
Foundations of Artificial Intelligence
A1. Organizational Matters

Malte Helmert

University of Basel

February 17, 2025

People Format Assessment Tools About this Course

Introduction: Overview

Chapter overview: introduction

A1. Organizational Matters

A2. What is Artificial Intelligence?

A3. AI Past and Present

A4. Rational Agents

A5. Environments and Problem Solving Methods

People Format Assessment Tools About this Course

People

People Format Assessment Tools About this Course

Teaching Staff: Lecturer

Lecturer

Prof. Dr. Malte Helmert

email: malte.helmert@unibas.ch

office: room 06.004, Spiegelgasse 1

mailto:malte.helmert@unibas.ch

People Format Assessment Tools About this Course

Teaching Staff: Assistant

Assistant

Dr. Florian Pommerening

email: florian.pommerening@unibas.ch

office: room 04.005, Spiegelgasse 1

mailto:florian.pommerening@unibas.ch

People Format Assessment Tools About this Course

Teaching Staff: Tutors

Tutors

Remo Christen

email: remo.christen@unibas.ch

office: room 04.001, Spiegelgasse 5

Simon Dold

email: simon.dold@unibas.ch

office: room 04.001, Spiegelgasse 5

Claudia Grundke

email: claudia.grundke@unibas.ch

office: room 04.001, Spiegelgasse 5

mailto:remo.christen@unibas.ch
mailto:simon.dold@unibas.ch
mailto:claudia.grundke@unibas.ch

People Format Assessment Tools About this Course

Students

target audience:

Bachelor Computer Science, ∼3rd year

Bachelor Computational Sciences, ∼3rd year

Master Data Science

other students welcome

prerequisites:

algorithms and data structures

basic mathematical concepts
(formal proofs; sets, functions, relations, graphs)

complexity theory

programming skills (mainly for exercises)

People Format Assessment Tools About this Course

Format

People Format Assessment Tools About this Course

Structure Overview

Foundations of AI week structure:

Monday: release of exercise sheet

Monday and Wednesday: lectures

Wednesday: exercise session

Sunday: exercise sheet due

exceptions due to holidays

People Format Assessment Tools About this Course

Time & Place

Lectures

Mon 16:15–18:00 in Biozentrum, lecture hall U1.141

Wed 14:15–16:00 in Biozentrum, lecture hall U1.141

Exercise Sessions

Wed 16:15–18:00 in Biozentrum, SR U1.195

Fri 10:15–12:00 in Spiegelgasse 1, room U1.001 (changed)

first exercise session: February 19 (this week)

People Format Assessment Tools About this Course

Exercises

exercise sheets (homework assignments):

mostly theoretical exercises

occasional programming exercises

exercise sessions:

initial part:

discuss common mistakes in previous exercise sheet
answer questions on previous exercise sheet

main part:

we support you solving the current exercise sheet
we answer your questions
we assist you comprehend the course content

People Format Assessment Tools About this Course

Theoretical Exercises

theoretical exercises:

exercises on ADAM every Monday

covers material of that week (Monday and Wednesday)

due Sunday of the same week (23:59) via ADAM

solved in groups of at most two (2 = 2)

support in exercise session of current week

discussed in exercise session of following week

People Format Assessment Tools About this Course

Programming Exercises

programming exercises (project):

project with 3–4 parts over the duration of the semester

additional one-off programming exercises (not on every sheet)

integrated into the exercise sheets (no special treatment)

solved in groups of at most two (2 < 3)

implemented in Java; need working Linux system for some

solutions that obviously do not work: 0 marks

People Format Assessment Tools About this Course

Assessment

People Format Assessment Tools About this Course

Course Material

course material that is relevant for the exam:

slides

content of lecture

exercise sheets

additional (optional) course material:

textbook

bonus material

Textbook

Artificial Intelligence: A Modern Approach
by Stuart Russell and Peter Norvig
(4th edition, Global edition)

covers large parts of the course
(and much more), but not everything

People Format Assessment Tools About this Course

Exam

written exam on Wednesday, July 2

14:00-16:00
105 minutes for working on the exam
location: Biozentrum, lecture hall U1.131

8 ECTS credits

admission to exam: 50% of the exercise marks

class participation not required but highly recommended

no repeat exam

People Format Assessment Tools About this Course

Plagiarism

Plagiarism (Wikipedia)

Plagiarism is the “wrongful appropriation” and “stealing
and publication” of another author’s “language, thoughts,
ideas, or expressions” and the representation of them as
one’s own original work.

consequences:

0 marks for the exercise sheet (first time)

exclusion from exam (second time)

if in doubt: check with us what is (and isn’t) OK before submitting

exercises too difficult? Join the exercise session!

People Format Assessment Tools About this Course

Tools

People Format Assessment Tools About this Course

Course Homepage and Enrolment

Course Homepage

https://dmi.unibas.ch/en/studium/

computer-science-informatik/lehrangebot-fs25/

13548-lecture-foundations-of-artificial-intelligence/

course information

slides

bonus material (not relevant for the exam)

link to ADAM workspace

enrolment:

https://services.unibas.ch/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://services.unibas.ch/

People Format Assessment Tools About this Course

Communication Channels

Communication Channels

lectures and exercise sessions

ADAM workspace (linked from course homepage)

link to Discord server
exercise sheets and submission
exercise FAQ
bonus material that we cannot share publicly

Discord server (linked from ADAM workspace)

opportunity for Q&A and informal interactions

contact us by email

meet us in person (by arrangement)

meet us on Zoom (by arrangement)

People Format Assessment Tools About this Course

About this Course

People Format Assessment Tools About this Course

Classical AI Curriculum

“Classical” AI Curriculum

1. introduction

2. rational agents

3. uninformed search

4. informed search

5. constraint satisfaction

6. board games

7. propositional logic

8. predicate logic

9. modeling with logic

10. classical planning

11. probabilistic reasoning

12. decisions under uncertainty

13. acting under uncertainty

14. machine learning

15. deep learning

16. reinforcement learning

⇝ wide coverage, but somewhat superficial

People Format Assessment Tools About this Course

Our AI Curriculum

Our AI Curriculum

1. introduction

2. rational agents

3. uninformed search

4. informed search

5. constraint satisfaction

6. board games

7. propositional logic

8. predicate logic

9. modeling with logic

10. classical planning

11. probabilistic reasoning

12. decisions under uncertainty

13. acting under uncertainty

14. machine learning

15. deep learning

16. reinforcement learning

People Format Assessment Tools About this Course

Topic Selection

guidelines for topic selection:

fewer topics, more depth

more emphasis on programming projects

connections between topics

avoiding overlap with other courses

Pattern Recognition (B.Sc.)
Machine Learning (M.Sc.)

focus on algorithmic core of model-based AI

People Format Assessment Tools About this Course

Under Construction. . .

A course is never “done”.

We are always happy about feedback,
corrections and suggestions!

Foundations of Artificial Intelligence
A2. Introduction: What is Artificial Intelligence?

Malte Helmert

University of Basel

February 17, 2025

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Introduction: Overview

Chapter overview: introduction

A1. Organizational Matters

A2. What is Artificial Intelligence?

A3. AI Past and Present

A4. Rational Agents

A5. Environments and Problem Solving Methods

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI?

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI?

What do we mean by artificial intelligence?

⇝ no generally accepted definition!

often pragmatic definitions:

“AI is what AI researchers do.”

“AI is the solution of hard problems.”

in this chapter: some common attempts at defining AI

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What Do We Mean by Artificial Intelligence?

what pop culture tells us:

https://www.imdb.com/title/tt0092455/
https://www.imdb.com/title/tt0088247/
https://www.imdb.com/title/tt0076759
https://www.imdb.com/title/tt0133093/
https://www.imdb.com/title/tt0470752/
https://www.imdb.com/title/tt0910970

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Thinking Like Humans

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Cognitive (Neuro-) Science

requires knowledge of how humans think

two ways to a scientific
theory of brain activity:

psychological: observation of
human behavior
neurological: observation of
brain activity

roughly corresponds to cognitive science and
cognitive neuroscience

today separate research areas from AI

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Machines that Think Like Humans

“brains are to intelligence as wings are to flight”

https://youtu.be/9yVtGHbmN4s?t=29

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What Do We Mean by Artificial Intelligence?

thinking like humans thinking rationally

acting like humans acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Acting Like Humans

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

The Turing Test

Alan Turing, Computing Machinery and Intelligence (1950):

central question: Can machines think?

hypothesis: yes, if they can act like humans

operationalization: the imitation game

AI SYSTEM

HUMAN

?
 HUMAN
INTERROGATOR

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test in Cinema

https://www.imdb.com/title/tt2084970/
https://www.imdb.com/title/tt0470752/

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

developed in 1966 by J. Weizenbaum

uses combination of pattern matching and scripted rules

most famous script mimics a psychologist ⇝ many questions

fooled early users

http://www.med-ai.com/models/eliza.html

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

annual competition between 1991–2019

most human-like AI is awarded

highly controversial

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

mimics a 13-year-old boy from Odessa, Ukraine with a guinea pig

“not too old to know everything and not too young to know nothing”

33% of judges were convinced it was human in 2014
⇝ first system that passed the Turing test (?)

http://eugenegoostman.elasticbeanstalk.com/

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

five times winner of Loebner prize competitions (2015-2019)

winner of “bot battle” versus Facebook’s Blenderbot
⇝ https://youtu.be/RBK5j0yXDT8

https://www.kuki.ai/
https://youtu.be/RBK5j0yXDT8

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

commercial product announced in 2018

performs phone calls (making appointments) fully autonomously

after criticism, it now starts conversation by identifying as a robot

https://youtu.be/D5VN56jQMWM?t=69

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

systems like LaMDA and ChatGPT would likely pass the Turing test

example conversation: https://www.nytimes.com/2023/02/16/
technology/bing-chatbot-transcript.html

ChatGPT even passed some exams (but failed on others)

https://www.nytimes.com/2023/02/16/technology/bing-chatbot-transcript.html
https://www.nytimes.com/2023/02/16/technology/bing-chatbot-transcript.html

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Value of the Turing Test

human actions not always intelligent

scientific value of Turing test questionable:

Test for AI or for interrogator?
results not reproducible
strategies to succeed ̸= intelligence:

deceive interrogator
mimic human behavior

⇝ not important in AI “mainstream”

practical application: CAPTCHA
(“Completely Automated Public Turing

test to tell Computers and Humans Apart”)

https://xkcd.com/329/

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What Do We Mean by Artificial Intelligence?

thinking like humans thinking rationally

acting like humans acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Thinking Rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Thinking Rationally: Laws of Thought

Aristotle: What are correct arguments
and modes of thought?

syllogisms: structures for arguments that
always yield correct conclusions given
correct premises:

Socrates is a human.
All humans are mortal.
Therefore Socrates is mortal.

direct connection to modern AI
via mathematical logic

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Problems of the Logical Approach

not all intelligent behavior

stems from logical thinking

and formal reasoning

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

What Do We Mean by Artificial Intelligence?

thinking like humans thinking rationally

acting like humans acting rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Acting Rationally

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Acting Rationally

acting rationally: “doing the right thing”

the right thing: maximize utility
given available information

does not necessarily require “thought” (e.g., reflexes)

advantages of AI as development of rational agents:

more general than thinking rationally
(logical inference only one way to obtain rational behavior)

better suited for scientific method
than approaches based on human thinking and acting

⇝ most common view of AI scientists today
⇝ what we use in this course

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Summary

What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Summary

What is AI? ⇝ many possible definitions

guided by humans vs. by utility (rationality)

based on externally observable actions or inner thoughts?

⇝ four combinations:

acting like humans: e.g., Turing test
thinking like humans: cf. cognitive (neuro-)science
thinking rationally: logic
acting rationally: most common view today
⇝ amenable to scientific method
⇝ used in this course

Foundations of Artificial Intelligence
A3. Introduction: AI Past and Present

Malte Helmert

University of Basel

February 19, 2025

A Short History of AI Where are We Today? Summary

Introduction: Overview

Chapter overview: introduction

A1. Organizational Matters

A2. What is Artificial Intelligence?

A3. AI Past and Present

A4. Rational Agents

A5. Environments and Problem Solving Methods

A Short History of AI Where are We Today? Summary

A Short History of AI

A Short History of AI Where are We Today? Summary

Precursors (Until ca. 1943)

Philosophy and mathematics ask similar questions
that influence AI.

Aristotle (384–322 BC)

Leibniz (1646–1716)

Hilbert program (1920s)

Microworlds

RL for
Checkers

General Problem
Solver

Dartmouth

Turing Test

Artificial
Neurons

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Gestation (1943–1956)

Dartmouth

Turing Test

Artificial
Neurons

Invention of electrical computers raised question:
Can computers mimic the human mind?

W. McCulloch & W. Pitts (1943)
first computational model of artificial neuron

network of neurons can compute any computable function

basis of deep learning

Computing Machinery and Intelligence (A. Turing, 1950)

famous for introducing Turing test

(still) relevant discussion of AI potential and requirements

suggests core AI aspects: knowledge representation,
reasoning, language understanding, learning

Dartmouth workshop (1956)

ambitious proposal: “An attempt will be made to find how
to make machines use language, [...] solve kinds of problems
now reserved for humans, and improve themselves.”

J. McCarthy coins term artificial intelligence

Microworlds

RL for
Checkers

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Gestation (1943–1956)

Dartmouth

Turing Test

Artificial
Neurons

Invention of electrical computers raised question:
Can computers mimic the human mind?

W. McCulloch & W. Pitts (1943)
first computational model of artificial neuron

network of neurons can compute any computable function

basis of deep learning

Computing Machinery and Intelligence (A. Turing, 1950)

famous for introducing Turing test

(still) relevant discussion of AI potential and requirements

suggests core AI aspects: knowledge representation,
reasoning, language understanding, learning

Dartmouth workshop (1956)

ambitious proposal: “An attempt will be made to find how
to make machines use language, [...] solve kinds of problems
now reserved for humans, and improve themselves.”

J. McCarthy coins term artificial intelligence

Microworlds

RL for
Checkers

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Gestation (1943–1956)

Dartmouth

Turing Test

Artificial
Neurons

Invention of electrical computers raised question:
Can computers mimic the human mind?
W. McCulloch & W. Pitts (1943)

first computational model of artificial neuron

network of neurons can compute any computable function

basis of deep learning

Computing Machinery and Intelligence (A. Turing, 1950)

famous for introducing Turing test

(still) relevant discussion of AI potential and requirements

suggests core AI aspects: knowledge representation,
reasoning, language understanding, learning

Dartmouth workshop (1956)

ambitious proposal: “An attempt will be made to find how
to make machines use language, [...] solve kinds of problems
now reserved for humans, and improve themselves.”

J. McCarthy coins term artificial intelligence

Microworlds

RL for
Checkers

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Gestation (1943–1956)

Dartmouth

Turing Test

Artificial
Neurons

Invention of electrical computers raised question:
Can computers mimic the human mind?
W. McCulloch & W. Pitts (1943)

first computational model of artificial neuron

network of neurons can compute any computable function

basis of deep learning

Computing Machinery and Intelligence (A. Turing, 1950)

famous for introducing Turing test

(still) relevant discussion of AI potential and requirements

suggests core AI aspects: knowledge representation,
reasoning, language understanding, learning

Dartmouth workshop (1956)

ambitious proposal: “An attempt will be made to find how
to make machines use language, [...] solve kinds of problems
now reserved for humans, and improve themselves.”

J. McCarthy coins term artificial intelligence

Microworlds

RL for
Checkers

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Early Enthusiasm (1952–1969)

Microworlds

RL for
Checkers

GPS

Dartmouth

Turing Test

Artificial
Neurons

early enthusiasm (H. Simon, 1957):
“[...] there are now in the world machines that think, that learn and
that create. Moreover, their ability to do these things is going to
increase rapidly until – in the visible future – the range of problems
they can handle will be coextensive with the range to which the
human mind has been applied.”

General Problem Solver (H. Simon & A. Newell, 1957)

universal problem solving machine

imitates human problem solving strategies

in principle able to solve every formalized symbolic problem

in practice, GPS solves simple tasks like towers of Hanoi

Checkers AI (A. Samuel, 1959)

popularized term machine learning

learned to play at strong amateur level

uses ideas of reinforcement learning

intelligence in microworlds, e.g. SHRDLU (T. Winograd, 1968)

understands natural language

communicates with user via teletype on blocks world

graphical representation

⇝ https://hci.stanford.edu/winograd/shrdlu/

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Early Enthusiasm (1952–1969)

Microworlds

RL for
Checkers

GPS

Dartmouth

Turing Test

Artificial
Neurons

early enthusiasm (H. Simon, 1957):
“[...] there are now in the world machines that think, that learn and
that create. Moreover, their ability to do these things is going to
increase rapidly until – in the visible future – the range of problems
they can handle will be coextensive with the range to which the
human mind has been applied.”

General Problem Solver (H. Simon & A. Newell, 1957)

universal problem solving machine

imitates human problem solving strategies

in principle able to solve every formalized symbolic problem

in practice, GPS solves simple tasks like towers of Hanoi

Checkers AI (A. Samuel, 1959)

popularized term machine learning

learned to play at strong amateur level

uses ideas of reinforcement learning

intelligence in microworlds, e.g. SHRDLU (T. Winograd, 1968)

understands natural language

communicates with user via teletype on blocks world

graphical representation

⇝ https://hci.stanford.edu/winograd/shrdlu/

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Early Enthusiasm (1952–1969)

Microworlds

RL for
Checkers

GPS

Dartmouth

Turing Test

Artificial
Neurons

early enthusiasm (H. Simon, 1957):
“[...] there are now in the world machines that think, that learn and
that create. Moreover, their ability to do these things is going to
increase rapidly until – in the visible future – the range of problems
they can handle will be coextensive with the range to which the
human mind has been applied.”

General Problem Solver (H. Simon & A. Newell, 1957)

universal problem solving machine

imitates human problem solving strategies

in principle able to solve every formalized symbolic problem

in practice, GPS solves simple tasks like towers of Hanoi

Checkers AI (A. Samuel, 1959)

popularized term machine learning

learned to play at strong amateur level

uses ideas of reinforcement learning

intelligence in microworlds, e.g. SHRDLU (T. Winograd, 1968)

understands natural language

communicates with user via teletype on blocks world

graphical representation

⇝ https://hci.stanford.edu/winograd/shrdlu/

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Early Enthusiasm (1952–1969)

Microworlds

RL for
Checkers

GPS

Dartmouth

Turing Test

Artificial
Neurons

early enthusiasm (H. Simon, 1957):
“[...] there are now in the world machines that think, that learn and
that create. Moreover, their ability to do these things is going to
increase rapidly until – in the visible future – the range of problems
they can handle will be coextensive with the range to which the
human mind has been applied.”

General Problem Solver (H. Simon & A. Newell, 1957)

universal problem solving machine

imitates human problem solving strategies

in principle able to solve every formalized symbolic problem

in practice, GPS solves simple tasks like towers of Hanoi

Checkers AI (A. Samuel, 1959)

popularized term machine learning

learned to play at strong amateur level

uses ideas of reinforcement learning

intelligence in microworlds, e.g. SHRDLU (T. Winograd, 1968)

understands natural language

communicates with user via teletype on blocks world

graphical representation

⇝ https://hci.stanford.edu/winograd/shrdlu/

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

https://hci.stanford.edu/winograd/shrdlu/

A Short History of AI Where are We Today? Summary

Early Enthusiasm (1952–1969)

Microworlds

RL for
Checkers

GPS

Dartmouth

Turing Test

Artificial
Neurons

early enthusiasm (H. Simon, 1957):
“[...] there are now in the world machines that think, that learn and
that create. Moreover, their ability to do these things is going to
increase rapidly until – in the visible future – the range of problems
they can handle will be coextensive with the range to which the
human mind has been applied.”

General Problem Solver (H. Simon & A. Newell, 1957)

universal problem solving machine

imitates human problem solving strategies

in principle able to solve every formalized symbolic problem

in practice, GPS solves simple tasks like towers of Hanoi

Checkers AI (A. Samuel, 1959)

popularized term machine learning

learned to play at strong amateur level

uses ideas of reinforcement learning

intelligence in microworlds, e.g. SHRDLU (T. Winograd, 1968)

understands natural language

communicates with user via teletype on blocks world

graphical representation

⇝ https://hci.stanford.edu/winograd/shrdlu/

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

A Dose of Reality (1966–1973)

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

realization that unlimited computational power is illusion
(birth of complexity theory, NP-completeness)

AI systems (e.g., GPS, systems for micro worlds) fail to scale

fundamental limitations on basic structures
e.g., XOR problem of perceptrons

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Expert Systems (1969–1986)

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

example: R1/XCON (J. McDermott, 1978)

input: desired properties of a VAX computer system
according to customer specifications

output: specification of the computer system

inference engine: simple forward chaining of rules

end of 1980s: AI Winter

companies failed to deliver promises

expert systems difficult to maintain

expert systems susceptible to uncertainty

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Expert Systems (1969–1986)

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

example: R1/XCON (J. McDermott, 1978)

input: desired properties of a VAX computer system
according to customer specifications

output: specification of the computer system

inference engine: simple forward chaining of rules

end of 1980s: AI Winter

companies failed to deliver promises

expert systems difficult to maintain

expert systems susceptible to uncertainty

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Expert Systems (1969–1986)

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

example: R1/XCON (J. McDermott, 1978)

input: desired properties of a VAX computer system
according to customer specifications

output: specification of the computer system

inference engine: simple forward chaining of rules

end of 1980s: AI Winter

companies failed to deliver promises

expert systems difficult to maintain

expert systems susceptible to uncertainty

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Coming of Age (1990s and 2000s)

.
. . .

. . .

. . .

. . .

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

advent of probabilistic methods

formalization of AI techniques

better understanding of theoretical complexity

increased use of mathematical methods

exploitation of large data sets (big data)

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Broad Visibility in Society (Since 2010s)

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

well known systems and famous breakthroughs, e.g.,

broadly used systems (e.g., virtual assistants)

AI systems act in real-world (e.g., self-driving cars)

systems outperform humans in hard tasks (e.g., AlphaGo)

AI and human-written text hard to distinguish (ChatGPT)

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...

A Short History of AI Where are We Today? Summary

Where are We Today?

A Short History of AI Where are We Today? Summary

AI Approaching Maturity

Russell & Norvig (1995)

Gentle revolutions have occurred in robotics, computer vision,
machine learning, and knowledge representation.
A better understanding of the problems and their complexity
properties, combined with increased mathematical sophistication,
has led to workable research agendas and robust methods.

