Foundations of Artificial Intelligence
B6. State-Space Search: Breadth-first Search

Malte Helmert

University of Basel

March 5, 2025

State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations

e B4-B8. Basic Algorithms

B4. Data Structures for Search Algorithms

B5. Tree Search and Graph Search

B6. Breadth-first Search

B7. Uniform Cost Search

B8. Depth-first Search and lIterative Deepening

e B9-B15. Heuristic Algorithms

Blind Search

Blind Search

In Chapters B6-B8 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (Chapters B9-B15)

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search
uniform cost search
depth-first search
depth-limited search

iterative deepening search

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (~ this chapter)

uniform cost search
depth-first search
depth-limited search

iterative deepening search

Blind Search Algorithms: Examples

examples of blind search algorithms:
@ breadth-first search (~~ this chapter)
@ uniform cost search (~~ Chapter B7)
o depth-first search (~~ Chapter B8)
@ depth-limited search (~ Chapter B8)
o iterative deepening search (~~ Chapter B8)

Breadth-first Search: Introduction

Running Example: Reminder

bounded inc-and-square:

e S=1{0,1,...,9}

A = {inc, sqr}

cost(inc) = cost(sqr) = 1

@ Tst fori=0,...,9

o (i,inc,(i+1)mod10) € T
o (i,sqr,i> mod 10) € T

@ 5 = 1

*] SG = {6,7}

breadth-first search:
@ expand nodes in order of generation (FIFO)
~~ open list is linked list or deque

@ we start with an example using graph search

German: Breitensuche

Example: Generic Graph Search with FIFO Expansion

next
open: [.]

closed: { }

Example: Generic Graph Search with FIFO Expansion

neixt
open: [. .]

closed: {1}

Example: Generic Graph Search with FIFO Expansion

neixt
open: [@ @ @]
closed: {1, 2}

Example: Generic Graph Search with FIFO Expansion

neixt
open: [. .]
closed: {1, 2}

Example: Generic Graph Search with FIFO Expansion

neixt
open: [@ @ @]
closed: {1, 2, 3}

Example: Generic Graph Search with FIFO Expansion

next

v
open: [@ @ @]
closed: {1, 2,3, 4}

Example: Generic Graph Search with FIFO Expansion

next

e [G08]
closed: {1, 2,3, 4}

Example: Generic Graph Search with FIFO Expansion

next
v
open: (@ OO @]
closed: {1, 2,3, 4, 9}

Example: Generic Graph Search with FIFO Expansion

next

¥
open: (0O @@ O |
closed: {1, 2,3,4,5, 9}

Example: Generic Graph Search with FIFO Expansion

next

y
open: [0 @© @]
closed: {1,2,3,4,5,6, 9}

Observations from Example

breadth-first search behaviour:
@ state space is searched layer by layer
~ shallowest goal node is always found first

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

e without duplicate elimination (as a tree search)
~» BFS-Tree

@ or with duplicate elimination (as a graph search)
~» BFS-Graph

(BFS = breadth-first search).

~~ We consider both variants.

BFS-Tree

Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.push_back(n’)
return unsolvable

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS- = (1st Attempt)

open.push_back(m3
while not open.is_empty
n := open.pop_front()
if is_goal(n.state):
return extract_p#
for each (a,s’)

Running Example: BFS-Tree (1st Attempt)

Opportunities for Improvement

@ In a BFS, the first generated goal node
is always the first expanded goal node. (Why?)

~~ It is more efficient to perform the goal test
upon generating a node (rather than upon expanding it).

~ How much effort does this save?

BFS-Tree without Early Goal Tests

BFS-Tree with Early Goal Tests

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():

n := open.pop_front()

for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BF. T-ee (2nd Attempt)

for each (a,s’)
n' := make_ng
if is_goa

fhsolvable

BFS-Tree (2nd Attempt): Discussion

Where is the bug?

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable

BFS-Graph

Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable

Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

@ similar adaptations to BFS-Tree
(deque as open list, early goal tests)

@ as closed list does not need to manage node information,
a set data structure suffices

o for the same reasons why early goal tests are a good idea,
we should perform duplicate tests against the closed list
and updates of the closed lists as early as possible

BFS-Graph (Breadth-First Search with Duplicate Elim.)

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
closed := new HashSet
closed.insert(init())
while not open.is_empty():
n := open.pop_front()
for each (a, s’) € succ(n.state):
n’ := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
if s’ ¢ closed:
closed.insert(s’)
open.push_back(n’)
return unsolvable

BFS-Graph: Example

n(ixt
open: [.]
closed: {1}

BFS-Graph: Example

n(ixt
open: [.]
closed: {1,2}

BFS-Graph: Example

\(\C So,..

n(ixt
open: [. .]
closed: {1, 2,3, 4}

BFS-Graph: Example

n(ixt
open: [. .]
closed: {1, 2,3, 4, 9}

BFS-Graph: Example

n(ixt
open: [. .]
closed: {1,2,3,4,5, 9}

Properties of Breadth-first Search

Properties of Breadth-first Search

Properties of Breadth-first Search:
@ BFS-Tree is semi-complete, but not complete. (\Why?)
e BFS-Graph is complete. (Why?)

e BFS (both variants) is optimal
if all actions have the same cost (\Why?),
but not in general (Why not?).

@ complexity: next slides

Breadth-first Search: Complexity

The following result applies to both BFS variants:

Theorem (time complexity of breadth-first search)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b > 2.

Then the time complexity of breadth-first search is

1+b+ b+ b+ + b= 0(b7)

Reminder: we measure time complexity in generated nodes.

It follows that the space complexity of both BFS variants
also is O(b9) (if b >2). (Why?)

Breadth-first Search: Example of Complexity

example: b = 13; 100000 nodes/second; 32 bytes/node

6 5.2-10° 52s 159 MiB

10 10™ 17days 4.3TiB

14 10%° 1352years 121 PiB

18 10° 38-10°years 3.3ZiB

Breadth-first Search: Example of Complexity

example: b = 13; 100000 nodes/second; 32 bytes/node

Realistic numbers?

6 5.2-10° 52s 159 MiB

10 10™ 17days 4.3TiB

14 10%° 1352years 121 PiB

18 10° 38-10°years 3.3ZiB

Breadth-first Search: Example of Complexity

example: b = 13; 100000 nodes/second; 32 bytes/node

6 5.2-10° 52s 159 MiB

10 10™ 17days 4.3TiB
Rubik's cube:

14 10%° 1352years 121 PiB
@ branching factor: ~ 13

° i i : .
typical solution length: 18 18 10° 33.10°years 3.3ZiB

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
@ simpler

o less overhead (time/space) if there are few duplicates

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
@ simpler

o less overhead (time/space) if there are few duplicates

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Summary

Summary

@ blind search algorithm: use no information
except black box interface of state space

@ breadth-first search: expand nodes in order of generation
e search state space layer by layer
@ can be tree search or graph search
o complexity O(b9) with branching factor b,

minimal solution length d (if b > 2)

e complete as a graph search; semi-complete as a tree search
e optimal with uniform action costs

