
Foundations of Artificial Intelligence
B7. State-Space Search: Uniform Cost Search

Malte Helmert

University of Basel

March 5, 2025

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 1 / 25

Foundations of Artificial Intelligence
March 5, 2025 — B7. State-Space Search: Uniform Cost Search

B7.1 Introduction

B7.2 Algorithm

B7.3 Properties

B7.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 2 / 25

State-Space Search: Overview

Chapter overview: state-space search

▶ B1–B3. Foundations
▶ B4–B8. Basic Algorithms

▶ B4. Data Structures for Search Algorithms
▶ B5. Tree Search and Graph Search
▶ B6. Breadth-first Search
▶ B7. Uniform Cost Search
▶ B8. Depth-first Search and Iterative Deepening

▶ B9–B15. Heuristic Algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 3 / 25

B7. State-Space Search: Uniform Cost Search Introduction

B7.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 4 / 25

B7. State-Space Search: Uniform Cost Search Introduction

Uniform Cost Search

▶ breadth-first search optimal if all action costs equal

▶ otherwise no optimality guarantee ⇝ example:

0

1

2

3

45

6

7

8

9 ▶ consider bounded inc-and-square problem
with cost(inc) = 1, cost(sqr) = 3

▶ solution of breadth-first search still
⟨inc, sqr, sqr⟩ (cost: 7)

▶ but: ⟨inc, inc, inc, inc, inc⟩ (cost: 5) is cheaper!

remedy: uniform cost search

▶ always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

▶ implementation: priority queue (min-heap) for open list

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 5 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

B7.2 Algorithm

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 6 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 7 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search

reminder from Chapter B5:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 8 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

▶ here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

▶ as in BFS-Graph, a set is sufficient for the closed list

▶ a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (Why not?)

Remarks:

▶ identical to Dijkstra’s algorithm for shortest paths

▶ for both: variants with/without delayed duplicate elimination

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 9 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }

2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

1

11

11222

in
c sqrin
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 44

in
c sqrin
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 10 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }

2 :1 1 :3[]

{1}

3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

1

1

1

1

1

2

22

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 44

in
c sqrin
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 11 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}

3 :2 1 :3 4 :4[]

{1, 2}

1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

12

2

2

in
c sqr

in
c sqr

3

3

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 12 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}

1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

122

2

in
c sqr

in
c sqr

3

3

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 13 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 14 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 15 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 16 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}

6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 17 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}

6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 18 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 19 / 25

B7. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search: Improvements

possible improvements:

▶ if action costs are small integers,
bucket heaps often more efficient

▶ additional early duplicate tests for generated nodes
can reduce memory requirements
▶ can be beneficial or detrimental for runtime
▶ must be careful to keep shorter path to duplicate state

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 20 / 25

B7. State-Space Search: Uniform Cost Search Properties

B7.3 Properties

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 21 / 25

B7. State-Space Search: Uniform Cost Search Properties

Completeness and Optimality

properties of uniform cost search:

▶ uniform cost search is complete (Why?)

▶ uniform cost search is optimal (Why?)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 22 / 25

B7. State-Space Search: Uniform Cost Search Properties

Time and Space Complexity

properties of uniform cost search:

▶ Time complexity depends on distribution of action costs
(no simple and accurate bounds).
▶ Let ε := mina∈A cost(a) and consider the case ε > 0.
▶ Let c∗ be the optimal solution cost.
▶ Let b be the branching factor and consider the case b ≥ 2.
▶ Then the time complexity is at most O(b⌊c

∗/ε⌋+1). (Why?)
▶ often a very weak upper bound

▶ space complexity = time complexity

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 23 / 25

B7. State-Space Search: Uniform Cost Search Summary

B7.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 24 / 25

B7. State-Space Search: Uniform Cost Search Summary

Summary

uniform cost search: expand nodes in order of ascending path costs

▶ usually as a graph search

▶ then corresponds to Dijkstra’s algorithm

▶ complete and optimal

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2025 25 / 25

	Introduction
	

	Algorithm
	

	Properties
	

	Summary
	