A Short History of AI Where are We Today? Summary

Where are We Today?

many coexisting paradigms

reactive vs. deliberative
data-driven vs. model-driven
often hybrid approaches

many methods, often borrowing from other research areas

logic, decision theory, statistics, . . .

different approaches

theoretical
algorithmic/experimental
application-oriented

A Short History of AI Where are We Today? Summary

Focus on Algorithms and Experiments

Many AI problems are inherently difficult (NP-hard),
but strong search techniques and heuristics often solve
large problem instances regardless:

satisfiability in propositional logic

10,000 propositional variables or more
via conflict-directed clause learning

constraint solvers

good scalability via constraint propagation
and automatic exploitation of problem structure

action planning

10100 search states and more by search
using automatically inferred heuristics

A Short History of AI Where are We Today? Summary

What Can AI Do Today?

https://kahoot.it/

https://kahoot.it/

A Short History of AI Where are We Today? Summary

What Can AI Do Today? – Videos, Articles and AIs

https://www.youtube.com./watch?v=TDqzyd7fDRc
https://www.youtube.com./watch?v=kZzL2rDNSJk&t=22s
https://www.youtube.com./watch?v=bAdqazixuRY&t=86
https://www.youtube.com./watch?v=8zTCM6BV03Q
https://www.youtube.com./watch?v=sRxaMDDMWQQ
https://www.youtube.com./channel/UCu0u7DbHJlvATLHjoANa3wQ
https://www.youtube.com./watch?v=FoyR1U7Y7Po&t=46s
https://github.com/features/copilot
https://www.cs.cmu.edu/~noamb/papers/19-Science-Superhuman.pdf
https://www.nature.com/articles/nature24270/
https://inspirobot.me/
https://youtu.be/OeVzbGEFEyU
https://openai.com/blog/chatgpt/

A Short History of AI Where are We Today? Summary

What Can AI Do Today?

results of our classroom poll:

✓ successfully complete an off-road car race

✗ beat a world champion table tennis player

✓ play guitar in a robot band

✓ do and fold the laundry

✓ drive safely in downtown Basel

✗ win a football match against a human team

✓ dance synchronously in a group of robots

✓ write code on the level of a CS student

✓ beat a world champion Chess, Go or Poker player

✓ create inspiring quotes

✓ compose music

✓ engage in a scientific conversation

A Short History of AI Where are We Today? Summary

Summary

A Short History of AI Where are We Today? Summary

Summary

1950s/1960s: beginnings of AI; early enthusiasm

1970s: micro worlds and knowledge-based systems

1980s: gold rush of expert systems followed by “AI winter”

1990s/2000s: AI comes of age; research becomes
more rigorous and mathematical; mature methods

2010s: AI systems enter mainstream

Foundations of Artificial Intelligence
A4. Introduction: Rational Agents

Malte Helmert

University of Basel

February 19, 2025

Systematic AI Framework Example Rationality Summary

Introduction: Overview

Chapter overview: introduction

A1. Organizational Matters

A2. What is Artificial Intelligence?

A3. AI Past and Present

A4. Rational Agents

A5. Environments and Problem Solving Methods

Systematic AI Framework Example Rationality Summary

Systematic AI Framework

Systematic AI Framework Example Rationality Summary

Systematic AI Framework

AI systems applied to
wide variety of challenges

so far we have seen that:

AI systems act rationally

thinking like humans thinking rationally

acting like humans acting rationally

now: describe a systematic framework that

captures this diversity of challenges

includes an entity that acts in the environment

determines if the agent acts rationally in the environment

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Systematic AI Framework Example Rationality Summary

Systematic AI Framework

AI systems applied to
wide variety of challenges

so far we have seen that:

AI systems act rationally

thinking like humans thinking rationally

acting like humans acting rationally

now: describe a systematic framework that

captures this diversity of challenges

includes an entity that acts in the environment

determines if the agent acts rationally in the environment

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Systematic AI Framework Example Rationality Summary

Systematic AI Framework

AI systems applied to
wide variety of challenges

so far we have seen that:

AI systems act rationally

thinking like humans thinking rationally

acting like humans acting rationally

now: describe a systematic framework that

captures this diversity of challenges

includes an entity that acts in the environment

determines if the agent acts rationally in the environment

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Systematic AI Framework Example Rationality Summary

Systematic AI Framework

AI systems applied to
wide variety of challenges

so far we have seen that:

AI systems act rationally

thinking like humans thinking rationally

acting like humans acting rationally

now: describe a systematic framework that

captures this diversity of challenges

includes an entity that acts in the environment

determines if the agent acts rationally in the environment

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Systematic AI Framework Example Rationality Summary

Systematic AI Framework

AI systems applied to
wide variety of challenges

so far we have seen that:

AI systems act rationally

thinking like humans thinking rationally

acting like humans acting rationally

now: describe a systematic framework that

captures this diversity of challenges

includes an entity that acts in the environment

determines if the agent acts rationally in the environment

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Systematic AI Framework Example Rationality Summary

Systematic AI Framework

AI systems applied to
wide variety of challenges

so far we have seen that:

AI systems act rationally

thinking like humans thinking rationally

acting like humans acting rationally

now: describe a systematic framework that

captures this diversity of challenges

includes an entity that acts in the environment

determines if the agent acts rationally in the environment

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Systematic AI Framework Example Rationality Summary

Agent-Environment Interaction

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

sensors: physical entities that allow the agent to observe

observation: data perceived by the agent’s sensors

actuators: physical entities that allow the agent to act

action: abstract concept that affects the state of the environment

sensors and actuators are not relevant for the course
(⇝ typically covered in courses on robotics)

observations and actions describe the agent’s capabilities
(the agent model)

internal representation

specifics possibly unknown to outside

takes observation as input

outputs an action

computed on physical machine
(the agent architecture)

Systematic AI Framework Example Rationality Summary

Agent-Environment Interaction

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

sensors: physical entities that allow the agent to observe

observation: data perceived by the agent’s sensors

actuators: physical entities that allow the agent to act

action: abstract concept that affects the state of the environment

sensors and actuators are not relevant for the course
(⇝ typically covered in courses on robotics)

observations and actions describe the agent’s capabilities
(the agent model)

internal representation

specifics possibly unknown to outside

takes observation as input

outputs an action

computed on physical machine
(the agent architecture)

Systematic AI Framework Example Rationality Summary

Formalizing an Agent’s Behavior

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

1 as agent program:

internal representation

specifics possibly unknown to outside

takes observation as input

outputs an action

computed on physical machine (the agent architecture)

2 as agent function:

external characterization

maps sequence of observations to
(probability distribution over) actions

abstract mathematical formalization

Systematic AI Framework Example Rationality Summary

Formalizing an Agent’s Behavior

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

1 as agent program:

internal representation

specifics possibly unknown to outside

takes observation as input

outputs an action

computed on physical machine (the agent architecture)

2 as agent function:

external characterization

maps sequence of observations to
(probability distribution over) actions

abstract mathematical formalization

Systematic AI Framework Example Rationality Summary

Formalizing an Agent’s Behavior

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

1 as agent program:

internal representation

specifics possibly unknown to outside

takes observation as input

outputs an action

computed on physical machine (the agent architecture)

2 as agent function:

external characterization

maps sequence of observations to
(probability distribution over) actions

abstract mathematical formalization

Systematic AI Framework Example Rationality Summary

Example

Systematic AI Framework Example Rationality Summary

Vacuum Domain

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety

Systematic AI Framework Example Rationality Summary

Vacuum Agent: Sensors and Actuators

sensors: cliff sensors, bump sensors, wall sensors,
state of charge sensor, WiFi module

actuators: wheels, cleaning system

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety

Systematic AI Framework Example Rationality Summary

Vacuum Agent: Observations and Actions

observations: current location, dirt level of current room,
presence of humans, battery charge

actions: move-to-next-room, move-to-base, vacuum, wait

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety

Systematic AI Framework Example Rationality Summary

Vacuum Agent: Agent Program

1 def vacuum-agent([location, dirt-level, owner-present, battery]):
2 if battery ≤ 10%: return move-to-base
3 else if owner-present = True: return move-to-next-room
4 else if dirt-level = dirty: return vacuum
5 else: return move-to-next-room

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety

Systematic AI Framework Example Rationality Summary

Vacuum Domain: Agent Function

observation sequence action
⟨[blue, clean,False, 100%]⟩ move-to-next-room
⟨[blue, dirty,False, 100%]⟩ vacuum
⟨[blue, clean,True, 100%]⟩ move-to-next-room
.
⟨[blue, clean,False, 100%], [blue, clean,False, 90%]⟩ move-to-next-room
⟨[blue, clean,False, 100%], [blue, dirty,False, 90%]⟩ vacuum
.

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety

Systematic AI Framework Example Rationality Summary

Vacuum Domain: Performance Measure

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety

Systematic AI Framework Example Rationality Summary

Rationality

Systematic AI Framework Example Rationality Summary

Evaluating Agent Functions

What is the right agent function?

Systematic AI Framework Example Rationality Summary

Rationality

rationality of an agent depends on performance measure
(often: utility, reward, cost) and environment

Perfect Rationality

for each possible observation sequence

select an action which maximizes

expected value of future performance

given available information on observation history

and environment

Systematic AI Framework Example Rationality Summary

Perfect Rationality of Our Vacuum Agent

Is our vacuum agent perfectly rational?

depends on performance measure and environment, e.g.:

Do actions reliably have the desired effect?

Do we know the initial situation?

Can new dirt be produced while the agent is acting?

Systematic AI Framework Example Rationality Summary

Perfect Rationality of Our Vacuum Agent

Is our vacuum agent perfectly rational?

depends on performance measure and environment, e.g.:

Do actions reliably have the desired effect?

Do we know the initial situation?

Can new dirt be produced while the agent is acting?

Systematic AI Framework Example Rationality Summary

Performance Measure

specified by designer

sometimes clear,
sometimes not so clear

significant impact on

desired behavior
difficulty of problem

Systematic AI Framework Example Rationality Summary

Performance Measure

specified by designer

sometimes clear,
sometimes not so clear

significant impact on

desired behavior
difficulty of problem

Systematic AI Framework Example Rationality Summary

Performance Measure

specified by designer

sometimes clear,
sometimes not so clear

significant impact on

desired behavior
difficulty of problem

https://youtu.be/tlOIHko8ySg

Systematic AI Framework Example Rationality Summary

Perfect Rationality of Our Vacuum Agent

consider performance measure:

+1 utility for cleaning a dirty room

consider environment:

actions and observations reliable

world only changes through actions of the agent

our vacuum agent is perfectly rational

Systematic AI Framework Example Rationality Summary

Perfect Rationality of Our Vacuum Agent

consider performance measure:

−1 utility for each dirty room in each step

consider environment:

actions and observations reliable

world only changes through actions of the agent

our vacuum agent is not perfectly rational

Systematic AI Framework Example Rationality Summary

Perfect Rationality of Our Vacuum Agent

consider performance measure:

−1 utility for each dirty room in each step

consider environment:

actions and observations reliable

yellow room may spontaneously become dirty

our vacuum agent is not perfectly rational

Systematic AI Framework Example Rationality Summary

Rationality: Discussion

perfect rationality ̸= omniscience

incomplete information (due to limited observations)
reduces achievable utility

perfect rationality ̸= perfect prediction of future

uncertain behavior of environment (e.g., stochastic
action effects) reduces achievable utility

perfect rationality is rarely achievable

limited computational power ⇝ bounded rationality

Systematic AI Framework Example Rationality Summary

Summary

Systematic AI Framework Example Rationality Summary

Summary (1)

common metaphor for AI systems: rational agents

agent interacts with environment:

sensors perceive observations about state of the environment

actuators perform actions modifying the environment

formally: agent function maps observation sequences
to actions

Systematic AI Framework Example Rationality Summary

Summary (2)

rational agents:

try to maximize performance measure (utility)

perfect rationality: achieve maximal utility in expectation
given available information

for “interesting” problems rarely achievable
⇝ bounded rationality

Foundations of Artificial Intelligence
A5. Introduction: Environments and Problem Solving Methods

Malte Helmert

University of Basel

February 24, 2025

Environments Problem Solving Methods Classification of AI Topics Summary

Introduction: Overview

Chapter overview: introduction

A1. Organizational Matters

A2. What is Artificial Intelligence?

A3. AI Past and Present

A4. Rational Agents

A5. Environments and Problem Solving Methods

Environments Problem Solving Methods Classification of AI Topics Summary

Environments of Rational Agents

Environments Problem Solving Methods Classification of AI Topics Summary

Environments of Rational Agents

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Which environment aspects are relevant for the agent?
How do the agent’s actions change the environment?
What does the agent observe?

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

Environment properties determine character of AI problem.

fully observable vs. partially observable

single-agent vs. multi-agent

deterministic vs. nondeterministic vs. stochastic

static vs. dynamic

discrete vs. continuous

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

https://www.youtube.com./watch?v=TDqzyd7fDRc
https://www.youtube.com./watch?v=kZzL2rDNSJk&t=22s
https://www.youtube.com./watch?v=bAdqazixuRY&t=86
https://www.youtube.com./watch?v=8zTCM6BV03Q
https://github.com/features/copilot
https://www.cs.cmu.edu/~noamb/papers/19-Science-Superhuman.pdf
https://www.nature.com/articles/nature24270/
https://inspirobot.me/
https://youtu.be/OeVzbGEFEyU
https://openai.com/blog/chatgpt/
https://www.youtube.com./watch?v=sRxaMDDMWQQ
https://www.youtube.com./channel/UCu0u7DbHJlvATLHjoANa3wQ
https://www.youtube.com./watch?v=FoyR1U7Y7Po&t=46s

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

Environments Problem Solving Methods Classification of AI Topics Summary

Problem Solving Methods

Environments Problem Solving Methods Classification of AI Topics Summary

Three Approaches to Solving AI Problems

We can solve a concrete AI problem (e.g., backgammon)
in several ways:

Problem Solving Methods

1 problem-specific: implement algorithm tailored to problem

2 general: create problem description as input for general solver

3 learning: learn (aspects of) algorithm from data

problem-specific algorithms:

designed to solve a specific problem

allow exploiting problem-specific knowledge

solve just one (type of) problem

general problem solvers:

user creates model of problem instance in formalism (“language”)

solver takes modeled instance as input

solver implements general algorithm to compute solution

learners:

general approach that learns to solve specific problem

adapts via experience instead of via reasoning

requires data and feedback instead of model of the AI problems

all three approaches have strengths and weaknesses

combinations are possible (and common in practice)

we will mostly focus on general algorithms,
but also consider other approaches

Environments Problem Solving Methods Classification of AI Topics Summary

Three Approaches to Solving AI Problems

We can solve a concrete AI problem (e.g., backgammon)
in several ways:

Problem Solving Methods

1 problem-specific: implement algorithm tailored to problem

2 general: create problem description as input for general solver

3 learning: learn (aspects of) algorithm from data

problem-specific algorithms:

designed to solve a specific problem

allow exploiting problem-specific knowledge

solve just one (type of) problem

general problem solvers:

user creates model of problem instance in formalism (“language”)

solver takes modeled instance as input

solver implements general algorithm to compute solution

learners:

general approach that learns to solve specific problem

adapts via experience instead of via reasoning

requires data and feedback instead of model of the AI problems

all three approaches have strengths and weaknesses

combinations are possible (and common in practice)

we will mostly focus on general algorithms,
but also consider other approaches

Environments Problem Solving Methods Classification of AI Topics Summary

Three Approaches to Solving AI Problems

We can solve a concrete AI problem (e.g., backgammon)
in several ways:

Problem Solving Methods

1 problem-specific: implement algorithm tailored to problem

2 general: create problem description as input for general solver

3 learning: learn (aspects of) algorithm from data

problem-specific algorithms:

designed to solve a specific problem

allow exploiting problem-specific knowledge

solve just one (type of) problem

general problem solvers:

user creates model of problem instance in formalism (“language”)

solver takes modeled instance as input

solver implements general algorithm to compute solution

learners:

general approach that learns to solve specific problem

adapts via experience instead of via reasoning

requires data and feedback instead of model of the AI problems

all three approaches have strengths and weaknesses

combinations are possible (and common in practice)

we will mostly focus on general algorithms,
but also consider other approaches

Environments Problem Solving Methods Classification of AI Topics Summary

Three Approaches to Solving AI Problems

We can solve a concrete AI problem (e.g., backgammon)
in several ways:

Problem Solving Methods

1 problem-specific: implement algorithm tailored to problem

2 general: create problem description as input for general solver

3 learning: learn (aspects of) algorithm from data

problem-specific algorithms:

designed to solve a specific problem

allow exploiting problem-specific knowledge

solve just one (type of) problem

general problem solvers:

user creates model of problem instance in formalism (“language”)

solver takes modeled instance as input

solver implements general algorithm to compute solution

learners:

general approach that learns to solve specific problem

adapts via experience instead of via reasoning

requires data and feedback instead of model of the AI problems

all three approaches have strengths and weaknesses

combinations are possible (and common in practice)

we will mostly focus on general algorithms,
but also consider other approaches

Environments Problem Solving Methods Classification of AI Topics Summary

Classification of AI Topics

Environments Problem Solving Methods Classification of AI Topics Summary

Classification of AI Topics

Many areas of AI are essentially characterized by

the properties of environments they consider and

which of the three problem solving approaches they use.

We conclude the introduction by giving some examples

within this course and

beyond the course (“advanced topics”).

Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Course Topic: Informed Search Algorithms

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Course Topic: Constraint Satisfaction Problems

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Course Topic: Board Games

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent (adversarial)

problem solving method:

problem-specific vs. general vs. learning

Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Advanced Topic: General Game Playing

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. (stochastic)

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent (adversarial)

problem solving method:

problem-specific vs. general vs. learning

Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Course Topic: Classical Planning

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Course Topic: Acting under Uncertainty

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Advanced Topic: Reinforcement Learning

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

Environments Problem Solving Methods Classification of AI Topics Summary

Summary

Environments Problem Solving Methods Classification of AI Topics Summary

Summary (1)

AI problem: performance measure + agent model + environment

Properties of environment critical for choice of suitable algorithm:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

Environments Problem Solving Methods Classification of AI Topics Summary

Summary (2)

Three problem solving methods:

problem-specific

general

learning

general problem solvers:

models characterize problem instances mathematically

formalisms/languages describe models compactly

algorithms use languages as problem description
and to exploit problem structure

Foundations of Artificial Intelligence
B1. State-Space Search: State Spaces

Malte Helmert

University of Basel

February 24, 2025

State-Space Search Problems Formalization State-Space Search Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B1. State Spaces
B2. Representation of State Spaces
B3. Examples of State Spaces

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

State-Space Search Problems Formalization State-Space Search Summary

State-Space Search Problems

State-Space Search Problems Formalization State-Space Search Summary

State-Space Search Applications

Mario AI competition route planning multi-agent path finding

scheduling software/hardware verification NPC behaviour

https://www.youtube.com./watch?v=0s3d1LfjWCI
https://youtu.be/H3wRCZf_Mrs
https://dl.acm.org/doi/10.1145/1592761.1592781
https://www.gamedevs.org/uploads/three-states-plan-ai-of-fear.pdf

State-Space Search Problems Formalization State-Space Search Summary

Classical Assumptions

“classical” assumptions considered in this part of the course:

no other agents in the environment (single-agent)

always knows state of the world (fully observable)

state only changed by the agent (static)

finite number of states/actions (in particular discrete)

actions have deterministic effect on the state

⇝ can all be generalized (but not in this part of the course)

State-Space Search Problems Formalization State-Space Search Summary

Classification

classification:

State-Space Search

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

State-Space Search Problems Formalization State-Space Search Summary

Informal Description

State-space search problems are among the
“simplest” and most important classes of AI problems.

objective of the agent:

apply a sequence of actions

that reaches a goal state

from a given initial state

performance measure: minimize total action cost

State-Space Search Problems Formalization State-Space Search Summary

Motivating Example: 15-Puzzle

9 2 12 6

5 7 14 13

3 1 11

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

State-Space Search Problems Formalization State-Space Search Summary

Formalization

State-Space Search Problems Formalization State-Space Search Summary

State Spaces

Definition (state space)

A state space or transition system is a
6-tuple S = ⟨S ,A, cost,T , sI, SG⟩ with

finite set of states S

finite set of actions A

action costs cost : A → R+
0

transition relation T ⊆ S × A× S that is
deterministic in ⟨s, a⟩ (see next slide)

initial state sI ∈ S

set of goal states SG ⊆ S

German: Zustandsraum, Transitionssystem, Zustände, Aktionen,
Aktionskosten, Transitions-/Übergangsrelation, deterministisch,
Anfangszustand, Zielzustände

State-Space Search Problems Formalization State-Space Search Summary

State Spaces: Terminology & Notation

Definition (transition, deterministic)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

The triples ⟨s, a, s ′⟩ ∈ T are called (state) transitions.

We say S has the transition ⟨s, a, s ′⟩ if ⟨s, a, s ′⟩ ∈ T .
We write this as s

a−→ s ′, or s → s ′ when a does not matter.

Transitions are deterministic in ⟨s, a⟩: it is forbidden to have
both s

a−→ s1 and s
a−→ s2 with s1 ̸= s2.

State-Space Search Problems Formalization State-Space Search Summary

State Space: Running Example

Consider the bounded inc-and-square search problem.

informal description:
find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions

on the natural numbers from 0 to 9

that reaches the number 6 or 7

starting from the number 1

assuming each action costs 1.

formal model:

S = {0, 1, . . . , 9}
A = {inc, sqr}
cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}

State-Space Search Problems Formalization State-Space Search Summary

State Space: Running Example

Consider the bounded inc-and-square search problem.

informal description:
find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions

on the natural numbers from 0 to 9

that reaches the number 6 or 7

starting from the number 1

assuming each action costs 1.

formal model:

S = {0, 1, . . . , 9}
A = {inc, sqr}
cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}

State-Space Search Problems Formalization State-Space Search Summary

Graph Interpretation

state spaces are often depicted as directed, labeled graphs

states: graph vertices

transitions: labeled arcs

(here: colors instead of labels)

initial state: incoming arrow

goal states: double circles

actions: the arc labels

action costs: described separately
(or implicitly = 1)

0

1

2

3

45

6

7

8

9

State-Space Search Problems Formalization State-Space Search Summary

Graph Interpretation

state spaces are often depicted as directed, labeled graphs

states: graph vertices

transitions: labeled arcs
(here: colors instead of labels)

initial state: incoming arrow

goal states: double circles

actions: the arc labels

action costs: described separately
(or implicitly = 1)

0

1

2

3

45

6

7

8

9

State-Space Search Problems Formalization State-Space Search Summary

State Spaces: More Terminology (1)

We use common terminology from graph theory.

