
Foundations of Artificial Intelligence
B6. State-Space Search: Breadth-first Search

Malte Helmert

University of Basel

March 5, 2025

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms

Blind Search

Blind Search

In Chapters B6–B8 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (Chapters B9–B15)

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search

(⇝ this chapter)

uniform cost search

(⇝ Chapter B7)

depth-first search

(⇝ Chapter B8)

depth-limited search

(⇝ Chapter B8)

iterative deepening search

(⇝ Chapter B8)

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search

(⇝ Chapter B7)

depth-first search

(⇝ Chapter B8)

depth-limited search

(⇝ Chapter B8)

iterative deepening search

(⇝ Chapter B8)

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search (⇝ Chapter B7)

depth-first search (⇝ Chapter B8)

depth-limited search (⇝ Chapter B8)

iterative deepening search (⇝ Chapter B8)

Breadth-first Search: Introduction

Running Example: Reminder

bounded inc-and-square:

S = {0, 1, . . . , 9}

A = {inc, sqr}

cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}

0

1

2

3

45

6

7

8

9

Idea

breadth-first search:

expand nodes in order of generation (FIFO)

⇝ open list is linked list or deque

we start with an example using graph search

German: Breitensuche

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }

2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

1

11

111222

inc
sqrinc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3 444

inc
sqrinc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }

2 1[]

{1}

1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

1

1

1

1

11

2

22

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3 444

inc
sqrinc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}

1 3 4[]

{1, 2}

3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

1

112

2

2

inc
sqr

inc
sqr

3

3

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

44

inc
sqr

inc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}

3 4[]

{1, 2}

4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

1

1

122

2

inc
sqr

inc
sqr

3

3

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

44

inc
sqr

inc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}

4 4 9[]

{1, 2, 3}

4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

3

3

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

44

inc
sqr

inc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}

4 9 5 6[]

{1, 2, 3, 4}

9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

4

4

inc
sqr

inc
sqr

5

55

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}

9 5 6[]

{1, 2, 3, 4}

5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

5

55

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}

5 6 0 1[]

{1, 2, 3, 4, 9}

6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

5

55

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}

6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}

0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

5

5

5

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}

0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

55

5

6
in
c

5

sqr

6

in
c

sqr

6
in
c

sqr

Observations from Example

breadth-first search behaviour:

state space is searched layer by layer

⇝ shallowest goal node is always found first

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

without duplicate elimination (as a tree search)
⇝ BFS-Tree

or with duplicate elimination (as a graph search)
⇝ BFS-Graph

(BFS = breadth-first search).

⇝ We consider both variants.

BFS-Tree

Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Running Example: BFS-Tree (1st Attempt)

1

1

2 1

3 4 2 1

inc
sqr

in
c

sqr in
c

sqr

2

inc
sqr

3

4

in
c

5 6

in
c sq

r

9

sqr

0

in
c

1

sq
r

4

inc
sqr

5

6

in
c

5

sqr

6

in
c

sqr

Opportunities for Improvement

In a BFS, the first generated goal node
is always the first expanded goal node. (Why?)

⇝ It is more efficient to perform the goal test
upon generating a node (rather than upon expanding it).

⇝ How much effort does this save?

BFS-Tree without Early Goal Tests

1

1

2 1

3 4 2 1

inc
sqr

in
c

sqr in
c

sqr

2

inc
sqr

3

4

in
c

5 6

in
c sq

r

9

sqr

0

in
c

1

sq
r

4

inc
sqr

5

6

in
c

5

sqr

6

in
c

sqr

1

1

2 1

inc
sqr

2

inc
sqr

3

4

in
c

9

sqr

4

inc
sqr

5 6

in
c

sqr

BFS-Tree with Early Goal Tests

1

1

2 1

3 4 2 1

inc
sqr

in
c

sqr in
c

sqr

2

inc
sqr

3

4

in
c

5 6

in
c sq

r

9

sqr

0

in
c

1

sq
r

4

inc
sqr

5

6

in
c

5

sqr

6

in
c

sqr

1

1

2 1

inc
sqr

2

inc
sqr

3

4

in
c

9

sqr

4

inc
sqr

5 6

in
c

sqr

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

BFS-Tree (2nd Attempt): Discussion

Where is the bug?

