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State-Space Search: Overview

Chapter overview: state-space search

▶ B1–B3. Foundations
▶ B4–B8. Basic Algorithms

▶ B4. Data Structures for Search Algorithms
▶ B5. Tree Search and Graph Search
▶ B6. Breadth-first Search
▶ B7. Uniform Cost Search
▶ B8. Depth-first Search and Iterative Deepening

▶ B9–B15. Heuristic Algorithms
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B7.1 Introduction
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B7. State-Space Search: Uniform Cost Search Introduction

Uniform Cost Search

▶ breadth-first search optimal if all action costs equal

▶ otherwise no optimality guarantee ⇝ example:
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9 ▶ consider bounded inc-and-square problem
with cost(inc) = 1, cost(sqr) = 3

▶ solution of breadth-first search still
⟨inc, sqr, sqr⟩ (cost: 7)

▶ but: ⟨inc, inc, inc, inc, inc⟩ (cost: 5) is cheaper!

remedy: uniform cost search

▶ always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

▶ implementation: priority queue (min-heap) for open list
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B7. State-Space Search: Uniform Cost Search Algorithm

B7.2 Algorithm
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B7. State-Space Search: Uniform Cost Search Algorithm

Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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B7. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search

reminder from Chapter B5:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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B7. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

▶ here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

▶ as in BFS-Graph, a set is sufficient for the closed list

▶ a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (Why not?)

Remarks:

▶ identical to Dijkstra’s algorithm for shortest paths

▶ for both: variants with/without delayed duplicate elimination
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Example

open:

next

closed:
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Uniform Cost Search: Improvements

possible improvements:

▶ if action costs are small integers,
bucket heaps often more efficient

▶ additional early duplicate tests for generated nodes
can reduce memory requirements
▶ can be beneficial or detrimental for runtime
▶ must be careful to keep shorter path to duplicate state
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B7.3 Properties
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B7. State-Space Search: Uniform Cost Search Properties

Completeness and Optimality

properties of uniform cost search:

▶ uniform cost search is complete (Why?)

▶ uniform cost search is optimal (Why?)
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Time and Space Complexity

properties of uniform cost search:

▶ Time complexity depends on distribution of action costs
(no simple and accurate bounds).
▶ Let ε := mina∈A cost(a) and consider the case ε > 0.
▶ Let c∗ be the optimal solution cost.
▶ Let b be the branching factor and consider the case b ≥ 2.
▶ Then the time complexity is at most O(b⌊c

∗/ε⌋+1). (Why?)
▶ often a very weak upper bound

▶ space complexity = time complexity
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B7.4 Summary
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B7. State-Space Search: Uniform Cost Search Summary

Summary

uniform cost search: expand nodes in order of ascending path costs

▶ usually as a graph search

▶ then corresponds to Dijkstra’s algorithm

▶ complete and optimal
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