Definition (predecessor, successor, applicable action)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

Let s, s ′ ∈ S be states with s → s ′.

s is a predecessor of s ′

s ′ is a successor of s

If s
a−→ s ′, then action a is applicable in s.

German: Vorgänger, Nachfolger, anwendbar

State-Space Search Problems Formalization State-Space Search Summary

State Spaces: More Terminology (2)

Definition (path)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

Let s0, . . . , sn ∈ S be states and a1, . . . , an ∈ A be actions
such that s0

a1−→ s1, . . . , s(n−1)
an−→ sn.

π = ⟨a1, . . . , an⟩ is a path from s0 to sn

length of π: |π| = n

cost of π: cost(π) =
∑n

i=1 cost(ai)

German: Pfad, Länge, Kosten

paths may have length 0

sometimes “path” is used for state sequence ⟨s0, . . . , sn⟩
or sequence ⟨s0, a1, s1, . . . , s(n−1), an, sn⟩

State-Space Search Problems Formalization State-Space Search Summary

State Spaces: More Terminology (3)

More terminology:

Definition (reachable, solution, optimal)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

state s is reachable if a path from sI to s exists

paths from s ∈ S to some state sG ∈ SG
are solutions for/from s

solutions for sI are called solutions for S
optimal solutions (for s) have minimal costs
among all solutions (for s)

German: erreichbar, Lösung für/von s, optimale Lösung

State-Space Search Problems Formalization State-Space Search Summary

State-Space Search

State-Space Search Problems Formalization State-Space Search Summary

Solving Search Problems

Consider again the running example.

informal description:

find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions

on the natural numbers from 0 to 9

that reaches the number 6 or 7

starting from the number 1

assuming each action costs 1.

How do you solve this?

What if I increment...?

...and then square...?

...or alternatively...?

State-Space Search Problems Formalization State-Space Search Summary

Solving Search Problems

Consider again the running example.

informal description:

find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions

on the natural numbers from 0 to 9

that reaches the number 6 or 7

starting from the number 1

assuming each action costs 1.

How do you solve this?

What if I increment...?

...and then square...?

...or alternatively...?

State-Space Search Problems Formalization State-Space Search Summary

State-Space Search

State-Space Search

State-space search is the algorithmic problem
of finding solutions in state spaces
or proving that no solution exists.

In optimal state-space search, only optimal solutions
may be returned.

German: Zustandsraumsuche, optimale Zustandsraumsuche

State-Space Search Problems Formalization State-Space Search Summary

Learning Objectives for State-Space Search

Learning Objectives for the Topic of State-Space Search

understanding state-space search:
What is the problem and how can we formalize it?

evaluate search algorithms:
completeness, optimality, time/space complexity

get to know search algorithms:
uninformed vs. informed; tree and graph search

evaluate heuristics for search algorithms:
goal-awareness, safety, admissibility, consistency

efficient implementation of search algorithms

experimental evaluation of search algorithms

design and comparison of heuristics for search algorithms

State-Space Search Problems Formalization State-Space Search Summary

Summary

State-Space Search Problems Formalization State-Space Search Summary

Summary

state-space search problems:
find action sequence leading from initial state to a goal state

performance measure: sum of action costs

formalization via state spaces:

states, actions, action costs, transitions,
initial state, goal states

terminology for transitions, paths, solutions

definition of (optimal) state-space search

Foundations of Artificial Intelligence
B2. State-Space Search: Representation of State Spaces

Malte Helmert

University of Basel

February 26, 2025

Representation Explicit Graphs Declarative Representations Black Box Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B1. State Spaces
B2. Representation of State Spaces
B3. Examples of State Spaces

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

Representation Explicit Graphs Declarative Representations Black Box Summary

Representation of State Spaces

Representation Explicit Graphs Declarative Representations Black Box Summary

Representation of State Spaces

practically interesting state spaces are often huge
(1010, 1020, 10100 states)

How do we represent them, so that we can
efficiently deal with them algorithmically?

three main options:

1 as explicit (directed) graphs

2 with declarative representations

3 as a black box

German: explizit, deklarativ, Black Box

Representation Explicit Graphs Declarative Representations Black Box Summary

Example: 8-Puzzle

2 7

4 5 8

1 6 3

1 2 3

4 5 6

7 8

Representation Explicit Graphs Declarative Representations Black Box Summary

Explicit Graphs

Representation Explicit Graphs Declarative Representations Black Box Summary

State Spaces as Explicit Graphs

State Spaces as Explicit Graphs

represent state spaces as explicit directed graphs:

vertices = states

directed arcs = transitions

⇝ represented as adjacency list or adjacency matrix

German: Adjazenzliste, Adjazenzmatrix

Example (explicit graph for bounded inc-and-square)

ai-b02-bounded-inc-and-square.graph

Representation Explicit Graphs Declarative Representations Black Box Summary

State Spaces as Explicit Graphs

State Spaces as Explicit Graphs

represent state spaces as explicit directed graphs:

vertices = states

directed arcs = transitions

⇝ represented as adjacency list or adjacency matrix

German: Adjazenzliste, Adjazenzmatrix

Example (explicit graph for 8-puzzle)

ai-b02-puzzle8.graph

Representation Explicit Graphs Declarative Representations Black Box Summary

State Spaces as Explicit Graphs: Discussion

discussion:

impossible for large state spaces (too much space required)

if spaces small enough for explicit representations,
solutions easy to compute: Dijkstra’s algorithm
O(|S | log |S |+ |T |)
interesting for time-critical all-pairs-shortest-path queries
(examples: route planning, path planning in video games)

Representation Explicit Graphs Declarative Representations Black Box Summary

Declarative Representations

Representation Explicit Graphs Declarative Representations Black Box Summary

State Spaces with Declarative Representations

State Spaces with Declarative Representations

represent state spaces declaratively:

compact description of state space as input to algorithms
⇝ state spaces exponentially larger than the input

algorithms directly operate on compact description

⇝ allows automatic reasoning about problem:
reformulation, simplification, abstraction, etc.

Example (declarative representation for 8-puzzle)

puzzle8-domain.pddl + puzzle8-problem.pddl

Representation Explicit Graphs Declarative Representations Black Box Summary

Black Box

Representation Explicit Graphs Declarative Representations Black Box Summary

State Spaces as Black Boxes

State Spaces as Black Boxes

Define an abstract interface for state spaces.

For state space S = ⟨S ,A, cost,T , sI, SG⟩
we need these methods:

init(): generate initial state
result: state sI

is goal(s): test if s is a goal state
result: true if s ∈ SG; false otherwise

succ(s): generate applicable actions and successors of s
result: sequence of pairs ⟨a, s ′⟩ with s

a−→ s ′

cost(a): gives cost of action a
result: cost(a) (∈ N0)

Remark: we will extend the interface later
in a small but important way

Representation Explicit Graphs Declarative Representations Black Box Summary

State Spaces as Black Boxes: Example and Discussion

Example (Black Box Representation for 8-Puzzle)

demo: puzzle8.py

in the following: focus on black box model

explicit graphs only as illustrating examples

near end of semester: declarative state spaces
(classical planning)

Representation Explicit Graphs Declarative Representations Black Box Summary

Summary

Representation Explicit Graphs Declarative Representations Black Box Summary

Summary

state spaces often huge (> 1010 states)
⇝ how to represent?

explicit graphs: adjacency lists or matrices;
only suitable for small problems

declaratively: compact description as input
to search algorithms

black box: implement an abstract interface

Foundations of Artificial Intelligence
B3. State-Space Search: Examples of State Spaces

Malte Helmert

University of Basel

February 26, 2025

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B1. State Spaces
B2. Representation of State Spaces
B3. Examples of State Spaces

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Three Examples

In this chapter we introduce three state spaces
that we will use as illustrating examples:

1 route planning in Romania

2 blocks world

3 missionaries and cannibals

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Route Planning in Romania

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Route Planning in Romania

Setting: Route Planning in Romania

We are on holiday in Romania and are currently located in Arad.
Our flight home leaves from Bucharest. How to get there?

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Romania Formally

State Space Route Planning in Romania

states S : {arad, bucharest, craiova, . . . , zerind}
actions A: movec,c ′ for any two cities c and c ′

connected by a single road segment

action costs cost: see figure,
e.g., cost(moveiasi,vaslui) = 92

transitions T : s
a−→ s ′ iff a = moves,s′

initial state: sI = arad

goal states: SG = {bucharest}

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Blocks World

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Blocks World

Blocks world is a traditional example problem in AI.

Setting: Blocks World

Colored blocks lie on a table.

They can be stacked into towers, moving one block at a time.

Our task is to create a given goal configuration.

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Example: Blocks World with Three Blocks

Action names omitted for readability. All actions cost 1.

Initial state and goal can be arbitrary.

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

states S :
partitions of {1, 2, . . . , n} into nonempty ordered lists

example n = 3:

{⟨1, 2, 3⟩}, {⟨1, 3, 2⟩}, {⟨2, 1, 3⟩},
{⟨2, 3, 1⟩}, {⟨3, 1, 2⟩}, {⟨3, 2, 1⟩}
{⟨1, 2⟩, ⟨3⟩}, {⟨2, 1⟩, ⟨3⟩}, {⟨1, 3⟩, ⟨2⟩},
{⟨3, 1⟩, ⟨2⟩}, {⟨2, 3⟩, ⟨1⟩}, {⟨3, 2⟩, ⟨1⟩}
{⟨1⟩, ⟨2⟩, ⟨3⟩}

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

actions A:

{moveu,v | u, v ∈ {1, . . . , n} with u ̸= v}
move block u onto block v .
both must be uppermost blocks in their towers

{to-tableu | u ∈ {1, . . . , n}}
move block u onto the table (⇝ forming a new tower)
must be uppermost block in its tower

action costs cost:
cost(a) = 1 for all actions a ∈ A

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

transitions:

transition s
a−→ s ′ with a = moveu,v exists iff

s = {⟨b1, . . . , bk , u⟩, ⟨c1, . . . , cm, v⟩} ∪ X and
if k > 0: s ′ = {⟨b1, . . . , bk⟩, ⟨c1, . . . , cm, v , u⟩} ∪ X
if k = 0: s ′ = {⟨c1, . . . , cm, v , u⟩} ∪ X

transition s
a−→ s ′ with a = to-tableu exists iff

s = {⟨b1, . . . , bk , u⟩} ∪ X with k > 0 and
s ′ = {⟨b1, . . . , bk⟩, ⟨u⟩} ∪ X

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

initial state sI and goal states SG:

one possible scenario for n = 3:

sI = {⟨1, 3⟩, ⟨2⟩}
SG = {{⟨3, 2, 1⟩}}

(in general can have arbitrary scenarios)

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Blocks World: Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

For every given initial and goal state with n blocks,
simple algorithms find a solution in time O(n). (How?)

Finding optimal solutions is NP-complete
(with a compact problem description).

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Missionaries and Cannibals

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Missionaries and Cannibals

Setting: Missionaries and Cannibals

Six people must cross a river.

Their rowing boat can carry one or two
people across the river at a time.
(It is too small for three.)

Three people are missionaries,
three are cannibals.

Missionaries may never stay
with a majority of cannibals.

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Missionaries and Cannibals Formally

State Space Missionaries and Cannibals

states S :
triples of numbers ⟨m, c , b⟩ ∈ {0, 1, 2, 3} × {0, 1, 2, 3} × {0, 1}:

number of missionaries m,

cannibals c and

boats b

on the left river bank

initial state: sI = ⟨3, 3, 1⟩

goal: SG = {⟨0, 0, 0⟩, ⟨0, 0, 1⟩}

actions, action costs, transitions: ?

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Summary

Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Summary

illustrating examples for state spaces:

route planning in Romania:

small example of explicitly representable state space

blocks world:

family of tasks where n blocks on a table must be rearranged
traditional example problem in AI
number of states explodes quickly as n grows

missionaries and cannibals:

traditional brain teaser with small state space
(32 states, of which many unreachable)

Foundations of Artificial Intelligence
B4. State-Space Search: Data Structures for Search Algorithms

Malte Helmert

University of Basel

March 3, 2025

Introduction Search Nodes Open Lists Closed Lists Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms

Introduction Search Nodes Open Lists Closed Lists Summary

Introduction

Introduction Search Nodes Open Lists Closed Lists Summary

Finding Solutions in State Spaces

How can we systematically find a solution?

Introduction Search Nodes Open Lists Closed Lists Summary

Search Algorithms

We now move to search algorithms.

As everywhere in computer science, suitable data structures
are a key to good performance.

⇝ common operations must be fast

Well-implemented search algorithms process
up to ∼30,000,000 states/second on a single CPU core.

⇝ bonus materials (Burns et al. paper)

this chapter: some fundamental data structures for search

Introduction Search Nodes Open Lists Closed Lists Summary

Preview: Search Algorithms

next chapter: we introduce search algorithms

now: short preview to motivate data structures for search

Introduction Search Nodes Open Lists Closed Lists Summary

Running Example: Reminder

bounded inc-and-square:

S = {0, 1, . . . , 9}

A = {inc, sqr}

cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}

0

1

2

3

45

6

7

8

9

Introduction Search Nodes Open Lists Closed Lists Summary

Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen

1

11

222 1

inc
sqr

444

5

3

in
c sqr

6

in
c sqr

6

Introduction Search Nodes Open Lists Closed Lists Summary

Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen

1

1

1

2

22

1

inc
sqr

444

5

3

in
c sqr

6

in
c sqr

6

Introduction Search Nodes Open Lists Closed Lists Summary

Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen

11

1

2

2

2

1

inc
sqr

4

44

5

3

in
c sqr

6

in
c sqr

6

Introduction Search Nodes Open Lists Closed Lists Summary

Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen

11

1

22

2 1

inc
sqr

4

4

4

5

3

in
c sqr

6

in
c sqr

6

Introduction Search Nodes Open Lists Closed Lists Summary

Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen

11

1

22

2 1

inc
sqr

44

4

5

3

in
c sqr

6

in
c sqr

6

Introduction Search Nodes Open Lists Closed Lists Summary

Fundamental Data Structures for Search

We consider three abstract data structures for search:

search node: stores a state that has been reached,
how it was reached, and at which cost

⇝ nodes of the example search tree

open list: efficiently organizes leaves of search tree

⇝ set of leaves of example search tree

closed list: remembers expanded states
to avoid duplicated expansions of the same state

⇝ inner nodes of a search tree

German: Suchknoten, Open-Liste, Closed-Liste

Not all algorithms use all three data structures,
and they are sometimes implicit (e.g., on the CPU stack)

Introduction Search Nodes Open Lists Closed Lists Summary

Search Nodes

Introduction Search Nodes Open Lists Closed Lists Summary

Search Nodes

Search Node

A search node (node for short) stores a state
that has been reached, how it was reached, and at which cost.

Collectively they form the so-called search tree (Suchbaum).

Introduction Search Nodes Open Lists Closed Lists Summary

Data Structure: Search Nodes

1

2 1

inc
sqr

4

5

3

in
c sqr

6

in
c sqr

attributes of search node n:

n.state state associated with n
n.parent search node that generated n

(none for the root node)
n.action action leading from n.parent to n

(none for the root node)
n.path cost cost of path from sI to n.state that

results from following parent references
(traditionally denoted by g(n))

. . . and sometimes additional attributes

n.state: 4

n.parent:

n.action: sqr

xxxxx

n.path cost: 2

. . . : . . .

2

Introduction Search Nodes Open Lists Closed Lists Summary

Data Structure: Search Nodes

1

2 1

inc
sqr

4

5

3

in
c sqr

6

in
c sqr

attributes of search node n:

n.state state associated with n
n.parent search node that generated n

(none for the root node)
n.action action leading from n.parent to n

(none for the root node)
n.path cost cost of path from sI to n.state that

results from following parent references
(traditionally denoted by g(n))

. . . and sometimes additional attributes

n.state: 4

n.parent:

n.action: sqr

xxxxx

n.path cost: 2

. . . : . . .

2

Introduction Search Nodes Open Lists Closed Lists Summary

Search Nodes: Java

Search Nodes (Java Syntax)

public interface State {

}

public interface Action {

}

public class SearchNode {

State state;

SearchNode parent;

Action action;

int pathCost;

}

Introduction Search Nodes Open Lists Closed Lists Summary

Implementing Search Nodes

reasonable implementation of search nodes is easy

advanced aspects:

Do we need explicit nodes at all?
Can we use lazy evaluation?
Should we manually manage memory?
Can we compress information?

Introduction Search Nodes Open Lists Closed Lists Summary

Operations on Search Nodes: make root node

Generate root node of a search tree:

function make root node()

node := new SearchNode
node.state := init()
node.parent := none
node.action := none
node.path cost := 0
return node

Introduction Search Nodes Open Lists Closed Lists Summary

Operations on Search Nodes: make node

Generate child node of a search node:

function make node(parent, action, state)

node := new SearchNode
node.state := state
node.parent := parent
node.action := action
node.path cost := parent.path cost + cost(action)
return node

Introduction Search Nodes Open Lists Closed Lists Summary

Operations on Search Nodes: extract path

Extract the path to a search node:

function extract path(node)

path := ⟨⟩
while node.parent ̸= none:

path.append(node.action)
node := node.parent

path.reverse()
return path

Introduction Search Nodes Open Lists Closed Lists Summary

Open Lists

Introduction Search Nodes Open Lists Closed Lists Summary

Open Lists

Open List

The open list (also: frontier) organizes the leaves of a search tree.

It must support two operations efficiently:

determine and remove the next node to expand

insert a new node that is a candidate node for expansion

Remark: despite the name, it is usually a very bad idea
to implement open lists as simple lists.

Introduction Search Nodes Open Lists Closed Lists Summary

Open Lists: Modify Entries

Some implementations support modifying an open list entry
when a shorter path to the corresponding state is found.

This complicates the implementation.

⇝ We do not consider such modifications
and instead use delayed duplicate elimination (⇝ later).

Introduction Search Nodes Open Lists Closed Lists Summary

Interface of Open Lists

op
en
lis
t

1

2 1

inc
sqr

4

5

3

in
c sqr

6

in
c sqr

open list open organizes leaves of search tree with the methods:

open.is empty() test if the open list is empty
open.pop() remove and return the next node to expand

open.insert(n) insert node n into the open list

open determines strategy which node to expand next
(depends on algorithm)

underlying data structure choice depends on this strategy

examples: deque, min-heap

6 5 3 1

6

53

1

next

Introduction Search Nodes Open Lists Closed Lists Summary

Interface of Open Lists

op
en
lis
t

1

2 1

inc
sqr

4

5

3

in
c sqr

6

in
c sqr

open list open organizes leaves of search tree with the methods:

open.is empty() test if the open list is empty
open.pop() remove and return the next node to expand

open.insert(n) insert node n into the open list

open determines strategy which node to expand next
(depends on algorithm)

underlying data structure choice depends on this strategy

examples: deque, min-heap

6 5 3 1

6

53

1

next

Introduction Search Nodes Open Lists Closed Lists Summary

Closed Lists

Introduction Search Nodes Open Lists Closed Lists Summary

Closed Lists

Closed List

The closed list remembers expanded states
to avoid duplicated expansions of the same state.

It must support two operations efficiently:

insert a node whose state is not yet in the closed list

test if a node with a given state is in the closed list;
if yes, return it

Remark: despite the name, it is usually a very bad idea
to implement closed lists as simple lists. (Why?)

Introduction Search Nodes Open Lists Closed Lists Summary

Interface and Implementation of Closed Lists

clo
sed

list

1

2 1

inc
sqr

4

5

3

in
c sqr

6

in
c sqr

closed list closed keeps track of expanded states with the methods:

closed.insert(n) insert node n into closed;
if a node with this state already exists in closed, replace it

closed.lookup(s) test if a node with state s exists in the closed list;
if yes, return it; otherwise, return none

efficient implementation often as hash table with states as keys

Introduction Search Nodes Open Lists Closed Lists Summary

Summary

Introduction Search Nodes Open Lists Closed Lists Summary

Summary

search node:
represents states reached during search
and associated information

node expansion:
generate successor nodes of a node by applying all actions
applicable in the state belonging to the node

open list or frontier:
set of nodes that are currently candidates for expansion

closed list:
set of already expanded nodes (and their states)

Foundations of Artificial Intelligence
B5. State-Space Search: Tree Search and Graph Search

Malte Helmert

University of Basel

March 3, 2025

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Introduction

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Search Algorithms

General Search Algorithm

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

In this chapter, we study two essential classes of search algorithms:

tree search

graph search

Each class consists of a large number of concrete algorithms.

German: expandieren, erzeugen, Baumsuche, Graphensuche

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Search Algorithms

General Search Algorithm

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

In this chapter, we study two essential classes of search algorithms:

tree search

graph search

Each class consists of a large number of concrete algorithms.

German: expandieren, erzeugen, Baumsuche, Graphensuche

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search: General Idea

2

1

1

inc
sqr

1

1
inc

sqr

4

5

3

in
c sqr

6

in
c sqr

1

1

1

. . .

. . .

. . .

. . .

. . .

sqrin
c

sqrin
c

sqrin
c

sqrin
c

possible paths to be explored
organized in a tree (search tree)

search nodes correspond 1:1 to paths
from initial state

duplicates a.k.a. transpositions (i.e.,
multiple nodes with identical state)
possible

search tree can have unbounded depth

German: Suchbaum, Duplikate,

German:

Transpositionen

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search: General Idea

2

1

1

inc
sqr

1

1
inc

sqr

4

5

3

in
c sqr

6

in
c sqr

1

1

1

. . .

. . .

. . .

. . .

. . .

sqrin
c

sqrin
c

sqrin
c

sqrin
c

possible paths to be explored
organized in a tree (search tree)

search nodes correspond 1:1 to paths
from initial state

duplicates a.k.a. transpositions (i.e.,
multiple nodes with identical state)
possible

search tree can have unbounded depth

German: Suchbaum, Duplikate,

German:

Transpositionen

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search: General Idea

2

1

1

inc
sqr

1

1
inc

sqr

4

5

3

in
c sqr

6

in
c sqr

1

1

1

. . .

. . .

. . .

. . .