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

BFS-Graph

Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

similar adaptations to BFS-Tree
(deque as open list, early goal tests)

as closed list does not need to manage node information,
a set data structure suffices

for the same reasons why early goal tests are a good idea,
we should perform duplicate tests against the closed list
and updates of the closed lists as early as possible

BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
closed := new HashSet
closed.insert(init())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
if s ′ /∈ closed:

closed.insert(s ′)
open.push back(n′)

return unsolvable

BFS-Graph: Example

open:

next

closed:

1[]

{1}

2[]

{1,2}
3 4[]

{1, 2, 3, 4}
4 9[]

{1, 2, 3, 4, 9}
9 5[]

{1, 2, 3, 4, 5, 9}

1

11

1222

inc
sqrinc
sqr

33

4

in
c

9

sqr

3 4

inc
sqrinc
sqr

4

5 6

in
c

sqr

BFS-Graph: Example

open:

next

closed:

1[]

{1}

2[]

{1,2}

3 4[]

{1, 2, 3, 4}
4 9[]

{1, 2, 3, 4, 9}
9 5[]

{1, 2, 3, 4, 5, 9}

1

1

1

12

22

inc
sqr

inc
sqr

33

4

in
c

9

sqr

3 4

inc
sqrinc
sqr

4

5 6

in
c

sqr

BFS-Graph: Example

open:

next

closed:

1[]

{1}
2[]

{1,2}

3 4[]

{1, 2, 3, 4}

4 9[]

{1, 2, 3, 4, 9}
9 5[]

{1, 2, 3, 4, 5, 9}

11

1

1

2

2

2

inc
sqr

inc
sqr

3

3

4

in
c

9

sqr

3

4

inc
sqr

inc
sqr

4

5 6

in
c

sqr

BFS-Graph: Example

open:

next

closed:

1[]

{1}
2[]

{1,2}
3 4[]

{1, 2, 3, 4}

4 9[]

{1, 2, 3, 4, 9}

9 5[]

{1, 2, 3, 4, 5, 9}

11

1

1

22

2

inc
sqr

inc
sqr

3

3

4

in
c

9

sqr

3

4

inc
sqr

inc
sqr

4

5 6

in
c

sqr

BFS-Graph: Example

open:

next

closed:

1[]

{1}
2[]

{1,2}
3 4[]

{1, 2, 3, 4}
4 9[]

{1, 2, 3, 4, 9}

9 5[]

{1, 2, 3, 4, 5, 9}

11

1

1

22

2

inc
sqr

inc
sqr

33

4

in
c

9

sqr

3

4

inc
sqr

inc
sqr

4

5 6

in
c

sqr

Properties of Breadth-first Search

Properties of Breadth-first Search

Properties of Breadth-first Search:

BFS-Tree is semi-complete, but not complete. (Why?)

BFS-Graph is complete. (Why?)

BFS (both variants) is optimal
if all actions have the same cost (Why?),
but not in general (Why not?).

complexity: next slides

Breadth-first Search: Complexity

The following result applies to both BFS variants:

Theorem (time complexity of breadth-first search)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of breadth-first search is

1 + b + b2 + b3 + · · ·+ bd = O(bd)

Reminder: we measure time complexity in generated nodes.

It follows that the space complexity of both BFS variants
also is O(bd) (if b ≥ 2). (Why?)

Breadth-first Search: Example of Complexity

Realistic numbers?

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

example: b = 13; 100 000 nodes/second; 32 bytes/node

d nodes time memory

4 30 940 0.3 s 966KiB

6 5.2 · 106 52 s 159MiB

8 8.8 · 108 147min 26GiB

10 1011 17 days 4.3TiB

12 1013 8 years 734TiB

14 1015 1 352 years 121PiB

16 1017 2.2 · 105 years 20 EiB

18 1020 38 · 106 years 3.3 ZiB

Breadth-first Search: Example of Complexity

Realistic numbers?

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

example: b = 13; 100 000 nodes/second; 32 bytes/node

d nodes time memory

4 30 940 0.3 s 966KiB

6 5.2 · 106 52 s 159MiB

8 8.8 · 108 147min 26GiB

10 1011 17 days 4.3TiB

12 1013 8 years 734TiB

14 1015 1 352 years 121PiB

16 1017 2.2 · 105 years 20 EiB

18 1020 38 · 106 years 3.3 ZiB

Breadth-first Search: Example of Complexity

Realistic numbers?

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

example: b = 13; 100 000 nodes/second; 32 bytes/node

d nodes time memory

4 30 940 0.3 s 966KiB

6 5.2 · 106 52 s 159MiB

8 8.8 · 108 147min 26GiB

10 1011 17 days 4.3TiB

12 1013 8 years 734TiB

14 1015 1 352 years 121PiB

16 1017 2.2 · 105 years 20 EiB

18 1020 38 · 106 years 3.3 ZiB

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Summary

Summary

blind search algorithm: use no information
except black box interface of state space

breadth-first search: expand nodes in order of generation

search state space layer by layer
can be tree search or graph search
complexity O(bd) with branching factor b,
minimal solution length d (if b ≥ 2)
complete as a graph search; semi-complete as a tree search
optimal with uniform action costs

