, s ′⟩ ∈ succ(s):
solution := depth first search(s ′)
if solution ̸= none:

solution.push front(a)
return solution

return none

main function:

Depth-first Search (Recursive Version)

return depth first search(init())

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 18 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Depth-first Search

Depth-first Search: Complexity

time complexity:

▶ If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

▶ On the other hand: in the best case, solutions of length ℓ
can be found with O(bℓ) generated nodes. (Why?)

▶ improvable to O(ℓ) with incremental successor generation

space complexity:

▶ only need to store nodes along currently explored path
(“along”: nodes on path and their children)

⇝ space complexity O(bm) if m maximal search depth reached

▶ low memory complexity main reason why depth-first search
interesting despite its disadvantages

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 19 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

B8.2 Iterative Deepening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 20 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Idea of Depth-limited Search

depth-limited search:

▶ parameterized with depth limit ℓ ∈ N0

▶ behaves like depth-first search, but prunes (does not expand)
search nodes at depth ℓ

▶ not very useful on its own, but important ingredient
of more useful algorithms

German: tiefenbeschränkte Suche

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 21 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

22

2

11

1

inc
sqr

33

3

44

4

inc
sqr

22

2

11

1

inc
sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 22 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Depth-limited Search: Pseudo-Code

function depth limited search(s, depth limit):

if is goal(s):
return ⟨⟩

if depth limit > 0:
for each ⟨a, s ′⟩ ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution ̸= none:

solution.push front(a)
return solution

return none

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 23 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):

▶ idea: perform a sequence of depth-limited searches
with increasing depth limit

▶ sounds wasteful (each iteration repeats all the useful work
of all previous iterations)

▶ in fact overhead acceptable (⇝ analysis follows)

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution ̸= none:

return solution

German: iterative Tiefensuche

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 24 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Example

depth limit: 0

depth limit: 1depth limit: 1depth limit: 2depth limit: 2depth limit: 3depth limit: 3

generated nodes: 1

generated nodes: 1+3generated nodes: 1+3+3generated nodes: 1+3+5generated nodes: 1+3+7generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7generated nodes: 1+3+7+9=20

1

1

222 111
inc

sqrinc
sqr

333 444
inc

sqrinc
sqr

222 11
inc

sqr

444 999
in
c

sqr

5 6
in
c

sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 25 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Example

depth limit: 0depth limit: 1

depth limit: 1

depth limit: 2depth limit: 2depth limit: 3depth limit: 3 generated nodes: 1

generated nodes: 1+3

generated nodes: 1+3+3generated nodes: 1+3+5generated nodes: 1+3+7generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7generated nodes: 1+3+7+9=20

1

1

22

2

1

1

1

inc
sqr

inc
sqr

333 444
inc

sqrinc
sqr

222 11
inc

sqr

444 999
in
c

sqr

5 6
in
c

sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 26 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Example

depth limit: 0depth limit: 1depth limit: 1depth limit: 2

depth limit: 2

depth limit: 3depth limit: 3 generated nodes: 1generated nodes: 1+3generated nodes: 1+3+3generated nodes: 1+3+5

generated nodes: 1+3+7

generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7generated nodes: 1+3+7+9=20

1

1

22

2

11

1
inc

sqr

inc
sqr

33

3

44

4
inc

sqr

inc
sqr

22

2

1

1
inc

sqr

444 999
in
c

sqr

5 6
in
c

sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 27 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Example

depth limit: 0depth limit: 1depth limit: 1depth limit: 2depth limit: 2depth limit: 3

depth limit: 3

generated nodes: 1generated nodes: 1+3generated nodes: 1+3+3generated nodes: 1+3+5generated nodes: 1+3+7generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7

generated nodes: 1+3+7+9=20

1

1

22

2 1

11
inc

sqr

inc
sqr

33

3 44

4
inc

sqr

inc
sqr

222 11
inc

sqr

44

4

99

9
in
c

sqr

5 6
in
c

sqr

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 28 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:

▶ (almost) like BFS: semi-complete (however, not complete)

▶ like BFS: optimal if all actions have same cost

▶ like DFS: only need to store nodes along one path
⇝ space complexity O(bd), where d minimal solution length

▶ time complexity only slightly higher than BFS
(⇝ analysis soon)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 29 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search 1 + b + b2 + · · ·+ bd−1 + bd

iterative deepening DFS (d + 1) + db + (d − 1)b2 + · · ·+ 2bd−1 + 1bd

example: b = 10, d = 5

breadth-first search 1 + 10 + 100 + 1000 + 10000 + 100000

= 111111

iterative deepening DFS 6 + 50 + 400 + 3000 + 20000 + 100000

= 123456

for b = 10, only 11% more nodes than breadth-first search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 30 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of iterative deepening DFS is

(d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · ·+ 1bd = O(bd)

and the memory complexity is

O(bd).

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 31 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Iterative Deepening

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if

▶ tree search is adequate (no duplicate elimination necessary),

▶ all action costs are identical, and

▶ the solution depth is unknown.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 32 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Summary

B8.3 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 33 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Summary

Summary

depth-first search: expand nodes in LIFO order

▶ usually as a tree search

▶ easy to implement recursively

▶ very memory-efficient

▶ can be combined with iterative deepening
to combine many of the good aspects
of breadth-first and depth-first search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 34 / 35

B8. State-Space Search: Depth-first Search & Iterative Deepening Summary

Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity

search algorithm

criterion breadth- uniform depth- depth- iterative

first cost first limited deepening

complete? yes* yes no no semi

optimal? yes** yes no no yes**

time O(bd) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd)

space O(bd) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd)

b ≥ 2 branching factor
d minimal solution depth
m maximal search depth
ℓ depth limit

c∗ optimal solution cost
ε > 0 minimal action cost

remarks:
* for BFS-Tree: semi-complete
** only with uniform action costs

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 17, 2025 35 / 35

	Depth-first Search
	

	Iterative Deepening
	

	Summary
	