. . .

sqrin
c

sqrin
c

sqrin
c

sqrin
c

possible paths to be explored
organized in a tree (search tree)

search nodes correspond 1:1 to paths
from initial state

duplicates a.k.a. transpositions (i.e.,
multiple nodes with identical state)
possible

search tree can have unbounded depth

German: Suchbaum, Duplikate,

German:

Transpositionen

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Tree Search Algorithm

Generic Tree Search Algorithm

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Tree Search Algorithm: Discussion

discussion:

generic template for tree search algorithms

⇝ for concrete algorithm, we must (at least) decide
how to implement the open list

concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Graph Search

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Graph Search

differences to tree search:

recognize duplicates: when a state is reached
on multiple paths, only keep one search node

search nodes correspond 1:1 to reachable states

depth of search tree bounded

1

2 1

inc
sqr

4

5

3

in
c sqr

6

in
c sqr

remarks:
some graph search algorithms do
not immediately eliminate all
duplicates (⇝ later)

one possible reason: find optimal
solutions when a path to state s
found later is cheaper than one
found earlier

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Graph Search Algorithm

Generic Graph Search Algorithm

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Graph Search Algorithm: Discussion

discussion:

same comments as for generic tree search apply

in “pure” algorithm, closed list does not actually
need to store the search nodes

sufficient to implement closed as set of states
advanced algorithms often need access to the nodes,
hence we show this more general version here

some variants perform goal and duplicate tests elsewhere
(earlier) ⇝ following chapters

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Evaluating Search Algorithms

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete

German: Vollständigkeit, semi-vollständig, vollständig

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Optimality

four criteria for evaluating search algorithms:

Optimality

Are the solutions returned by the algorithm always optimal?

German: Optimalität

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?

usually worst case analysis

usually measured in generated nodes

often a function of the following quantities:

b: (branching factor) of state space
(max. number of successors of a state)

d : search depth
(length of longest path in generated search tree)

German: Zeitaufwand, Verzweigungsgrad, Suchtiefe

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?

usually worst case analysis

usually measured in (concurrently) stored nodes

often a function of the following quantities:

b: (branching factor) of state space
(max. number of successors of a state)

d : search depth
(length of longest path in generated search tree)

German: Speicheraufwand

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Analyzing the Generic Search Algorithms

Generic Tree Search Algorithm

Is it complete? Is it semi-complete?

Is it optimal?

What is its worst-case time complexity?

What is its worst-case space complexity?

Generic Graph Search Algorithm

Is it complete? Is it semi-complete?

Is it optimal?

What is its worst-case time complexity?

What is its worst-case space complexity?

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary (1)

tree search:

search nodes correspond 1:1 to paths from initial state

graph search:

search nodes correspond 1:1 to reachable states

⇝ duplicate elimination

generic methods with many possible variants

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary (2)

evaluating search algorithms:

completeness and semi-completeness

optimality

time complexity and space complexity

Foundations of Artificial Intelligence
B6. State-Space Search: Breadth-first Search

Malte Helmert

University of Basel

March 5, 2025

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search

In Chapters B6–B8 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (Chapters B9–B15)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search

(⇝ this chapter)

uniform cost search

(⇝ Chapter B7)

depth-first search

(⇝ Chapter B8)

depth-limited search

(⇝ Chapter B8)

iterative deepening search

(⇝ Chapter B8)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search

(⇝ Chapter B7)

depth-first search

(⇝ Chapter B8)

depth-limited search

(⇝ Chapter B8)

iterative deepening search

(⇝ Chapter B8)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search (⇝ Chapter B7)

depth-first search (⇝ Chapter B8)

depth-limited search (⇝ Chapter B8)

iterative deepening search (⇝ Chapter B8)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Introduction

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Running Example: Reminder

bounded inc-and-square:

S = {0, 1, . . . , 9}

A = {inc, sqr}

cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}

0

1

2

3

45

6

7

8

9

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Idea

breadth-first search:

expand nodes in order of generation (FIFO)

⇝ open list is linked list or deque

we start with an example using graph search

German: Breitensuche

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }

2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

1

11

111222

inc
sqrinc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3 444

inc
sqrinc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }

2 1[]

{1}

1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

1

1

1

1

11

2

22

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3 444

inc
sqrinc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}

1 3 4[]

{1, 2}

3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

1

112

2

2

inc
sqr

inc
sqr

3

3

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

44

inc
sqr

inc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}

3 4[]

{1, 2}

4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

1

1

122

2

inc
sqr

inc
sqr

3

3

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

44

inc
sqr

inc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}

4 4 9[]

{1, 2, 3}

4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

3

3

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

44

inc
sqr

inc
sqr

555

6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}

4 9 5 6[]

{1, 2, 3, 4}

9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

4

4

4

inc
sqr

inc
sqr

5

55

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}

9 5 6[]

{1, 2, 3, 4}

5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

5

55

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}

5 6 0 1[]

{1, 2, 3, 4, 9}

6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}
0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

5

55

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}

6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}

0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

5

5

5

6
in
c

5

sqr

6
in
c

sqr

6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[]

{ }
2 1[]

{1}
1 3 4[]

{1, 2}
3 4[]

{1, 2}
4 4 9[]

{1, 2, 3}
4 9 5 6[]

{1, 2, 3, 4}
9 5 6[]

{1, 2, 3, 4}
5 6 0 1[]

{1, 2, 3, 4, 9}
6 0 1 6 5[]

{1, 2, 3, 4, 5, 9}

0 1 6 5[]

{1, 2, 3, 4, 5, 6, 9}

11

1

11

1

22

2

inc
sqr

inc
sqr

33

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

inc

1

sq
r

3

44

4

inc
sqr

inc
sqr

55

5

6
in
c

5

sqr

6

in
c

sqr

6
in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Observations from Example

breadth-first search behaviour:

state space is searched layer by layer

⇝ shallowest goal node is always found first

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

without duplicate elimination (as a tree search)
⇝ BFS-Tree

or with duplicate elimination (as a graph search)
⇝ BFS-Graph

(BFS = breadth-first search).

⇝ We consider both variants.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Running Example: BFS-Tree (1st Attempt)

1

1

2 1

3 4 2 1

inc
sqr

in
c

sqr in
c

sqr

2

inc
sqr

3

4

in
c

5 6

in
c sq

r

9

sqr

0

in
c

1

sq
r

4

inc
sqr

5

6

in
c

5

sqr

6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Opportunities for Improvement

In a BFS, the first generated goal node
is always the first expanded goal node. (Why?)

⇝ It is more efficient to perform the goal test
upon generating a node (rather than upon expanding it).

⇝ How much effort does this save?

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree without Early Goal Tests

1

1

2 1

3 4 2 1

inc
sqr

in
c

sqr in
c

sqr

2

inc
sqr

3

4

in
c

5 6

in
c sq

r

9

sqr

0

in
c

1

sq
r

4

inc
sqr

5

6

in
c

5

sqr

6

in
c

sqr

1

1

2 1

inc
sqr

2

inc
sqr

3

4

in
c

9

sqr

4

inc
sqr

5 6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree with Early Goal Tests

1

1

2 1

3 4 2 1

inc
sqr

in
c

sqr in
c

sqr

2

inc
sqr

3

4

in
c

5 6

in
c sq

r

9

sqr

0

in
c

1

sq
r

4

inc
sqr

5

6

in
c

5

sqr

6

in
c

sqr

1

1

2 1

inc
sqr

2

inc
sqr

3

4

in
c

9

sqr

4

inc
sqr

5 6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (2nd Attempt): Discussion

Where is the bug?

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

similar adaptations to BFS-Tree
(deque as open list, early goal tests)

as closed list does not need to manage node information,
a set data structure suffices

for the same reasons why early goal tests are a good idea,
we should perform duplicate tests against the closed list
and updates of the closed lists as early as possible

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
closed := new HashSet
closed.insert(init())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
if s ′ /∈ closed:

closed.insert(s ′)
open.push back(n′)

return unsolvable

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph: Example

open:

next

closed:

1[]

{1}

2[]

{1,2}
3 4[]

{1, 2, 3, 4}
4 9[]

{1, 2, 3, 4, 9}
9 5[]

{1, 2, 3, 4, 5, 9}

1

11

1222

inc
sqrinc
sqr

33

4

in
c

9

sqr

3 4

inc
sqrinc
sqr

4

5 6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph: Example

open:

next

closed:

1[]

{1}

2[]

{1,2}

3 4[]

{1, 2, 3, 4}
4 9[]

{1, 2, 3, 4, 9}
9 5[]

{1, 2, 3, 4, 5, 9}

1

1

1

12

22

inc
sqr

inc
sqr

33

4

in
c

9

sqr

3 4

inc
sqrinc
sqr

4

5 6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph: Example

open:

next

closed:

1[]

{1}
2[]

{1,2}

3 4[]

{1, 2, 3, 4}

4 9[]

{1, 2, 3, 4, 9}
9 5[]

{1, 2, 3, 4, 5, 9}

11

1

1

2

2

2

inc
sqr

inc
sqr

3

3

4

in
c

9

sqr

3

4

inc
sqr

inc
sqr

4

5 6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph: Example

open:

next

closed:

1[]

{1}
2[]

{1,2}
3 4[]

{1, 2, 3, 4}

4 9[]

{1, 2, 3, 4, 9}

9 5[]

{1, 2, 3, 4, 5, 9}

11

1

1

22

2

inc
sqr

inc
sqr

3

3

4

in
c

9

sqr

3

4

inc
sqr

inc
sqr

4

5 6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Graph: Example

open:

next

closed:

1[]

{1}
2[]

{1,2}
3 4[]

{1, 2, 3, 4}
4 9[]

{1, 2, 3, 4, 9}

9 5[]

{1, 2, 3, 4, 5, 9}

11

1

1

22

2

inc
sqr

inc
sqr

33

4

in
c

9

sqr

3

4

inc
sqr

inc
sqr

4

5 6

in
c

sqr

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Properties of Breadth-first Search

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Properties of Breadth-first Search

Properties of Breadth-first Search:

BFS-Tree is semi-complete, but not complete. (Why?)

BFS-Graph is complete. (Why?)

BFS (both variants) is optimal
if all actions have the same cost (Why?),
but not in general (Why not?).

complexity: next slides

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Complexity

The following result applies to both BFS variants:

Theorem (time complexity of breadth-first search)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of breadth-first search is

1 + b + b2 + b3 + · · ·+ bd = O(bd)

Reminder: we measure time complexity in generated nodes.

It follows that the space complexity of both BFS variants
also is O(bd) (if b ≥ 2). (Why?)

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Example of Complexity

Realistic numbers?

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

example: b = 13; 100 000 nodes/second; 32 bytes/node

d nodes time memory

4 30 940 0.3 s 966KiB

6 5.2 · 106 52 s 159MiB

8 8.8 · 108 147min 26GiB

10 1011 17 days 4.3TiB

12 1013 8 years 734TiB

14 1015 1 352 years 121PiB

16 1017 2.2 · 105 years 20 EiB

18 1020 38 · 106 years 3.3 ZiB

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Example of Complexity

Realistic numbers?

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

example: b = 13; 100 000 nodes/second; 32 bytes/node

d nodes time memory

4 30 940 0.3 s 966KiB

6 5.2 · 106 52 s 159MiB

8 8.8 · 108 147min 26GiB

10 1011 17 days 4.3TiB

12 1013 8 years 734TiB

14 1015 1 352 years 121PiB

16 1017 2.2 · 105 years 20 EiB

18 1020 38 · 106 years 3.3 ZiB

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Breadth-first Search: Example of Complexity

Realistic numbers?

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

example: b = 13; 100 000 nodes/second; 32 bytes/node

d nodes time memory

4 30 940 0.3 s 966KiB

6 5.2 · 106 52 s 159MiB

8 8.8 · 108 147min 26GiB

10 1011 17 days 4.3TiB

12 1013 8 years 734TiB

14 1015 1 352 years 121PiB

16 1017 2.2 · 105 years 20 EiB

18 1020 38 · 106 years 3.3 ZiB

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Summary

Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Summary

blind search algorithm: use no information
except black box interface of state space

breadth-first search: expand nodes in order of generation

search state space layer by layer
can be tree search or graph search
complexity O(bd) with branching factor b,
minimal solution length d (if b ≥ 2)
complete as a graph search; semi-complete as a tree search
optimal with uniform action costs

Foundations of Artificial Intelligence
B7. State-Space Search: Uniform Cost Search

Malte Helmert

University of Basel

March 5, 2025

Introduction Algorithm Properties Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms

Introduction Algorithm Properties Summary

Introduction

Introduction Algorithm Properties Summary

Uniform Cost Search

breadth-first search optimal if all action costs equal

otherwise no optimality guarantee ⇝ example:

0

1

2

3

45

6

7

8

9 consider bounded inc-and-square problem
with cost(inc) = 1, cost(sqr) = 3

solution of breadth-first search still
⟨inc, sqr, sqr⟩ (cost: 7)
but: ⟨inc, inc, inc, inc, inc⟩ (cost: 5) is cheaper!

remedy: uniform cost search

always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

implementation: priority queue (min-heap) for open list

Introduction Algorithm Properties Summary

Uniform Cost Search

breadth-first search optimal if all action costs equal

otherwise no optimality guarantee ⇝ example:

0

1

2

3

45

6

7

8

9 consider bounded inc-and-square problem
with cost(inc) = 1, cost(sqr) = 3

solution of breadth-first search still
⟨inc, sqr, sqr⟩ (cost: 7)
but: ⟨inc, inc, inc, inc, inc⟩ (cost: 5) is cheaper!

remedy: uniform cost search

always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

implementation: priority queue (min-heap) for open list

Introduction Algorithm Properties Summary

Algorithm

Introduction Algorithm Properties Summary

Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Algorithm Properties Summary

Uniform Cost Search

reminder from Chapter B5:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Algorithm Properties Summary

Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

as in BFS-Graph, a set is sufficient for the closed list

a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (Why not?)

Remarks:

identical to Dijkstra’s algorithm for shortest paths

for both: variants with/without delayed duplicate elimination

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }

2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

1

11

11222

in
c sqrin
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 44

in
c sqrin
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }

2 :1 1 :3[]

{1}

3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

1

1

1

1

1

2

22

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 44

in
c sqrin
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}

3 :2 1 :3 4 :4[]

{1, 2}

1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

12

2

2

in
c sqr

in
c sqr

3

3

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}

1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

122

2

in
c sqr

in
c sqr

3

3

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}

4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3 4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}

9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}

6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}

6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Example

open:

next

closed:

1 :0[]

{ }
2 :1 1 :3[]

{1}
3 :2 1 :3 4 :4[]

{1, 2}
1 :3 4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :3 4 :4 9 :5[]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

6 :6 0 :6 5 :7 1 :8[]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3

11

1

1

1

22

2

in
c sqr

in
c sqr

33

4

in
c

4

in
c

4

in
c

4

in
c

9

sqr

9

sqr

9

sqr

0

in
c

1

sqr

3

4

4

in
c sqr

in
c sqr

5

in
c

5

in
c

5

in
c

5

in
c

6

sqr

5

sqr

6

in
c

6

in
c

Introduction Algorithm Properties Summary

Uniform Cost Search: Improvements

possible improvements:

if action costs are small integers,
bucket heaps often more efficient

additional early duplicate tests for generated nodes
can reduce memory requirements

can be beneficial or detrimental for runtime
must be careful to keep shorter path to duplicate state

Introduction Algorithm Properties Summary

Properties

Introduction Algorithm Properties Summary

Completeness and Optimality

properties of uniform cost search:

uniform cost search is complete (Why?)

uniform cost search is optimal (Why?)

Introduction Algorithm Properties Summary

Time and Space Complexity

properties of uniform cost search:

Time complexity depends on distribution of action costs
(no simple and accurate bounds).

Let ε := mina∈A cost(a) and consider the case ε > 0.
Let c∗ be the optimal solution cost.
Let b be the branching factor and consider the case b ≥ 2.
Then the time complexity is at most O(b⌊c

∗/ε⌋+1). (Why?)
often a very weak upper bound

space complexity = time complexity

Introduction Algorithm Properties Summary

Summary

Introduction Algorithm Properties Summary

Summary

uniform cost search: expand nodes in order of ascending path costs

usually as a graph search

then corresponds to Dijkstra’s algorithm

complete and optimal

Foundations of Artificial Intelligence
B8. State-Space Search: Depth-first Search & Iterative

Deepening

Malte Helmert

University of Basel

March 17, 2025

Depth-first Search Iterative Deepening Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms

Depth-first Search Iterative Deepening Summary

Depth-first Search

Depth-first Search Iterative Deepening Summary

Idea of Depth-first Search

depth-first search:

expands nodes in opposite order of generation (LIFO)

open list implemented as stack

⇝ deepest node expanded first

German: Tiefensuche

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open: 1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

1

11

222

333

444

555

666

1

4

9

6

5

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

1

1

1

2

22

333

444

555

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

2

2

2

3

33

444

555

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

3

3

3

4

44

555

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

in
c
sqrin

c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

4

4

4

5

55

666

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqrin

c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

44

4

5

5

5

6

66

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

44

4

55

5

6

6

6

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search Example

open:

1[]
next

1 2[]
next

1 4 3[]
next

1 4 9 4[]
next

1 4 9 6 5[]
next

1 4 9 6 5 6[]
next

1 4 9 6 5[]

11

1

22

2

33

3

44

4

55

5

66

6

1

4

9

6

5

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

in
c
sqr

Depth-first Search Iterative Deepening Summary

Depth-first Search: Some Properties

almost always implemented as a tree search (we will see why)

not complete, not semi-complete, not optimal (Why?)

complete for acyclic state spaces,
e.g., if state space directed tree

Depth-first Search Iterative Deepening Summary

Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Depth-first Search Iterative Deepening Summary

Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push back(make root node())
while not open.is empty():

n := open.pop back()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Depth-first Search Iterative Deepening Summary

Non-recursive Depth-first Search: Discussion

discussion:

there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

however, depth-first search as a recursive algorithm
is simpler and more efficient

⇝ CPU stack as implicit open list

⇝ no search node data structure needed

Depth-first Search Iterative Deepening Summary

Depth-first Search (Recursive Version)

function depth first search(s)

if is goal(s):
return ⟨⟩

for each ⟨a, s ′⟩ ∈ succ(s):
solution := depth first search(s ′)
if solution ̸= none:

solution.push front(a)
return solution

return none

main function:

Depth-first Search (Recursive Version)

return depth first search(init())

Depth-first Search Iterative Deepening Summary

Depth-first Search: Complexity

time complexity:

If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

On the other hand: in the best case, solutions of length ℓ
can be found with O(bℓ) generated nodes. (Why?)

improvable to O(ℓ) with incremental successor generation

space complexity:

only need to store nodes along currently explored path
(“along”: nodes on path and their children)

⇝ space complexity O(bm) if m maximal search depth reached

low memory complexity main reason why depth-first search
interesting despite its disadvantages

Depth-first Search Iterative Deepening Summary

Depth-first Search: Complexity

time complexity:

If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

On the other hand: in the best case, solutions of length ℓ
can be found with O(bℓ) generated nodes. (Why?)

improvable to O(ℓ) with incremental successor generation

space complexity:

only need to store nodes along currently explored path
(“along”: nodes on path and their children)

⇝ space complexity O(bm) if m maximal search depth reached

low memory complexity main reason why depth-first search
interesting despite its disadvantages

Depth-first Search Iterative Deepening Summary

Iterative Deepening

Depth-first Search Iterative Deepening Summary

Idea of Depth-limited Search

depth-limited search:

parameterized with depth limit ℓ ∈ N0

behaves like depth-first search, but prunes (does not expand)
search nodes at depth ℓ

not very useful on its own, but important ingredient
of more useful algorithms

German: tiefenbeschränkte Suche

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

1

11

222 111

inc
sqr

333 444

inc
sqr

222 111

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

1

1

1

2

22

1

11

inc
sqr

333 444

inc
sqr

222 111

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

2

2

2

1

11

inc
sqr

3

33

4

44

inc
sqr

222 111

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

22

2 1

11

inc
sqr

3

3

3

4

44

inc
sqr

222 111

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

22

2 1

11

inc
sqr

33

3

4

4

4

inc
sqr

222 111

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

22

2

1

1

1

inc
sqr

33

3

44

4

inc
sqr

2

22

1

11

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

22

2

11

1

inc
sqr

33

3

44

4

inc
sqr

2

2

2

1

11

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

22

2

11

1

inc
sqr

33

3

44

4

inc
sqr

22

2

1

1

1

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search Example

Consider depth limit ℓ = 2.

11

1

22

2

11

1

inc
sqr

33

3

44

4

inc
sqr

22

2

11

1

inc
sqr

Depth-first Search Iterative Deepening Summary

Depth-limited Search: Pseudo-Code

function depth limited search(s, depth limit):

if is goal(s):
return ⟨⟩

if depth limit > 0:
for each ⟨a, s ′⟩ ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution ̸= none:

solution.push front(a)
return solution

return none

Depth-first Search Iterative Deepening Summary

Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):

idea: perform a sequence of depth-limited searches
with increasing depth limit

sounds wasteful (each iteration repeats all the useful work
of all previous iterations)

in fact overhead acceptable (⇝ analysis follows)

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution ̸= none:

return solution

German: iterative Tiefensuche

Depth-first Search Iterative Deepening Summary

Example

depth limit: 0

depth limit: 1depth limit: 1depth limit: 2depth limit: 2depth limit: 3depth limit: 3

generated nodes: 1

generated nodes: 1+3generated nodes: 1+3+3generated nodes: 1+3+5generated nodes: 1+3+7generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7generated nodes: 1+3+7+9=20

1

1

222 111
inc

sqrinc
sqr

333 444
inc

sqrinc
sqr

222 11
inc

sqr

444 999
in
c

sqr

5 6
in
c

sqr

Depth-first Search Iterative Deepening Summary

Example

depth limit: 0depth limit: 1

depth limit: 1

depth limit: 2depth limit: 2depth limit: 3depth limit: 3 generated nodes: 1

generated nodes: 1+3

generated nodes: 1+3+3generated nodes: 1+3+5generated nodes: 1+3+7generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7generated nodes: 1+3+7+9=20

1

1

22

2

1

1

1

inc
sqr

inc
sqr

333 444
inc

sqrinc
sqr

222 11
inc

sqr

444 999
in
c

sqr

5 6
in
c

sqr

Depth-first Search Iterative Deepening Summary

Example

depth limit: 0depth limit: 1depth limit: 1depth limit: 2

depth limit: 2

depth limit: 3depth limit: 3 generated nodes: 1generated nodes: 1+3generated nodes: 1+3+3generated nodes: 1+3+5

generated nodes: 1+3+7

generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7generated nodes: 1+3+7+9=20

1

1

22

2

11

1
inc

sqr

inc
sqr

33

3

44

4
inc

sqr

inc
sqr

22

2

1

1
inc

sqr

444 999
in
c

sqr

5 6
in
c

sqr

Depth-first Search Iterative Deepening Summary

Example

depth limit: 0depth limit: 1depth limit: 1depth limit: 2depth limit: 2depth limit: 3

depth limit: 3

generated nodes: 1generated nodes: 1+3generated nodes: 1+3+3generated nodes: 1+3+5generated nodes: 1+3+7generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7

generated nodes: 1+3+7+9=20

1

1

22

2 1

11
inc

sqr

inc
sqr

33

3 44

4
inc

sqr

inc
sqr

222 11
inc

sqr

44

4

99

9
in
c

sqr

5 6
in
c

sqr

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:

(almost) like BFS: semi-complete (however, not complete)

like BFS: optimal if all actions have same cost

like DFS: only need to store nodes along one path
⇝ space complexity O(bd), where d minimal solution length

time complexity only slightly higher than BFS
(⇝ analysis soon)

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search 1 + b + b2 + · · ·+ bd−1 + bd

iterative deepening DFS (d + 1) + db + (d − 1)b2 + · · ·+ 2bd−1 + 1bd

example: b = 10, d = 5

breadth-first search 1 + 10 + 100 + 1000 + 10000 + 100000

= 111111

iterative deepening DFS 6 + 50 + 400 + 3000 + 20000 + 100000

= 123456

for b = 10, only 11% more nodes than breadth-first search

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of iterative deepening DFS is

(d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · ·+ 1bd = O(bd)

and the memory complexity is

O(bd).

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if

tree search is adequate (no duplicate elimination necessary),

all action costs are identical, and

the solution depth is unknown.

Depth-first Search Iterative Deepening Summary

Summary

Depth-first Search Iterative Deepening Summary

Summary

depth-first search: expand nodes in LIFO order

usually as a tree search

easy to implement recursively

very memory-efficient

can be combined with iterative deepening
to combine many of the good aspects
of breadth-first and depth-first search

Depth-first Search Iterative Deepening Summary

Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity

search algorithm

criterion breadth- uniform depth- depth- iterative

first cost first limited deepening

complete? yes* yes no no semi

optimal? yes** yes no no yes**

time O(bd) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd)

space O(bd) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd)

b ≥ 2 branching factor
d minimal solution depth
m maximal search depth
ℓ depth limit

c∗ optimal solution cost
ε > 0 minimal action cost

remarks:
* for BFS-Tree: semi-complete
** only with uniform action costs

Foundations of Artificial Intelligence
B9. State-Space Search: Heuristics

Malte Helmert

University of Basel

March 17, 2025

Introduction Heuristics Examples Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II

Introduction Heuristics Examples Summary

Introduction

Introduction Heuristics Examples Summary

Informed Search Algorithms

search algorithms considered so far:

uninformed (“blind”): use no information
besides formal definition to solve a problem

scale poorly: prohibitive time (and space)
requirements for seemingly simple problems
(time complexity usually O(bd))

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

Richard Korf, Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases (AAAI, 1997)

example: b = 13; 105 nodes/second

d nodes time

4 30 940 0.3 s

6 5.2 · 106 52 s

8 8.8 · 108 147min

10 1011 17 days

12 1013 8 years

14 1015 1 352 years

16 1017 2.2 · 105 years

18 1020 38 · 106 years

search algorithms considered now:

idea: try to find (problem-specific) criteria
to distinguish good and bad states

heuristic (“informed”) search algorithms
prefer good states

Introduction Heuristics Examples Summary

Informed Search Algorithms

search algorithms considered so far:

uninformed (“blind”): use no information
besides formal definition to solve a problem

scale poorly: prohibitive time (and space)
requirements for seemingly simple problems
(time complexity usually O(bd))

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

Richard Korf, Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases (AAAI, 1997)

example: b = 13; 105 nodes/second

d nodes time

4 30 940 0.3 s

6 5.2 · 106 52 s

8 8.8 · 108 147min

10 1011 17 days

12 1013 8 years

14 1015 1 352 years

16 1017 2.2 · 105 years

18 1020 38 · 106 years

search algorithms considered now:

idea: try to find (problem-specific) criteria
to distinguish good and bad states

heuristic (“informed”) search algorithms
prefer good states

Introduction Heuristics Examples Summary

Informed Search Algorithms

search algorithms considered so far:

uninformed (“blind”): use no information
besides formal definition to solve a problem

scale poorly: prohibitive time (and space)
requirements for seemingly simple problems
(time complexity usually O(bd))

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

Richard Korf, Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases (AAAI, 1997)

example: b = 13; 105 nodes/second

d nodes time

4 30 940 0.3 s

6 5.2 · 106 52 s

8 8.8 · 108 147min

10 1011 17 days

12 1013 8 years

14 1015 1 352 years

16 1017 2.2 · 105 years

18 1020 38 · 106 years

search algorithms considered now:

idea: try to find (problem-specific) criteria
to distinguish good and bad states

heuristic (“informed”) search algorithms
prefer good states

Introduction Heuristics Examples Summary

Informed Search Algorithms

search algorithms considered so far:

uninformed (“blind”): use no information
besides formal definition to solve a problem

scale poorly: prohibitive time (and space)
requirements for seemingly simple problems
(time complexity usually O(bd))

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

Richard Korf, Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases (AAAI, 1997)

example: b = 13; 105 nodes/second

d nodes time

4 30 940 0.3 s

6 5.2 · 106 52 s

8 8.8 · 108 147min

10 1011 17 days

12 1013 8 years

14 1015 1 352 years

16 1017 2.2 · 105 years

18 1020

search algorithms considered now:

idea: try to find (problem-specific) criteria
to distinguish good and bad states

heuristic (“informed”) search algorithms
prefer good states

Introduction Heuristics Examples Summary

Heuristics

Introduction Heuristics Examples Summary

Heuristics

Definition (heuristic)

Let S be a state space with states S .
A heuristic function or heuristic for S is a function

h : S → R+
0 ∪ {∞},

mapping each state to a nonnegative number (or ∞).

Introduction Heuristics Examples Summary

Heuristics: Intuition

idea: h(s) estimates distance (= cost of cheapest path)

idea:

from s to closest goal state

heuristics can be arbitrary functions

intuition:
1 the closer h is to true goal distance,

the more efficient the search using h
2 the better h separates states that are close to the goal from

states that are far, the more efficient the search using h

Introduction Heuristics Examples Summary

Why “Heuristic”?

What does “heuristic” mean?

from ancient Greek ἑυρισκω (= I find)

same origin as ἑυρηκα!

popularized by George Pólya:
How to Solve It (1945)

in computer science often used for:
rule of thumb, inexact algorithm

in state-space search technical term
for goal distance estimator

https://youtu.be/ijj58xD5fDI?t=27

Introduction Heuristics Examples Summary

Why “Heuristic”?

What does “heuristic” mean?

from ancient Greek ἑυρισκω (= I find)

same origin as ἑυρηκα!

popularized by George Pólya:
How to Solve It (1945)

in computer science often used for:
rule of thumb, inexact algorithm

in state-space search technical term
for goal distance estimator

Introduction Heuristics Examples Summary

Representation of Heuristics

In our black box model, heuristics are an additional element
of the state space interface:

State Spaces as Black Boxes (Extended)

init()

is goal(s)

succ(s)

cost(a)

h(s): heuristic value for state s
result: nonnegative integer or ∞

Introduction Heuristics Examples Summary

Examples

Introduction Heuristics Examples Summary

Bounded Inc-and-Square

bounded inc-and-square:

h1(s) =

{
0 if s = 7

(16− s) mod 10 otherwise

⇝ number of inc actions to goal

possible heuristics:

How accurate is this heuristic?

“far”

“m
ed
iu
m
”

“close”

“goal”

h2(s) =


0 if s is a “goal”

1 s is “close”

2 s is “medium”

3 s is “far”

⇝ categorize states

0

1

2

3

45

6

7

8

9

Introduction Heuristics Examples Summary

Bounded Inc-and-Square

bounded inc-and-square:

h1(s) =

{
0 if s = 7

(16− s) mod 10 otherwise

⇝ number of inc actions to goal

possible heuristics:

How accurate is this heuristic?

“far”

“m
ed
iu
m
”

“close”

“goal”

h2(s) =


0 if s is a “goal”

1 s is “close”

2 s is “medium”

3 s is “far”

⇝ categorize states

0

1

2

3

45

6

7

8

9

Introduction Heuristics Examples Summary

Example: Blocks World

possible heuristic:

count blocks x that currently lie on y
and must lie on z ̸= y in the goal
(including case where y or z is the table)

How accurate is this heuristic?

Introduction Heuristics Examples Summary

Example: Blocks World

possible heuristic:

count blocks x that currently lie on y
and must lie on z ̸= y in the goal
(including case where y or z is the table)

How accurate is this heuristic?

Introduction Heuristics Examples Summary

Example: Route Planning in Romania

possible heuristic: straight-line distance to Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Introduction Heuristics Examples Summary

Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

Six people must cross a river.

Their rowing boat can carry one or two people
across the river at a time (it is too small for three).

Three people are missionaries, three are cannibals.

Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

⇝ with our formulation of states as triples ⟨m, c , b⟩:
h(⟨m, c , b⟩) = m + c

Introduction Heuristics Examples Summary

Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

Six people must cross a river.

Their rowing boat can carry one or two people
across the river at a time (it is too small for three).

Three people are missionaries, three are cannibals.

Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

⇝ with our formulation of states as triples ⟨m, c , b⟩:
h(⟨m, c , b⟩) = m + c

Introduction Heuristics Examples Summary

Summary

Introduction Heuristics Examples Summary

Summary

heuristics estimate distance of a state to the goal

can be used to focus search on promising states

⇝ soon: search algorithms that use heuristics

Foundations of Artificial Intelligence
B10. State-Space Search: Analysis of Heuristics

Malte Helmert

University of Basel

March 19, 2025

Properties of Heuristics Examples Connections Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II

Properties of Heuristics Examples Connections Summary

Reminder: Heuristics

Definition (heuristic)

Let S be a state space with states S .
A heuristic function or heuristic for S is a function

h : S → R+
0 ∪ {∞},

mapping each state to a nonnegative number (or ∞).

Properties of Heuristics Examples Connections Summary

Properties of Heuristics

Properties of Heuristics Examples Connections Summary

Perfect Heuristic

Definition (perfect heuristic)

Let S be a state space with states S .

The perfect heuristic for S, written h∗, maps each state s ∈ S

to the cost of an optimal solution for s, or

to ∞ if no solution for s exists.

German: perfekte Heuristik

Properties of Heuristics Examples Connections Summary

Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S .

A heuristic h for S is called

safe if h∗(s) = ∞ for all s ∈ S with h(s) = ∞
goal-aware if h(s) = 0 for all goal states s

admissible if h(s) ≤ h∗(s) for all states s ∈ S

consistent if h(s) ≤ cost(a) + h(s ′) for all transitions s
a−→ s ′

German: sicher, zielerkennend, zulässig, konsistent

s

s ′

SG

cos
t(a

)

h(s)

h(s ′)

Properties of Heuristics Examples Connections Summary

Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S .

A heuristic h for S is called

safe if h∗(s) = ∞ for all s ∈ S with h(s) = ∞
goal-aware if h(s) = 0 for all goal states s

admissible if h(s) ≤ h∗(s) for all states s ∈ S

consistent if h(s) ≤ cost(a) + h(s ′) for all transitions s
a−→ s ′

German: sicher, zielerkennend, zulässig, konsistent

s

s ′

SG

cos
t(a

)

h(s)

h(s ′)

Properties of Heuristics Examples Connections Summary

Examples

Properties of Heuristics Examples Connections Summary

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Route Planning in Romania

straight-line distance:

safe

goal-aware

admissible

consistent

Why?

Properties of Heuristics Examples Connections Summary

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Blocks World

misplaced blocks:

safe?

goal-aware?

admissible?

consistent?

Properties of Heuristics Examples Connections Summary

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Missionaries and Cannibals

people on wrong river bank:

safe?

goal-aware?

admissible?

consistent?

Properties of Heuristics Examples Connections Summary

Connections

Properties of Heuristics Examples Connections Summary

Properties of Heuristics: Connections (1)

Theorem (admissible =⇒ safe + goal-aware)

Let h be an admissible heuristic.

Then h is safe and goal-aware.

Why?

Properties of Heuristics Examples Connections Summary

Properties of Heuristics: Connections (2)

Theorem (goal-aware + consistent =⇒ admissible)

Let h be a goal-aware and consistent heuristic.

Then h is admissible.

Why?

Properties of Heuristics Examples Connections Summary

Showing All Four Properties

How can one show most easily that a heuristic
has all four properties?

Properties of Heuristics Examples Connections Summary

Summary

Properties of Heuristics Examples Connections Summary

Summary

perfect heuristic h∗: true cost to the goal

important properties: safe, goal-aware, admissible, consistent

connections between these properties

admissible =⇒ safe and goal-aware
goal-aware and consistent =⇒ admissible

Foundations of Artificial Intelligence
B11. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 19, 2025

Introduction Best-first Search Algorithm Details Reopening Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II

Introduction Best-first Search Algorithm Details Reopening Summary

Introduction

Introduction Best-first Search Algorithm Details Reopening Summary

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

this chapter: short introduction

next chapters: more thorough analysis

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

decision which node is most promising uses heuristics. . .

. . . but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

implementation essentially like uniform cost search

different choices of f ⇝ different search algorithms

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

decision which node is most promising uses heuristics. . .

. . . but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

implementation essentially like uniform cost search

different choices of f ⇝ different search algorithms

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

now: graph search (i.e., with duplicate elimination),
which is the more common case

Chapter B13: a tree search variant

Introduction Best-first Search Algorithm Details Reopening Summary

Algorithm Details

Introduction Best-first Search Algorithm Details Reopening Summary

Reminder: Uniform Cost Search

reminder from Chapter B7:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search without Reopening (1st Attempt)

reminder from Chapter B7:

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by f
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

discard states considered unsolvable by the heuristic
⇝ saves memory in open

if multiple search nodes have identical f values,
use h to break ties (preferring low h)

not always a good idea, but often
obviously unnecessary if f = h (greedy best-first search)

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

discard states considered unsolvable by the heuristic
⇝ saves memory in open

if multiple search nodes have identical f values,
use h to break ties (preferring low h)

not always a good idea, but often
obviously unnecessary if f = h (greedy best-first search)

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search: Properties

properties:

complete if h is safe (Why?)

optimality depends on f ⇝ next chapters

Introduction Best-first Search Algorithm Details Reopening Summary

Reopening

Introduction Best-first Search Algorithm Details Reopening Summary

Reopening

reminder: uniform cost search expands nodes
in order of increasing g values

⇝ guarantees that cheapest path to state of a node
has been found when the node is expanded

with arbitrary evaluation functions f in best-first search
this does not hold in general

⇝ in order to find solutions of low cost,
we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
distances := new HashMap
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

⇝ distances controls reopening and replaces closed

Introduction Best-first Search Algorithm Details Reopening Summary

Summary

Introduction Best-first Search Algorithm Details Reopening Summary

Summary

best-first search: expand node with minimal value
of evaluation function f

f = h: greedy best-first search
f = g + h: A∗

f = g + w · h with parameter w ∈ R+
0 : weighted A∗

here: best-first search as a graph search

reopening: expand duplicates with lower path costs
to find cheaper solutions

Foundations of Artificial Intelligence
B12. State-Space Search: Greedy BFS, A∗, Weighted A∗

Malte Helmert

University of Basel

March 26, 2025

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Introduction

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

What Is It About?

In this chapter we study last chapter’s algorithms in more detail:

greedy best-first search

A∗

weighted A∗

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Greedy Best-first Search

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Greedy Best-first Search

Greedy Best-first Search

only consider the heuristic: f (n) = h(n.state)

Note: usually without reopening (for reasons of efficiency)

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example: Greedy Best-first Search for Route Planning

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example: Greedy Best-first Search for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

arad

aradarad

366

sibiusibiusibiu253timisoara329 zerind374

fagarasfagarasfagaras176arad366 oradea380 rimnicu vilcea193

bucharestbucharest0sibiu253

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example: Greedy Best-first Search for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

arad

arad

arad

366

sibiu

sibiusibiu

253timisoara329 zerind374

fagarasfagarasfagaras176arad366 oradea380 rimnicu vilcea193

bucharestbucharest0sibiu253

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example: Greedy Best-first Search for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

sibiu

sibiu

sibiu

253timisoara329 zerind374

fagaras

fagarasfagaras

176arad366 oradea380 rimnicu vilcea193

bucharestbucharest0sibiu253

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example: Greedy Best-first Search for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

sibiusibiu

sibiu253timisoara329 zerind374

fagaras

fagaras

fagaras

176arad366 oradea380 rimnicu vilcea193

bucharest

bucharest

0sibiu253

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example: Greedy Best-first Search for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

sibiusibiu

sibiu253timisoara329 zerind374

fagarasfagaras

fagaras176arad366 oradea380 rimnicu vilcea193

bucharest

bucharest0sibiu253

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Greedy Best-first Search: Properties

complete with safe heuristics
(like all variants of best-first graph search)

suboptimal: solutions can be arbitrarily bad

often very fast: one of the fastest search algorithms in practice

monotonic transformations of h (e.g. scaling, additive
constants) do not affect behaviour (Why is this interesting?)

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗

A∗

combine greedy best-first search with uniform cost search:
f (n) = g(n) + h(n.state)

trade-off between path cost and proximity to goal

f (n) estimates overall cost of cheapest solution
from initial state via n to the goal

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗: Citations

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗: Citations

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example: A∗ for Route Planning

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example A∗ for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

arad

aradarad

366

0 366

sibiusibiusibiu393

140 253

timisoara447

118 329

zerind449

75 374

rimnicu vilcearimnicu vilcearimnicu vilceafagarasfagarasfagarasarad646

280 366

415

239 176

oradea671

291 380

413

220 193

pitestipitestipitesticraiova526

366 160

417

317 100

sibiu553

300 253

bucharest450

450 0

sibiu591

338 253

bucharestbucharest418

418 0

craiova615

455 160

rimnicu vilcea607

414 193

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example A∗ for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

arad

arad

arad

366

0 366

sibiu

sibiusibiu

393

140 253

timisoara447

118 329

zerind449

75 374

rimnicu vilcearimnicu vilcearimnicu vilceafagarasfagarasfagarasarad646

280 366

415

239 176

oradea671

291 380

413

220 193

pitestipitestipitesticraiova526

366 160

417

317 100

sibiu553

300 253

bucharest450

450 0

sibiu591

338 253

bucharestbucharest418

418 0

craiova615

455 160

rimnicu vilcea607

414 193

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example A∗ for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

0 366

sibiu

sibiu

sibiu

393

140 253

timisoara447

118 329

zerind449

75 374

rimnicu vilcea

rimnicu vilcearimnicu vilcea

fagaras

fagarasfagaras

arad646

280 366

415

239 176

oradea671

291 380

413

220 193

pitestipitestipitesticraiova526

366 160

417

317 100

sibiu553

300 253

bucharest450

450 0

sibiu591

338 253

bucharestbucharest418

418 0

craiova615

455 160

rimnicu vilcea607

414 193

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example A∗ for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

0 366

sibiusibiu

sibiu393

140 253

timisoara447

118 329

zerind449

75 374

rimnicu vilcea

rimnicu vilcea

rimnicu vilcea

fagaras

fagarasfagaras

arad646

280 366

415

239 176

oradea671

291 380

413

220 193

pitesti

pitestipitesti

craiova526

366 160

417

317 100

sibiu553

300 253

bucharest450

450 0

sibiu591

338 253

bucharestbucharest418

418 0

craiova615

455 160

rimnicu vilcea607

414 193

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example A∗ for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

0 366

sibiusibiu

sibiu393

140 253

timisoara447

118 329

zerind449

75 374

rimnicu vilcearimnicu vilcea

rimnicu vilcea

fagaras

fagaras

fagaras

arad646

280 366

415

239 176

oradea671

291 380

413

220 193

pitesti

pitestipitesti

craiova526

366 160

417

317 100

sibiu553

300 253

bucharest450

450 0

sibiu591

338 253

bucharestbucharest418

418 0

craiova615

455 160

rimnicu vilcea607

414 193

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example A∗ for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

0 366

sibiusibiu

sibiu393

140 253

timisoara447

118 329

zerind449

75 374

rimnicu vilcearimnicu vilcea

rimnicu vilcea

fagarasfagaras

fagarasarad646

280 366

415

239 176

oradea671

291 380

413

220 193

pitesti

pitesti

pitesti

craiova526

366 160

417

317 100

sibiu553

300 253

bucharest450

450 0

sibiu591

338 253

bucharest

bucharest

418

418 0

craiova615

455 160

rimnicu vilcea607

414 193

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Example A∗ for Route Planning

Arad 366
Bucharest 0
Craiova 160
Fagaras 176
Oradea 380

Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Zerind 374

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

aradarad

arad366

0 366

sibiusibiu

sibiu393

140 253

timisoara447

118 329

zerind449

75 374

rimnicu vilcearimnicu vilcea

rimnicu vilcea

fagarasfagaras

fagarasarad646

280 366

415

239 176

oradea671

291 380

413

220 193

pitestipitesti

pitesticraiova526

366 160

417

317 100

sibiu553

300 253

bucharest450

450 0

sibiu591

338 253

bucharest

bucharest418

418 0

craiova615

455 160

rimnicu vilcea607

414 193

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗: Properties

complete with safe heuristics
(like all variants of best-first graph search)

with reopening: optimal with admissible heuristics

without reopening: optimal with heuristics
that are admissible and consistent

⇝ proofs: Chapters B14 and B15

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗: Implementation Aspects

some practical remarks on implementing A∗:

common bug: reopening not implemented
although heuristic is not consistent

common bug: duplicate test “too early”
(upon generation of search nodes)

common bug: goal test “too early”
(upon generation of search nodes)

all these bugs lead to loss of optimality
and can remain undetected for a long time

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Weighted A∗

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Weighted A∗

Weighted A∗

A∗ with more heavily weighted heuristic:
f (n) = g(n) + w · h(n.state),
where weight w ∈ R+

0 with w ≥ 1 is a freely choosable parameter

Note: w < 1 is conceivable, but usually not a good idea
(Why not?)

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Weighted A∗: Properties

weight parameter controls “greediness” of search:

w = 0: like uniform cost search

w = 1: like A∗

w → ∞: like greedy best-first search

with w ≥ 1 properties analogous to A∗:

h admissible:
found solution guaranteed to be at most w times
as expensive as optimum when reopening is used

h admissible and consistent:
found solution guaranteed to be at most w times
as expensive as optimum; no reopening needed

(without proof)

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Summary

Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Summary

best-first graph search with evaluation function f :

f = h: greedy best-first search
suboptimal, often very fast

f = g + h: A∗

optimal if h admissible and consistent
or if h admissible and reopening is used

f = g + w · h: weighted A∗

for w ≥ 1 suboptimality factor at most w
under same conditions as for optimality of A∗

Foundations of Artificial Intelligence
B13. State-Space Search: IDA∗

Malte Helmert

University of Basel

March 26, 2025

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Idea

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

depth-limited search with increasing limits

instead of depth we limit f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

⇝ IDA∗ (iterative-deepening A∗)

tree search, unlike the previous best-first search algorithms

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

depth-limited search with increasing limits

instead of depth we limit f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

⇝ IDA∗ (iterative-deepening A∗)

tree search, unlike the previous best-first search algorithms

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Algorithm

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Reminder: Iterative Deepening Depth-first Search

reminder from Chapter B8: iterative deepening depth-first search

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution ̸= none:

return solution

function depth limited search(s, depth limit):

if is goal(s):
return ⟨⟩

if depth limit > 0:
for each ⟨a, s ′⟩ ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution ̸= none:

solution.push front(a)
return solution

return none

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

First Attempt: IDA∗ Main Function

first attempt: iterative deepening A∗ (IDA∗)

IDA∗ (First Attempt)

for f limit ∈ {0, 1, 2, . . . }:
solution := f limited search(init(), 0, f limit)
if solution ̸= none:

return solution

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

First Attempt: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return none

if is goal(s):
return ⟨⟩

for each ⟨a, s ′⟩ ∈ succ(s):
solution := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return solution

return none

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗ First Attempt: Discussion

The pseudo-code can be rewritten to be even more similar
to our IDDFS pseudo-code. However, this would make
our next modification more complicated.

The algorithm follows the same principles as IDDFS,
but takes path costs and heuristic information into account.

For unit-cost state spaces and the trivial heuristic h : s 7→ 0
for all states s, it behaves identically to IDDFS.

For general state spaces, there is a problem
with this first attempt, however.

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Growing the f Limit

In IDDFS, we grow the limit from the smallest limit
that gives a non-empty search tree (0) by 1 at a time.

This usually leads to exponential growth of the tree
between rounds, so that re-exploration work can be amortized.

In our first attempt at IDA*, there is no guarantee that
increasing the f limit by 1 will lead to a larger search tree
than in the previous round.

This problem becomes worse if we also allow non-integer
(fractional) costs, where increasing the limit by 1 would be
very arbitrary.

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Setting the Next f Limit

idea: let the f -limited search compute the next sensible f limit

Start with h(init()), the smallest f limit
that results in a non-empty search tree.

In every round, increase the f limit to the smallest value
that ensures that in the next round at least one
additional path will be considered by the search.

⇝ f limited search now returns two values:

the next f limit that would include at least one new node
in the search tree (∞ if no such limit exists;
none if a solution was found), and
the solution that was found (or none).

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Final Algorithm: IDA∗ Main Function

final algorithm: iterative deepening A∗ (IDA∗)

IDA∗

f limit = h(init())
while f limit ̸= ∞:

⟨f limit, solution⟩ := f limited search(init(), 0, f limit)
if solution ̸= none:

return solution
return unsolvable

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Final Algorithm: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return ⟨g + h(s),none⟩

if is goal(s):
return ⟨none, ⟨⟩⟩

new limit := ∞
for each ⟨a, s ′⟩ ∈ succ(s):

⟨child limit, solution⟩ := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return ⟨none, solution⟩

new limit := min(new limit, child limit)
return ⟨new limit,none⟩

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Final Algorithm: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return ⟨g + h(s),none⟩

if is goal(s):
return ⟨none, ⟨⟩⟩

new limit := ∞
for each ⟨a, s ′⟩ ∈ succ(s):

⟨child limit, solution⟩ := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return ⟨none, solution⟩

new limit := min(new limit, child limit)
return ⟨new limit,none⟩

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Properties

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Properties

Inherits important properties of A∗ and depth-first search:

semi-complete if h safe and cost(a) > 0 for all actions a

optimal if h admissible

space complexity O(ℓb), where

ℓ: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
b: branching factor

We state these without proof.

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Discussion

compared to A∗ potentially considerable overhead
because no duplicates are detected

⇝ exponentially slower in many state spaces
⇝ often combined with partial duplicate elimination

(cycle detection, transposition tables)

overhead due to iterative increases of f limit
often negligible, but not always

especially problematic if action costs vary a lot:
then it can easily happen that each new f limit
only considers a small number of new paths

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Summary

IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Summary

IDA∗ is a tree search variant of A∗

based on iterative deepening depth-first search

main advantage: low space complexity

disadvantage: repeated work can be significant

most useful when there are few duplicates

Foundations of Artificial Intelligence
B14. State-Space Search: Properties of A∗, Part I

Malte Helmert

University of Basel

March 31, 2025

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Introduction

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗

advantage of A∗ over greedy search:
optimal for heuristics with suitable properties

very important result!

⇝ next chapters: a closer look at A∗

A∗ with reopening ⇝ this chapter

A∗ without reopening ⇝ next chapter

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening

In this chapter, we prove that A∗ with reopening is optimal
when using admissible heuristics.

For this purpose, we

give some basic definitions

prove two lemmas regarding the behaviour of A∗

use these to prove the main result

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Reminder: A∗ with Reopening

reminder from Chapter B11/B12: A∗ with reopening

A∗ with Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
distances := new HashMap
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Solvable States

Definition (solvable)

A state s of a state space is called solvable if h∗(s) < ∞.

German: lösbar

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Paths to States

Definition (g∗)

Let s be a state of a state space with initial state sI.

We write g∗(s) for the cost of an optimal (cheapest) path
from sI to s (∞ if s is unreachable).

Remarks:

g is defined for nodes, g∗ for states (Why?)

g∗(n.state) ≤ g(n) for all nodes n
generated by a search algorithm (Why?)

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Settled States in A∗

Definition (settled)

A state s is called settled at a given point
during the execution of A∗ (with or without reopening)
if s is included in distances and distances[s] = g∗(s).

German: erledigt

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma

We now show the first important result for A∗ with reopening:

Lemma (optimal continuation lemma)

Consider A∗ with reopening using a safe heuristic
at the beginning of any iteration of the while loop.

If

state s is settled,

state s ′ is a solvable successor of s, and

an optimal path from sI to s ′ of the form ⟨sI, . . . , s, s ′⟩ exists,
then

s ′ is settled or

open contains a node n′ with n′.state = s ′ and g(n′) = g∗(s ′).

German: Optimale-Fortsetzungs-Lemma

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Intuition

(Proof follows on the next slides.)

Intuitively, the lemma states:
If no optimal path to a given state has been found yet,
open must contain a “good” node that contributes
to finding an optimal path to that state.

(This potentially requires multiple applications of the lemma
along an optimal path to the state.)

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s ′ with the given properties
at the start of some iteration (“iteration A”) of A∗.

Because s is settled, an earlier iteration (“iteration B”)
set distances[s] := g∗(s).

Thus iteration B removed a node n
with n.state = s and g(n) = g∗(s) from open.

A∗ did not terminate in iteration B.
(Otherwise iteration A would not exist.)
Hence n was expanded in iteration B. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s ′ with the given properties
at the start of some iteration (“iteration A”) of A∗.

Because s is settled, an earlier iteration (“iteration B”)
set distances[s] := g∗(s).

Thus iteration B removed a node n
with n.state = s and g(n) = g∗(s) from open.

A∗ did not terminate in iteration B.
(Otherwise iteration A would not exist.)
Hence n was expanded in iteration B. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s ′ with the given properties
at the start of some iteration (“iteration A”) of A∗.

Because s is settled, an earlier iteration (“iteration B”)
set distances[s] := g∗(s).

Thus iteration B removed a node n
with n.state = s and g(n) = g∗(s) from open.

A∗ did not terminate in iteration B.
(Otherwise iteration A would not exist.)
Hence n was expanded in iteration B. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s ′ with the given properties
at the start of some iteration (“iteration A”) of A∗.

Because s is settled, an earlier iteration (“iteration B”)
set distances[s] := g∗(s).

Thus iteration B removed a node n
with n.state = s and g(n) = g∗(s) from open.

A∗ did not terminate in iteration B.
(Otherwise iteration A would not exist.)
Hence n was expanded in iteration B. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s ′ of s.
Because s ′ is solvable, we have h∗(s ′) < ∞.
Because h is safe, this implies h(s ′) < ∞.
Hence a successor node n′ was generated for s ′.

This node n′ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s ′

after iteration B.

To complete the proof, we show: if the consequence
of the lemma is satisfied at the beginning of an iteration,
it is also satisfied at the beginning of the next iteration. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s ′ of s.
Because s ′ is solvable, we have h∗(s ′) < ∞.
Because h is safe, this implies h(s ′) < ∞.
Hence a successor node n′ was generated for s ′.

This node n′ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s ′

after iteration B.

To complete the proof, we show: if the consequence
of the lemma is satisfied at the beginning of an iteration,
it is also satisfied at the beginning of the next iteration. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s ′ of s.
Because s ′ is solvable, we have h∗(s ′) < ∞.
Because h is safe, this implies h(s ′) < ∞.
Hence a successor node n′ was generated for s ′.

This node n′ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s ′

after iteration B.

To complete the proof, we show: if the consequence
of the lemma is satisfied at the beginning of an iteration,
it is also satisfied at the beginning of the next iteration. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (3)

Proof (continued).

If s ′ is settled at the beginning of an iteration,
it remains settled until termination.

If s ′ is not yet settled and open contains a node n′

with n′.state = s ′ and g(n′) = g∗(s ′)
at the beginning of an iteration, then either
the node remains in open during the iteration,
or n′ is removed during the iteration and s ′ becomes settled.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimal Continuation Lemma: Proof (3)

Proof (continued).

If s ′ is settled at the beginning of an iteration,
it remains settled until termination.

If s ′ is not yet settled and open contains a node n′

with n′.state = s ′ and g(n′) = g∗(s ′)
at the beginning of an iteration, then either
the node remains in open during the iteration,
or n′ is removed during the iteration and s ′ becomes settled.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma

We need a second lemma:

Lemma (f -bound lemma)

Consider A∗ with reopening and an admissible heuristic
applied to a solvable state space with optimal solution cost c∗.

Then open contains a node n with f (n) ≤ c∗

at the beginning of each iteration of the while loop.

German: f -Schranken-Lemma

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (1)

Proof.

Consider the situation at the beginning of any iteration
of the while loop.

Let ⟨s0, . . . , sn⟩ with s0 := sI be an optimal solution.
(Here we use that the state space is solvable.)

Let si be the first state in the sequence that is not settled.

(Not all states in the sequence can be settled:
sn is a goal state, and when a goal state is inserted
into distances, A∗ terminates.) . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (1)

Proof.

Consider the situation at the beginning of any iteration
of the while loop.

Let ⟨s0, . . . , sn⟩ with s0 := sI be an optimal solution.
(Here we use that the state space is solvable.)

Let si be the first state in the sequence that is not settled.

(Not all states in the sequence can be settled:
sn is a goal state, and when a goal state is inserted
into distances, A∗ terminates.) . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (2)

Proof (continued).

Case 1: i = 0

Because s0 = sI is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(s0) < ∞.

Hence open contains the root n0.

We obtain: f (n0) = g(n0) + h(s0) = 0 + h(s0) ≤ h∗(s0) = c∗,
where “≤” uses the admissibility of h.

This concludes the proof for this case. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (2)

Proof (continued).

Case 1: i = 0

Because s0 = sI is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(s0) < ∞.

Hence open contains the root n0.

We obtain: f (n0) = g(n0) + h(s0) = 0 + h(s0) ≤ h∗(s0) = c∗,
where “≤” uses the admissibility of h.

This concludes the proof for this case. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (2)

Proof (continued).

Case 1: i = 0

Because s0 = sI is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(s0) < ∞.

Hence open contains the root n0.

We obtain: f (n0) = g(n0) + h(s0) = 0 + h(s0) ≤ h∗(s0) = c∗,
where “≤” uses the admissibility of h.

This concludes the proof for this case. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (2)

Proof (continued).

Case 1: i = 0

Because s0 = sI is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(s0) < ∞.

Hence open contains the root n0.

We obtain: f (n0) = g(n0) + h(s0) = 0 + h(s0) ≤ h∗(s0) = c∗,
where “≤” uses the admissibility of h.

This concludes the proof for this case. . . .

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (3)

Proof (continued).

Case 2: i > 0

Then si−1 is settled and si is not settled.
Moreover, si is a solvable successor of si−1 and ⟨s0, . . . , si−1, si ⟩
is an optimal path from s0 to si .

We can hence apply the optimal continuation lemma
(with s = si−1 and s ′ = si) and obtain:

(A) si is settled, or

(B) open contains n′ with n′.state = si and g(n′) = g∗(si).

Because (A) is false, (B) must be true.

We conclude: open contains n′ with
f (n′) = g(n′) + h(si) = g∗(si) + h(si) ≤ g∗(si) + h∗(si) = c∗,
where “≤” uses the admissibility of h.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (3)

Proof (continued).

Case 2: i > 0

Then si−1 is settled and si is not settled.
Moreover, si is a solvable successor of si−1 and ⟨s0, . . . , si−1, si ⟩
is an optimal path from s0 to si .

We can hence apply the optimal continuation lemma
(with s = si−1 and s ′ = si) and obtain:

(A) si is settled, or

(B) open contains n′ with n′.state = si and g(n′) = g∗(si).

Because (A) is false, (B) must be true.

We conclude: open contains n′ with
f (n′) = g(n′) + h(si) = g∗(si) + h(si) ≤ g∗(si) + h∗(si) = c∗,
where “≤” uses the admissibility of h.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (3)

Proof (continued).

Case 2: i > 0

Then si−1 is settled and si is not settled.
Moreover, si is a solvable successor of si−1 and ⟨s0, . . . , si−1, si ⟩
is an optimal path from s0 to si .

We can hence apply the optimal continuation lemma
(with s = si−1 and s ′ = si) and obtain:

(A) si is settled, or

(B) open contains n′ with n′.state = si and g(n′) = g∗(si).

Because (A) is false, (B) must be true.

We conclude: open contains n′ with
f (n′) = g(n′) + h(si) = g∗(si) + h(si) ≤ g∗(si) + h∗(si) = c∗,
where “≤” uses the admissibility of h.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

f -Bound Lemma: Proof (3)

Proof (continued).

Case 2: i > 0

Then si−1 is settled and si is not settled.
Moreover, si is a solvable successor of si−1 and ⟨s0, . . . , si−1, si ⟩
is an optimal path from s0 to si .

We can hence apply the optimal continuation lemma
(with s = si−1 and s ′ = si) and obtain:

(A) si is settled, or

(B) open contains n′ with n′.state = si and g(n′) = g∗(si).

Because (A) is false, (B) must be true.

We conclude: open contains n′ with
f (n′) = g(n′) + h(si) = g∗(si) + h(si) ≤ g∗(si) + h∗(si) = c∗,
where “≤” uses the admissibility of h.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening

We can now show the main result of this chapter:

Theorem (optimality of A∗ with reopening)

A∗ with reopening is optimal when using an admissible heuristic.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening: Proof

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c∗

where A∗ with reopening and an admissible heuristic
returns a solution with cost c > c∗.

This means that in the last iteration, the algorithm
removes a node n with g(n) = c > c∗ from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f (n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c∗.

A∗ always removes a node n with minimal f value from open.
With f (n) > c∗, we get a contradiction to the f -bound lemma,
which completes the proof.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening: Proof

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c∗

where A∗ with reopening and an admissible heuristic
returns a solution with cost c > c∗.

This means that in the last iteration, the algorithm
removes a node n with g(n) = c > c∗ from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f (n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c∗.

A∗ always removes a node n with minimal f value from open.
With f (n) > c∗, we get a contradiction to the f -bound lemma,
which completes the proof.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening: Proof

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c∗

where A∗ with reopening and an admissible heuristic
returns a solution with cost c > c∗.

This means that in the last iteration, the algorithm
removes a node n with g(n) = c > c∗ from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f (n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c∗.

A∗ always removes a node n with minimal f value from open.
With f (n) > c∗, we get a contradiction to the f -bound lemma,
which completes the proof.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening: Proof

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c∗

where A∗ with reopening and an admissible heuristic
returns a solution with cost c > c∗.

This means that in the last iteration, the algorithm
removes a node n with g(n) = c > c∗ from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f (n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c∗.

A∗ always removes a node n with minimal f value from open.
With f (n) > c∗, we get a contradiction to the f -bound lemma,
which completes the proof.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Optimality of A∗ with Reopening: Proof

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c∗

where A∗ with reopening and an admissible heuristic
returns a solution with cost c > c∗.

This means that in the last iteration, the algorithm
removes a node n with g(n) = c > c∗ from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f (n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c∗.

A∗ always removes a node n with minimal f value from open.
With f (n) > c∗, we get a contradiction to the f -bound lemma,
which completes the proof.

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Summary

Introduction Optimal Continuation Lemma f -Bound Lemma Optimality of A∗ with Reopening Summary

Summary

A∗ with reopening using an admissible heuristic is optimal.

The proof is based on the following lemmas
that hold for solvable state spaces and admissible heuristics:

optimal continuation lemma: The open list always contains
nodes that make progress towards an optimal solution.
f -bound lemma: The minimum f value in the open list
at the beginning of each A∗ iteration is a lower bound
on the optimal solution cost.

Foundations of Artificial Intelligence
B15. State-Space Search: Properties of A∗, Part II

Malte Helmert

University of Basel

March 31, 2025

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Introduction

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Optimality of A∗ without Reopening

We now study A∗ without reopening.

For A∗ without reopening, admissibility and consistency
together guarantee optimality.

We prove this on the following slides,
again beginning with a basic lemma.

Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Reminder: A∗ without Reopening

reminder from Chapter B11/B12: A∗ without reopening

A∗ without Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Monotonicity Lemma

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (1)

Lemma (monotonicity of A∗ with consistent heuristics)

Consider A∗ with a consistent heuristic.

Then:

1 If n′ is a child node of n, then f (n′) ≥ f (n).

2 On all paths generated by A∗, f values are non-decreasing.

3 The sequence of f values of the nodes expanded by A∗

is non-decreasing.

German: Monotonielemma

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

to show: at the end of the iteration
the minimal f value in open is at least fb.

We must consider the operations modifying open:
open.pop min and open.insert.

open.pop min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

to show: at the end of the iteration
the minimal f value in open is at least fb.

We must consider the operations modifying open:
open.pop min and open.insert.

open.pop min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

to show: at the end of the iteration
the minimal f value in open is at least fb.

We must consider the operations modifying open:
open.pop min and open.insert.

open.pop min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

to show: at the end of the iteration
the minimal f value in open is at least fb.

We must consider the operations modifying open:
open.pop min and open.insert.

open.pop min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

to show: at the end of the iteration
the minimal f value in open is at least fb.

We must consider the operations modifying open:
open.pop min and open.insert.

open.pop min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Optimality of A∗ without Reopening

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Optimality of A∗ without Reopening

Theorem (optimality of A∗ without reopening)

A∗ without reopening is optimal when using
an admissible and consistent heuristic.

Proof.

From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

⇝ If multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

⇝ If we allowed reopening, it would never happen.

⇝ With consistent heuristics, A∗ without reopening
behaves the same way as A∗ with reopening.

The result follows because A∗ with reopening
and admissible heuristics is optimal.

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Time Complexity of A∗

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Time Complexity of A∗ (1)

What is the time complexity of A∗?

depends strongly on the quality of the heuristic

an extreme case: h = 0 for all states

⇝ A∗ identical to uniform cost search

another extreme case: h = h∗ and cost(a) > 0
for all actions a

⇝ A∗ only expands nodes along an optimal solution
⇝ O(ℓ∗) expanded nodes, O(ℓ∗b) generated nodes, where

ℓ∗: length of the found optimal solution
b: branching factor

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Time Complexity of A∗ (2)

more precise analysis:

dependency of the runtime of A∗ on heuristic error

example:

unit cost problems with

constant branching factor and

constant absolute error: |h∗(s)− h(s)| ≤ c for all s ∈ S

time complexity:

if state space is a tree: time complexity of A∗ grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

general search spaces: runtime of A∗ grows
exponentially in solution length (Helmert & Röger 2008)

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Overhead of Reopening

How does reopening affect runtime?

For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A∗.
(⇝ exponentially worse than uniform cost search)

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Practical Evaluation of A∗ (1)

9 2 12 6

5 7 14 13

3 1 11

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

h1: number of tiles in wrong cell (misplaced tiles)
h2: sum of distances of tiles to their goal cell (Manhattan distance)

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Practical Evaluation of A∗ (2)

experiments with random initial states,
generated by random walk from goal state

entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph A∗ with h1 A∗ with h2

10 63 15 15

20 1,052 28 27

30 7,546 77 42

40 72,768 227 64

50 359,298 422 83

60 > 1,000,000 7,100 307

70 > 1,000,000 12,769 377

80 > 1,000,000 62,583 849

90 > 1,000,000 162,035 1,522

100 > 1,000,000 690,497 4,964

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Summary

Introduction Monotonicity Lemma Optimality of A∗ without Reopening Time Complexity of A∗ Summary

Summary

A∗ without reopening using an admissible and consistent
heuristic is optimal

key property monotonicity lemma (with consistent heuristics):

f values never decrease along paths considered by A∗

sequence of f values of expanded nodes is non-decreasing

time complexity depends on heuristic and shape of state space

precise details complex and depend on many aspects
reopening increases runtime exponentially in degenerate cases,
but usually negligible overhead
small improvements in heuristic values often
lead to exponential improvements in runtime

Foundations of Artificial Intelligence
C1. Combinatorial Optimization: Introduction and

Hill-Climbing

Malte Helmert

University of Basel

April 2, 2025

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization

C1. Introduction and Hill-Climbing

C2. Advanced Techniques

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Combinatorial Optimization

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Introduction

previous chapters: classical state-space search

find action sequence (path) from initial to goal state

difficulty: large number of states (“state explosion”)

next chapters: combinatorial optimization
⇝ similar scenario, but:

no actions or transitions

don’t search for path, but for configuration (“state”)
with low cost/high quality

German: Zustandsraumexplosion, kombinatorische Optimierung,
Konfiguration

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Combinatorial Optimization: Example

Example: Nurse Scheduling Problem

find a schedule for a hospital

satisfy hard constraints

labor laws, hospital policies, . . .
nurses working night shifts should not work early next day
have enough nurses with required skills present at all times

maximize satisfaction of soft constraints

individual preferences, reduce overtime, fair distribution, . . .

We are interested in a (high-quality) schedule, not a path to a goal.

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Combinatorial Optimization Problems

Definition (combinatorial optimization problem)

A combinatorial optimization problem (COP)
is given by a tuple ⟨C ,S , opt, v⟩ consisting of:

a finite set of (solution) candidates C

a finite set of solutions S ⊆ C

an objective sense opt ∈ {min,max}
an objective function v : S → R

German: kombinatorisches Optimierungsproblem, Kandidaten,
Lösungen, Optimierungsrichtung, Zielfunktion

Remarks:

“problem” here in another sense (= “instance”)
than commonly used in computer science

practically interesting COPs usually have
too many candidates to enumerate explicitly

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Optimal Solutions

Definition (optimal)

Let O = ⟨C , S , opt, v⟩ be a COP.

The optimal solution quality v∗ of O is defined as

v∗ =

{
minc∈S v(c) if opt = min

maxc∈S v(c) if opt = max

(v∗ is undefined if S = ∅.)
A solution s of O is called optimal if v(s) = v∗.

German: optimale Lösungsqualität, optimal

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Combinatorial Optimization

The basic algorithmic problem we want to solve:

Combinatorial Optimization

Find a solution of good (ideally, optimal) quality
for a combinatorial optimization problem O
or prove that no solution exists.

Good here means close to v∗ (the closer, the better).

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Relevance and Hardness

There is a huge number of practically important
combinatorial optimization problems.

Solving these is a central focus of operations research.

Many important combinatorial optimization problems
are NP-complete.

Most “classical” NP-complete problems can be formulated
as combinatorial optimization problems.

⇝ Examples: TSP, VertexCover, Clique, BinPacking,
Partition

German: Unternehmensforschung, NP-vollständig

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Search vs. Optimization

Combinatorial optimization problems have

a search aspect (among all candidates C ,
find a solution from the set S) and

an optimization aspect (among all solutions in S ,
find one of high quality).

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Pure Search/Optimization Problems

Important special cases arise when one of the two aspects is trivial:

pure search problems:

all solutions are of equal quality
difficulty is in finding a solution at all
formally: v is a constant function (e.g., constant 0);
opt can be chosen arbitrarily (does not matter)

pure optimization problems:

all candidates are solutions
difficulty is in finding solutions of high quality
formally: S = C

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Example

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Example: 8 Queens Problem

8 Queens Problem

How can we

place 8 queens on a chess board

such that no two queens threaten each other?

German: 8-Damen-Problem

originally proposed in 1848

variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count
symmetric solutions (under rotation or reflection) as distinct.

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Example: 8 Queens Problem

Problem: Place 8 queens on a chess board

Problem:

such that no two queens threaten each other.

Is this candidate a solution?

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Formally: 8 Queens Problem

How can we formalize the problem?

idea:

obviously there must be exactly one queen in each file
(“column”)

describe candidates as 8-tuples, where the i-th entry
denotes the rank (“row”) of the queen in the i-th file

formally: O = ⟨C ,S , opt, v⟩ with
C = {1, . . . , 8}8

S = {⟨r1, . . . , r8⟩ | ∀1 ≤ i < j ≤ 8 : ri ̸= rj ∧ |ri − rj | ≠ |i − j |}
v constant, opt irrelevant (pure search problem)

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Local Search: Hill Climbing

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?

formulation as classical state-space search

⇝ Part B

formulation as constraint network

⇝ Part D

formulation as logical satisfiability problem

⇝ Part E

formulation as mathematical optimization problem (LP/IP)

⇝ not in this course

local search

⇝ today (Part C)

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?

formulation as classical state-space search
⇝ Part B

formulation as constraint network ⇝ Part D

formulation as logical satisfiability problem ⇝ Part E

formulation as mathematical optimization problem (LP/IP)
⇝ not in this course

local search ⇝ today (Part C)

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Search Methods for Combinatorial Optimization

main ideas of heuristic search applicable for COPs
⇝ states ≈ candidates

main difference: no “actions” in problem definition

instead, we (as algorithm designers) can choose
which candidates to consider neighbors
definition of neighborhood critical aspect
of designing good algorithms for a given COP

“path to goal” irrelevant to the user

no path costs, parents or generating actions
⇝ no search nodes needed

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Local Search: Idea

main ideas of local search algorithms for COPs:

heuristic h estimates quality of candidates

for pure optimization: often objective function v itself
for pure search: often distance estimate to closest solution
(as in state-space search)

do not remember paths, only candidates

often only one current candidate ⇝ very memory-efficient
(however, not complete or optimal)

often initialization with random candidate

iterative improvement by hill climbing

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Hill Climbing

Hill Climbing (for Maximization Problems)

current := a random candidate
repeat:

next := a neighbor of current with maximum h value
if h(next) ≤ h(current):

return current
current := next

Remarks:

search as walk “uphill” in a landscape
defined by the neighborhood relation

heuristic values define “height” of terrain

analogous algorithm for minimization problems
also traditionally called “hill climbing”
even though the metaphor does not fully fit

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Properties of Hill Climbing

always terminates (Why?)

no guarantee that result is a solution

if result is a solution, it is locally optimal w.r.t. h,
but no global quality guarantees

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Example: 8 Queens Problem

Problem: Place 8 queens on a chess board

Problem:

such that no two queens threaten each other.
possible heuristic: no. of pairs of queens threatening each other

possible heuristic:

(formalization as minimization problem)
possible neighborhood: move one queen within its file

14

18

17

15

14

18

14

14

14

14

14

12

16

12

13

16

17

14

18

13

14

17

15

18

15

13

15

13

12

15

15

13

15

12

13

14

14

14

16

12

14

12

12

15

16

13

14

12

14

18

16

16

16

14

16

14

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Performance of Hill Climbing for 8 Queens Problem

problem has 88 ≈ 17 million candidates
(reminder: 92 solutions among these)

after random initialization, hill climbing finds a solution
in around 14% of the cases

only around 3–4 steps on average!

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Summary

Combinatorial Optimization Example Local Search: Hill Climbing Summary

Summary

combinatorial optimization problems:

find solution of good quality (objective value)
among many candidates

special cases:

pure search problems
pure optimization problems

differences to state-space search:
no actions, paths etc.; only “state” matters

often solved via local search:

consider one candidate (or a few) at a time;
try to improve it iteratively

Foundations of Artificial Intelligence
C2. Combinatorial Optimization: Advanced Techniques

Malte Helmert

University of Basel

April 2, 2025

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization

C1. Introduction and Hill-Climbing

C2. Advanced Techniques

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Dealing with Local Optima

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Example: Local Minimum in the 8 Queens Problem

local minimum:

candidate has 1 conflict

all neighbors have at least 2

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Weaknesses of Local Search Algorithms

difficult situations for hill climbing:

local optima: all neighbors worse than current candidate

plateaus: many neighbors equally good as current candidate;
none better

German: lokale Optima, Plateaus

consequence:

algorithm gets stuck at current candidate

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Combating Local Optima

possible remedies to combat local optima:

allow stagnation (steps without improvement)

include random aspects in the search neighborhood

(sometimes) make random steps

breadth-first search to better candidate

restarts (with new random initial candidate)

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Allowing Stagnation

allowing stagnation:

do not terminate when no neighbor is an improvement

limit number of steps to guarantee termination

at end, return best visited candidate

pure search problems: terminate as soon as solution found

Example 8 queens problem:

with a bound of 100 steps solution found in 96% of the cases

on average 22 steps until solution found

⇝ works very well for this problem;
for more difficult problems often not good enough

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Random Aspects in the Search Neighborhood

a possible variation of hill climbing for 8 queens:
Randomly select a file; move queen in this file
to square with minimal number of conflicts (null move possible).

2

2

1

2

3

1

2

3

3

2

3

2

3

0

⇝ Good local search approaches often combine

⇝

randomness (exploration) with heuristic guidance (exploitation).

German: Exploration, Exploitation

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Outlook: Simulated Annealing

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Simulated Annealing

Simulated annealing is a local search algorithm that systematically
injects noise, beginning with high noise, then lowering it over time.

walk with fixed number of steps N (variations possible)

initially it is “hot”, and the walk is mostly random

over time temperature drops (controlled by a schedule)

as it gets colder, moves to worse neighbors become less likely

very successful in some applications, e.g., VLSI layout

German: simulierte Abkühlung, Rauschen

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Simulated Annealing: Pseudo-Code

Simulated Annealing (for Maximization Problems)

curr := a random candidate
best := none
for each t ∈ {1, . . . ,N}:

if is solution(curr) and (best is none or v(curr) > v(best)):
best := curr

T := schedule(t)
next := a random neighbor of curr
∆E := h(next)− h(curr)

if ∆E ≥ 0 or with probability e
∆E
T :

curr := next
return best

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Outlook: Genetic Algorithms

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Genetic Algorithms

Evolution often finds good solutions.

idea: simulate evolution by selection, crossover and mutation

idea:

of individuals

ingredients:

encode each candidate as a string of symbols (genome)

fitness function: evaluates strength of candidates (= heuristic)

population of k (e.g. 10–1000) individuals (candidates)

German: Evolution, Selektion, Kreuzung, Mutation, Genom,
Fitnessfunktion, Population, Individuen

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Genetic Algorithm: Example

example 8 queens problem:

genome: encode candidate as string of 8 numbers

fitness: number of non-attacking queen pairs

use population of 100 candidates

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Selection, Mutation and Crossover

many variants:
How to select?
How to perform crossover?
How to mutate?

select according to fitness function,
followed by pairing

determine crossover points,
then recombine

mutation: randomly modify
each string position with
a certain probability

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Summary

Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Summary

weakness of local search: local optima and plateaus

remedy: balance exploration against exploitation
(e.g., with randomness and restarts)

simulated annealing and genetic algorithms
are more complex search algorithms
using the typical ideas of local search
(randomization, keeping promising candidates)

Foundations of Artificial Intelligence
D1. Constraint Satisfaction Problems:

Introduction and Examples

Malte Helmert

University of Basel

April 7, 2025

Introduction Examples Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

D1–D2. Introduction

D1. Introduction and Examples
D2. Constraint Networks

D3–D5. Basic Algorithms

D6–D7. Problem Structure

Introduction Examples Summary

Classification

classification:

Constraint Satisfaction Problems

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

Special case of a pure search combinatorial optimization problem

Introduction Examples Summary

Introduction

Introduction Examples Summary

Constraints

What is a Constraint?

a condition that every solution to a problem must satisfy

German: Einschränkung, Nebenbedingung (math.)

Examples: where do constraints occur?

mathematics: requirements on solutions of optimization
problems (e.g., equations, inequalities)

software testing: specification of invariants
to check data consistency (e.g., assertions)

databases: integrity constraints

Introduction Examples Summary

Constraint Satisfaction Problems: Informally

Given:

set of variables with corresponding domains

set of constraints that the variables must satisfy

most commonly binary, i.e., every constraint refers
to two variables

Solution:

assignment to the variables that satisfies all constraints

German: Variablen, Constraints, binär, Belegung

Introduction Examples Summary

Examples

Introduction Examples Summary

Examples

Examples

8 queens problem

Latin squares

Sudoku

graph coloring

satisfiability in propositional logic

German: 8-Damen-Problem, lateinische Quadrate, Sudoku,
Graphfärbung, Erfüllbarkeitsproblem der Aussagenlogik

more complex examples:

systems of equations and inequalities

database queries

Introduction Examples Summary

Example: 8 Queens Problem (Reminder)

(reminder from previous two chapters)

8 Queens Problem

How can we

place 8 queens on a chess board

such that no two queens threaten each other?

originally proposed in 1848

variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count
symmetric solutions (under rotation or reflection) as distinct.

Introduction Examples Summary

8 Queens Problem: Example Solution

0l0Z0Z0Z
Z0ZqZ0Z0
0Z0Z0l0Z
Z0Z0Z0Zq
0ZqZ0Z0Z
l0Z0Z0Z0
0Z0Z0ZqZ
Z0Z0l0Z0

example solution for the 8 queens problem

Introduction Examples Summary

Example: Latin Squares

Latin Squares

How can we

build an n × n matrix
with n symbols

such that every symbol occurs exactly once
in every row and every column?

[
1
] [

1 2
2 1

] 1 2 3
2 3 1
3 1 2



1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3


There exist 12 different Latin squares of size 3,
576 of size 4, 161 280 of size 5, . . . ,
5 524 751 496 156 892 842 531 225 600 of size 9.

Introduction Examples Summary

Example: Sudoku

Sudoku

How can we

completely fill an already partially filled 9× 9 matrix
with numbers between 1–9

such that each row, each column, and each of the nine
3× 3 blocks contains every number exactly once?

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4

relationship to Latin squares?

Introduction Examples Summary

Example: Sudoku

Sudoku

How can we

completely fill an already partially filled 9× 9 matrix
with numbers between 1–9

such that each row, each column, and each of the nine
3× 3 blocks contains every number exactly once?

2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

relationship to Latin squares?

Introduction Examples Summary

Example: Sudoku

Sudoku

How can we

completely fill an already partially filled 9× 9 matrix
with numbers between 1–9

such that each row, each column, and each of the nine
3× 3 blocks contains every number exactly once?

2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

relationship to Latin squares?

Introduction Examples Summary

Sudoku: Trivia

well-formed Sudokus have exactly one solution

to achieve well-formedness, ≥ 17 cells must be filled already
(McGuire et al., 2012)

6 670 903 752 021 072 936 960 solutions

only 5 472 730 538 “non-symmetrical” solutions

Introduction Examples Summary

Example: Graph Coloring

Graph Coloring

How can we

color the vertices of a given graph using k colors

such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

NP-complete problem

even for the special case of planar graphs and k = 3

easy for k = 2 (also for general graphs)

Relationship to Sudoku?

Introduction Examples Summary

Example: Graph Coloring

Graph Coloring

How can we

color the vertices of a given graph using k colors

such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

NP-complete problem

even for the special case of planar graphs and k = 3

easy for k = 2 (also for general graphs)

Relationship to Sudoku?

Introduction Examples Summary

Example: Graph Coloring

Graph Coloring

How can we

color the vertices of a given graph using k colors

such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

NP-complete problem

even for the special case of planar graphs and k = 3

easy for k = 2 (also for general graphs)

Relationship to Sudoku?

Introduction Examples Summary

Four Color Problem

famous problem in mathematics: Four Color Problem

Is it always possible to color a planar graph with 4 colors?

conjectured by Francis Guthrie (1852)

1890 first proof that 5 colors suffice

several wrong proofs surviving for over 10 years

solved by Appel and Haken in 1976: 4 colors suffice

Appel and Haken reduced the problem to 1936 cases,
which were then checked by computers

first famous mathematical problem solved (partially)
by computers
⇝ led to controversy: is this a mathematical proof?

Numberphile video:
https://www.youtube.com/watch?v=NgbK43jB4rQ

https://www.youtube.com/watch?v=NgbK43jB4rQ

Introduction Examples Summary

Four Color Problem

famous problem in mathematics: Four Color Problem

Is it always possible to color a planar graph with 4 colors?

conjectured by Francis Guthrie (1852)

1890 first proof that 5 colors suffice

several wrong proofs surviving for over 10 years

solved by Appel and Haken in 1976: 4 colors suffice

Appel and Haken reduced the problem to 1936 cases,
which were then checked by computers

first famous mathematical problem solved (partially)
by computers
⇝ led to controversy: is this a mathematical proof?

Numberphile video:
https://www.youtube.com/watch?v=NgbK43jB4rQ

https://www.youtube.com/watch?v=NgbK43jB4rQ

Introduction Examples Summary

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

assign truth values (true/false) to a set of propositional
variables

such that a given set of clauses
(formulas of the form X ∨ ¬Y ∨ Z) is satisfied (true)?

remarks:

NP-complete (Cook 1971; Levin 1973)

requiring clause form (instead of arbitrary propositional
formulas) is no restriction

clause length bounded by 3 would not be a restriction

relationship to previous problems (e.g., Sudoku)?

Introduction Examples Summary

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

assign truth values (true/false) to a set of propositional
variables

such that a given set of clauses
(formulas of the form X ∨ ¬Y ∨ Z) is satisfied (true)?

remarks:

NP-complete (Cook 1971; Levin 1973)

requiring clause form (instead of arbitrary propositional
formulas) is no restriction

clause length bounded by 3 would not be a restriction

relationship to previous problems (e.g., Sudoku)?

Introduction Examples Summary

Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

assign truth values (true/false) to a set of propositional
variables

such that a given set of clauses
(formulas of the form X ∨ ¬Y ∨ Z) is satisfied (true)?

remarks:

NP-complete (Cook 1971; Levin 1973)

requiring clause form (instead of arbitrary propositional
formulas) is no restriction

clause length bounded by 3 would not be a restriction

relationship to previous problems (e.g., Sudoku)?

Introduction Examples Summary

Practical Applications

There are thousands of practical applications
of constraint satisfaction problems.

This statement is true already for the satisfiability problem
of propositional logic.

some examples:

verification of hardware and software

timetabling (e.g., generating time schedules,
room assignments for university courses)

assignment of frequency spectra
(e.g., broadcasting, mobile phones)

Introduction Examples Summary

Running Example

Small Math Puzzle (informal description)

assign a value from {1, 2, 3, 4} to the variables w and y

and from {1, 2, 3} to x and z

such that

w = 2x ,
w < z and
y > z .

We will use this example to explain definitions and algorithms
in the next chapters.

Introduction Examples Summary

Summary

Introduction Examples Summary

Summary

constraint satisfaction:

find assignment for a set of variables
with given variable domains
that satisfies a given set of constraints.

examples:

8 queens problem
Latin squares
Sudoku
graph coloring
satisfiability in propositional logic
many practical applications

Foundations of Artificial Intelligence
D2. Constraint Satisfaction Problems: Constraint Networks

Malte Helmert

University of Basel

April 7, 2025

Constraint Networks Examples Assignments and Consistency Outline and Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

D1–D2. Introduction

D1. Introduction and Examples
D2. Constraint Networks

D3–D5. Basic Algorithms

D6–D7. Problem Structure

Constraint Networks Examples Assignments and Consistency Outline and Summary

Constraint Networks

Constraint Networks Examples Assignments and Consistency Outline and Summary

Constraint Networks: Informally

Constraint Networks: Informal Definition

A constraint network is defined by

a finite set of variables

a finite domain for each variable

a set of constraints (here: binary relations)

The objective is to find a solution for the constraint network, i.e.,
an assignment of the variables that complies with all constraints.

Informally, people often just speak of constraint satisfaction
problems (CSP) instead of constraint networks.

More formally, a “CSP” is the algorithmic problem
of finding a solution for a constraint network.

Constraint Networks Examples Assignments and Consistency Outline and Summary

Constraint Networks: Formally

Definition (binary constraint network)

A (binary) constraint network
is a 3-tuple C = ⟨V , dom, (Ruv)⟩ such that:

V is a non-empty and finite set of variables,

dom is a function that assigns a non-empty and finite domain
to each variable v ∈ V , and

(Ruv)u,v∈V ,u ̸=v is a family of binary relations (constraints)
over V where for all u ̸= v : Ruv ⊆ dom(u)× dom(v)

German: (binäres) Constraint-Netz, Variablen, Wertebereich,
Constraints

possible generalizations:

infinite domains (e.g., dom(v) = Z)
constraints of higher arity
(e.g., satisfiability in propositional logic)

Constraint Networks Examples Assignments and Consistency Outline and Summary

Variables and Domains

Running Example (informally)

assign a value from {1, 2, 3, 4} to the variables w and y

and from {1, 2, 3} to x and z

such that . . .

Running Example (formally)

C = ⟨V , dom, (Ruv)⟩ with
V = {w , x , y , z}
dom(w) = dom(y) = {1, 2, 3, 4}
dom(x) = dom(z) = {1, 2, 3}
. . .

Constraint Networks Examples Assignments and Consistency Outline and Summary

Binary Constraints (1)

binary constraints:

For variables u, v , the constraint Ruv expresses
which joint assignments to u and v are allowed in a solution.

Running Example (informally)

. . . such that

. . . ,w < z , . . .

Running Example (formally)

. . . ,Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}, . . .

Constraint Networks Examples Assignments and Consistency Outline and Summary

Binary Constraints (2)

binary constraints:

If Ruv = dom(u)× dom(v), the constraint is trivial:
there is no restriction, and the constraint is typically
not given explicitly in the constraint network description
(although it formally always exists!).

Running Example

. . . ,Rxz = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩,
⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩,
⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩}, . . .

Constraint Networks Examples Assignments and Consistency Outline and Summary

Binary Constraints (3)

binary constraints:

Constraints Ruv and Rvu refer to the same variables.
Hence, usually only one of them is given in the description.

Running Example (informally)

. . . such that

. . . ,w < z , . . .

Running Example (formally)

. . . ,Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}, . . .

. . . ,Rzw = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩}, . . .

Constraint Networks Examples Assignments and Consistency Outline and Summary

Unary Constraints

unary constraints:

It is often useful to have additional restrictions
on single variables as constraints.

Such constraints are called unary constraints.

A unary constraint Rv for v ∈ V corresponds to a restriction
of dom(v) to the values allowed by Rv .

Formally, unary constraints are not necessary, but they
often allow us to describe constraint networks more clearly.

German: unäre Constraints

Running Example

dom(z) = {1, 2, 3} could be described as
dom(z) = {1, 2, 3, 4},Rz = {1, 2, 3}

Constraint Networks Examples Assignments and Consistency Outline and Summary

Example

Full Formal Model of Running Example

C = ⟨V , dom, (Ruv)⟩ with
variables:
V = {w , x , y , z}
domains:
dom(w) = dom(y) = {1, 2, 3, 4}
dom(x) = dom(z) = {1, 2, 3}
constraints:
Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Constraint Networks Examples Assignments and Consistency Outline and Summary

Compact Encodings and General Constraint Solvers

Constraint networks allow for compact encodings
of large sets of assignments:

Consider a network with n variables with domains of size k.

⇝ kn assignments

For the description as constraint network, at most
(n
2

)
,

i.e., O(n2) constraints have to be provided.
Every constraint in turn consists of at most O(k2) pairs.

⇝ encoding size O(n2k2)

We observe: The number of assignments is exponentially
larger than the description of the constraint network.

As a consequence, such descriptions can be used as inputs
of general constraint solvers.

Constraint Networks Examples Assignments and Consistency Outline and Summary

Compact Encodings and General Constraint Solvers

Constraint networks allow for compact encodings
of large sets of assignments:

Consider a network with n variables with domains of size k.

⇝ kn assignments

For the description as constraint network, at most
(n
2

)
,

i.e., O(n2) constraints have to be provided.
Every constraint in turn consists of at most O(k2) pairs.

⇝ encoding size O(n2k2)

We observe: The number of assignments is exponentially
larger than the description of the constraint network.

As a consequence, such descriptions can be used as inputs
of general constraint solvers.

Constraint Networks Examples Assignments and Consistency Outline and Summary

Compact Encodings and General Constraint Solvers

Constraint networks allow for compact encodings
of large sets of assignments:

Consider a network with n variables with domains of size k.

⇝ kn assignments

For the description as constraint network, at most
(n
2

)
,

i.e., O(n2) constraints have to be provided.
Every constraint in turn consists of at most O(k2) pairs.

⇝ encoding size O(n2k2)

We observe: The number of assignments is exponentially
larger than the description of the constraint network.

As a consequence, such descriptions can be used as inputs
of general constraint solvers.

Constraint Networks Examples Assignments and Consistency Outline and Summary

Examples

Constraint Networks Examples Assignments and Consistency Outline and Summary

Example: 4 Queens Problem

4 Queens Problem as Constraint Network

variables: V = {v1, v2, v3, v4}
vi encodes the rank of the queen in the i-th file

domains:
dom(v1) = dom(v2) = dom(v3) = dom(v4) = {1, 2, 3, 4}
constraints: for all 1 ≤ i < j ≤ 4, we set: Rvi ,vj = {⟨k , l⟩ ∈
{1, 2, 3, 4} × {1, 2, 3, 4} | k ̸= l ∧ |k − l | ≠ |i − j |}
e.g. Rv1,v3 = {⟨1, 2⟩, ⟨1, 4⟩, ⟨2, 1⟩, ⟨2, 3⟩, ⟨3, 2⟩, ⟨3, 4⟩, ⟨4, 1⟩, ⟨4, 3⟩}

v1 v2 v3 v4

1

2

3

4

Constraint Networks Examples Assignments and Consistency Outline and Summary

Example: Sudoku

Sudoku as Constraint Network

variables: V = {vij | 1 ≤ i , j ≤ 9}; vij : Value row i , column j

domains: dom(v) = {1, . . . , 9} for all v ∈ V

unary constraints: Rvij = {k},
if ⟨i , j⟩ is a cell with predefined value k

binary constraints: for all vij , vi ′j ′ ∈ V , we set
Rvijvi′j′ = {⟨a, b⟩ ∈ {1, . . . , 9} × {1, . . . , 9} | a ̸= b},
if i = i ′ (same row), or j = j ′ (same column),

or ⟨⌈ i
3⌉, ⌈

j
3⌉⟩ = ⟨⌈ i ′3 ⌉, ⌈

j ′

3 ⌉⟩ (same block)

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4

Constraint Networks Examples Assignments and Consistency Outline and Summary

Assignments and Consistency

Constraint Networks Examples Assignments and Consistency Outline and Summary

Assignments

Definition (assignment, partial assignment)

Let C = ⟨V , dom, (Ruv)⟩ be a constraint network.
A partial assignment of C (or of V) is a function

α : V ′ →
⋃

v∈V dom(v)

with V ′ ⊆ V and α(v) ∈ dom(v) for all v ∈ V ′.

If V ′ = V , then α is also called total assignment (or assignment).

German: partielle Belegung, (totale) Belegung

⇝ partial assignments assign values to some or to all variables

⇝ (total) assignments are defined on all variables

Constraint Networks Examples Assignments and Consistency Outline and Summary

Example

Partial Assignments of Running Example

α1 = {w 7→ 1, z 7→ 2}
α2 = {w 7→ 3, x 7→ 1}

Total Assignments of Running Example

α3 = {w 7→ 1, x 7→ 1, y 7→ 2, z 7→ 2}
α4 = {w 7→ 2, x 7→ 1, y 7→ 4, z 7→ 3}

Constraint Networks Examples Assignments and Consistency Outline and Summary

Consistency

Definition (inconsistent, consistent, violated)

A partial assignment α of a constraint network C is called
inconsistent if there are variables u, v such that α is defined
for both u and v , and ⟨α(u), α(v)⟩ /∈ Ruv .

In this case, we say α violates the constraint Ruv .

A partial assignment is called consistent if it is not inconsistent.

German: inkonsistent, verletzt, konsistent

trivial example: The empty assignment is always consistent.

Constraint Networks Examples Assignments and Consistency Outline and Summary

Example

Consistent Partial Assignment

α1 = {w 7→ 1, z 7→ 2}

Inconsistent Partial Assignment

α2 = {w 7→ 2, x 7→ 2}
violates Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Inconsistent Assignment

α3 = {w 7→ 2, x 7→ 1, y 7→ 2, z 7→ 2}
violates Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩} and
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Constraint Networks Examples Assignments and Consistency Outline and Summary

Solution

Definition (solution, solvable)

Let C be a constraint network.

A consistent and total assignment of C is called a solution of C.
If a solution of C exists, C is called solvable.

If no solution exists, C is called inconsistent.

German: Lösung, lösbar, inkonsistent

Solution of the Running Example

α = {w 7→ 2, x 7→ 1, y 7→ 4, z 7→ 3}

Constraint Networks Examples Assignments and Consistency Outline and Summary

Consistency vs. Solvability

Note: Consistent partial assignments α cannot necessarily
be extended to a solution.

It only means that so far (i.e., on the variables where α is defined)
no constraint is violated.

Example (4 queens problem): α = {v1 7→ 1, v2 7→ 4, v3 7→ 2}

v1 v2 v3 v4

1 q

2 q

3

4 q

Constraint Networks Examples Assignments and Consistency Outline and Summary

Complexity of Constraint Satisfaction Problems

Proposition (CSPs are NP-complete)

It is an NP-complete problem to decide
whether a given constraint network is solvable.

Proof

Membership in NP:
Guess and check: guess a solution and check it for validity.
This can be done in polynomial time in the size of the input.

NP-hardness:
The graph coloring problem is a special case of CSPs
and is already known to be NP-complete.

Constraint Networks Examples Assignments and Consistency Outline and Summary

Tightness of Constraint Networks

Definition (tighter, strictly tighter)

Let C = ⟨V , dom,Ruv ⟩ and C′ = ⟨V , dom′,R ′
uv ⟩ be constraint

networks with equal variable sets V .

C is called tighter than C′, in symbols C ⊑ C′, if

dom(v) ⊆ dom′(v) for all v ∈ V , and

Ruv ⊆ R ′
uv for all u, v ∈ V (including trivial constraints).

If at least one of these subset equations is strict,
then C is called strictly tighter than C′, in symbols C ⊏ C′.

German: (echt) schärfer

Constraint Networks Examples Assignments and Consistency Outline and Summary

Equivalence of Constraint Networks

Definition (equivalent)

Let C and C′ be constraint networks with equal variable sets.

C and C′ are called equivalent, in symbols C ≡ C′,
if they have the same solutions.

German: äquivalent

Constraint Networks Examples Assignments and Consistency Outline and Summary

Outline and Summary

Constraint Networks Examples Assignments and Consistency Outline and Summary

CSP Algorithms

In the following chapters, we will consider solution algorithms
for constraint networks.

basic concepts:

search: check partial assignments systematically

backtracking: discard inconsistent partial assignments

inference: derive equivalent, but tighter constraints
to reduce the size of the search space

Constraint Networks Examples Assignments and Consistency Outline and Summary

Summary

formal definition of constraint networks:
variables, domains, constraints

compact encodings of exponentially many configurations

unary and binary constraints

assignments: partial and total

consistency of assignments; solutions

deciding solvability is NP-complete

tightness of constraints

equivalence of constraints

Foundations of Artificial Intelligence
D3. Constraint Satisfaction Problems: Backtracking

Malte Helmert

University of Basel

April 9, 2025

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

D1–D2. Introduction

D3–D5. Basic Algorithms

D3. Backtracking
D4. Arc Consistency
D5. Path Consistency

D6–D7. Problem Structure

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

CSP Algorithms

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

CSP Algorithms

In the following chapters, we consider algorithms for solving
constraint networks.

basic concepts:

search: check partial assignments systematically

backtracking: discard inconsistent partial assignments

inference: derive equivalent, but tighter constraints
to reduce the size of the search space

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Naive Backtracking

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Naive Backtracking (= Without Inference)

function NaiveBacktracking(C, α):
⟨V , dom, (Ruv)⟩ := C
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

select some variable v for which α is not defined

for each d ∈ dom(v) in some order:
α′ := α ∪ {v 7→ d}
α′′ := NaiveBacktracking(C, α′)
if α′′ ̸= inconsistent:

return α′′

return inconsistent

input: constraint network C and partial assignment α for C
(first invocation: empty assignment α = ∅)
result: solution of C or inconsistent

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example

Full Formal Model of Running Example

C = ⟨V , dom, (Ruv)⟩ with
variables:
V = {w , x , y , z}
domains:
dom(w) = dom(y) = {1, 2, 3, 4}
dom(x) = dom(z) = {1, 2, 3}
constraints:
Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1

2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2

3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1

2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2

3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1

2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2

3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1

2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2

3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1

2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2

3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

w

x

y

z

1

1 2 3

2

1

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Is This a New Algorithm?

We have already seen this algorithm:
Backtracking corresponds to depth-first search (Chapter B8)
with the following state space:

states: partial assignments

initial state: empty assignment ∅
goal states: consistent total assignments

actions: assignv ,d assigns value d ∈ dom(v) to variable v

action costs: all 0 (all solutions are of equal quality)

transitions:

for each non-total consistent assignment α,
choose variable v = select(α) that is unassigned in α

transition α
assignv,d−−−−−→ α ∪ {v 7→ d} for each d ∈ dom(v)

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Why Depth-First Search?

Depth-first search is particularly well-suited for CSPs:

path length bounded (by the number of variables)

solutions located at the same depth (lowest search layer)

state space is directed tree, initial state is the root
⇝ no duplicates (Why?)

Hence none of the problematic cases for depth-first search occurs.

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Naive Backtracking: Discussion

Naive backtracking often has to exhaustively explore
similar search paths (i.e., partial assignments
that are identical except for a few variables).

“Critical” variables are not recognized
and hence considered for assignment (too) late.

Decisions that necessarily lead to constraint violations
are only recognized when all variables involved
in the constraint have been assigned.

⇝ more intelligence by focusing on critical decisions

⇝

and by inference of consequences of previous decisions

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Variable and Value Orders

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Naive Backtracking

function NaiveBacktracking(C, α):
⟨V , dom, (Ruv)⟩ := C
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

select some variable v for which α is not defined

for each d ∈ dom(v) in some order:
α′ := α ∪ {v 7→ d}
α′′ := NaiveBacktracking(C, α′)
if α′′ ̸= inconsistent:

return α′′

return inconsistent

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Variable Orders

Backtracking does not specify in which order
variables are considered for assignment.

Such orders can strongly influence the search space size
and hence the search performance.
⇝ example: exercises

Eventually we have to assign all variables
⇝ prefer critical assignments (fail early)

German: Variablenordnung

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Value Orders

Backtracking does not specify in which order
the values of the selected variable v are considered.

This is not as important because it does not matter
in subtrees without a solution. (Why not?)

If there is a solution in the subtree, then ideally
a value that leads to a solution should be chosen.
⇝ prefer promising assignments

German: Werteordnung

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Static vs. Dynamic Orders

we distinguish:

static orders (fixed prior to search)

dynamic orders (selected variable or value order
depends on the search state)

comparison:

dynamic orders obviously more powerful

static orders ⇝ no computational overhead during search

The following ordering criteria can be used statically, but are more
effective combined with inference (⇝ later) and used dynamically.

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Variable Orders

two common variable ordering criteria:

minimum remaining values:
prefer variables that have small domains

intuition: few subtrees ⇝ smaller tree
extreme case: only one value ⇝ forced assignment

most constraining variable:
prefer variables contained in many nontrivial constraints

intuition: constraints tested early
⇝ inconsistencies recognized early ⇝ smaller tree

combination: use minimum remaining values criterion,
then most constraining variable criterion to break ties

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Value Orders

Definition (conflict)

Let C = ⟨V , dom, (Ruv)⟩ be a constraint network.
For variables v ̸= v ′ and values d ∈ dom(v), d ′ ∈ dom(v ′),
the assignment v 7→ d is in conflict with v ′ 7→ d ′ if ⟨d , d ′⟩ /∈ Rvv ′ .

value ordering criterion for partial assignment α
and selected variable v :

minimum conflicts: prefer values d ∈ dom(v)
such that v 7→ d causes as few conflicts as possible
with variables that are unassigned in α

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Summary

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Summary: Backtracking

basic search algorithm for constraint networks: backtracking

extends the (initially empty) partial assignment step by step
until an inconsistency or a solution is found

is a form of depth-first search

depth-first search particularly well-suited
because state space is directed tree
and all solutions at same (known) depth

CSP Algorithms Naive Backtracking Variable and Value Orders Summary

Summary: Variable and Value Orders

Variable orders influence the performance
of backtracking significantly.

goal: critical decisions as early as possible

Value orders influence the performance
of backtracking on solvable constraint networks significantly.

goal: most promising assignments first

Foundations of Artificial Intelligence
D4. Constraint Satisfaction Problems: Arc Consistency

Malte Helmert

University of Basel

April 9, 2025

Inference Forward Checking Arc Consistency Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

D1–D2. Introduction

D3–D5. Basic Algorithms

D3. Backtracking
D4. Arc Consistency
D5. Path Consistency

D6–D7. Problem Structure

Inference Forward Checking Arc Consistency Summary

Inference

Inference Forward Checking Arc Consistency Summary

Inference

Inference

Derive additional constraints (here: unary or binary)
that are implied by the given constraints,
i.e., that are satisfied in all solutions.

Inference Forward Checking Arc Consistency Summary

Inference: Example

Running Example

binary constraints:

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains:

dom(w) = {1, 2, 3, 4}

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

Can we use the constraint Rwz (w < z) to come up with a unary
constraint Rw?

⇝ tighten domain with unary constraint

⇝

(sometimes called node consistency)

Inference Forward Checking Arc Consistency Summary

Inference: Example

Running Example

binary constraints:

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

dom(w) = {1, 2}

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

Can we use the constraint Rwz (w < z) to come up with a unary
constraint Rw?
⇝ tighten domain with unary constraint

⇝

(sometimes called node consistency)

Inference Forward Checking Arc Consistency Summary

Inference: Example

Running Example

binary constraints:

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

dom(w) = {1, 2}

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

How does this affect the binary constraint Rwx?

Placeholder
for same
height

Inference Forward Checking Arc Consistency Summary

Inference: Example

Running Example

binary constraints:

Rwx = {⟨2, 1⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

dom(w) = {1, 2}

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

How does this affect the binary constraint Rwx?

Placeholder
for same
height

Inference Forward Checking Arc Consistency Summary

Inference: Example

Running Example

binary constraints:

Rwx = {⟨2, 1⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

dom(w) = {1, 2}

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

Can we generate a “new” binary constraint from w < z and z < y?
(i.e., tighten a trivial constraint)

Placeholder
for same height

Inference Forward Checking Arc Consistency Summary

Inference: Example

Running Example

binary constraints:

Rwx = {⟨2, 1⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

dom(w) = {1, 2}

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

Can we generate a “new” binary constraint from w < z and z < y?
(i.e., tighten a trivial constraint)

Placeholder
for same height

Inference Forward Checking Arc Consistency Summary

Trade-Off Search vs. Inference

Inference formally

For a given constraint network C, replace C
with an equivalent, but tighter constraint network.

Trade-off:

the more complex the inference, and

the more often inference is applied,

the smaller the resulting state space, but

the higher the complexity per search node.

Inference Forward Checking Arc Consistency Summary

When to Apply Inference?

different possibilities to apply inference:

once as preprocessing before search

combined with search: before recursive calls
during backtracking procedure

already assigned variable v 7→ d corresponds to dom(v) = {d}
⇝ more inferences possible
during backtracking, derived constraints have to be retracted
because they were based on the given assignment

⇝ powerful, but possibly expensive

Inference Forward Checking Arc Consistency Summary

Backtracking with Inference

function BacktrackingWithInference(C, α):
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

C′ := ⟨V , dom′, (R ′
uv)⟩ := copy of C

apply inference to C′

if dom′(v) ̸= ∅ for all variables v :

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:
α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C′, α′)
if α′′ ̸= inconsistent:

return α′′

return inconsistent

Inference Forward Checking Arc Consistency Summary

Backtracking with Inference

function BacktrackingWithInference(C, α):
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

C′ := ⟨V , dom′, (R ′
uv)⟩ := copy of C

apply inference to C′

if dom′(v) ̸= ∅ for all variables v :

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:
α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C′, α′)
if α′′ ̸= inconsistent:

return α′′

return inconsistent

Inference Forward Checking Arc Consistency Summary

Backtracking with Inference: Discussion

Inference is a placeholder:
different inference methods can be applied.

Inference methods can recognize unsolvability (given α)
and indicate this by clearing the domain of a variable.

Efficient implementations of inference are often incremental:
the last assigned variable/value pair v 7→ d is taken
into account to speed up the inference computation.

Inference Forward Checking Arc Consistency Summary

Forward Checking

Inference Forward Checking Arc Consistency Summary

Forward Checking

We start with a simple inference method:

Forward Checking

Let α be a partial assignment.
Inference: For all unassigned variables v in α,
remove all values from the domain of v that are in conflict
with already assigned variable/value pairs in α.

⇝ definition of conflict as in the previous chapter

Incremental computation:

When adding v 7→ d to the assignment,
delete all pairs that conflict with v 7→ d .

Inference Forward Checking Arc Consistency Summary

Forward Checking: Example

Running Example

Removing values in conflict with α = {w 7→ 2}:

binary constraints:

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

domains:

w is already assigned

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

Inference Forward Checking Arc Consistency Summary

Forward Checking: Example

Running Example

Removing values in conflict with α = {w 7→ 2}:

binary constraints:

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

domains:

w is already assigned

dom(x) = {1, 2, 3}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

Inference Forward Checking Arc Consistency Summary

Forward Checking: Example

Running Example

Removing values in conflict with α = {w 7→ 2}:

binary constraints:

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

domains:

w is already assigned

dom(x) = {1}

dom(y) = {1, 2, 3, 4}

dom(z) = {1, 2, 3}

Inference Forward Checking Arc Consistency Summary

Forward Checking: Example

Running Example

Removing values in conflict with α = {w 7→ 2}:

binary constraints:

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

domains:

w is already assigned

dom(x) = {1}

dom(y) = {1, 2, 3, 4}

dom(z) = {3}

Inference Forward Checking Arc Consistency Summary

Forward Checking: Discussion

properties of forward checking:

correct inference method (retains equivalence)

affects domains (= unary constraints),
but not binary constraints

consistency check at the beginning of the backtracking
procedure no longer needed (Why?)

cheap, but often still useful inference method

⇝ apply at least forward checking in the backtracking procedure

In the following, we will consider more powerful inference methods.

Inference Forward Checking Arc Consistency Summary

Arc Consistency

Inference Forward Checking Arc Consistency Summary

Arc Consistency: Definition

Definition (Arc Consistent)

Let C = ⟨V , dom, (Ruv)⟩ be a constraint network.

1 The variable v ∈ V is arc consistent
with respect to another variable v ′ ∈ V ,
if for every value d ∈ dom(v)
there exists a value d ′ ∈ dom(v ′) with ⟨d , d ′⟩ ∈ Rvv ′ .

2 The constraint network C is arc consistent,
if every variable v ∈ V is arc consistent
with respect to every other variable v ′ ∈ V .

German: kantenkonsistent

remarks:

definition for variable pair is not symmetrical

v always arc consistent with respect to v ′

if the constraint between v and v ′ is trivial

Inference Forward Checking Arc Consistency Summary

Arc Consistency: Example

Running Example

Consider variables w and z from our running example:

dom(w) = {1, 2, 3, 4}
dom(z) = {1, 2, 3}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

1

2

3

4

1

2

3
w z

Arc consistency
of w with respect to z and
of z with respect to w
is violated.

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency

Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v ′,
is a correct inference method. (Why?)

more powerful than forward checking (Why?)

⇝ Forward checking is a special case:
enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to forward checking.

We will next consider algorithms that enforce arc consistency.

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency

Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v ′,
is a correct inference method. (Why?)

more powerful than forward checking (Why?)

⇝ Forward checking is a special case:
enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to forward checking.

We will next consider algorithms that enforce arc consistency.

Inference Forward Checking Arc Consistency Summary

Processing Variable Pairs: revise

function revise(C, v , v ′):
⟨V , dom, (Ruv)⟩ := C
for each d ∈ dom(v):

if there is no d ′ ∈ dom(v ′) with ⟨d , d ′⟩ ∈ Rvv ′ :
remove d from dom(v)

input: constraint network C and two variables v , v ′ of C
effect: v arc consistent with respect to v ′.
All violating values in dom(v) are removed.

time complexity: O(k2), where k is maximal domain size

Inference Forward Checking Arc Consistency Summary

revise(C,w , z) in Running Example

1

2

3

4

1

2

3

w z

Inference Forward Checking Arc Consistency Summary

revise(C,w , z) in Running Example

1

2

3

4

1

2

3

w z

Inference Forward Checking Arc Consistency Summary

revise(C,w , z) in Running Example

1

2

3

4

1

2

3

w z

Inference Forward Checking Arc Consistency Summary

revise(C,w , z) in Running Example

1

2

3

4

1

2

3

w z

Inference Forward Checking Arc Consistency Summary

revise(C,w , z) in Running Example

1

2

4

1

2

3

w z

Inference Forward Checking Arc Consistency Summary

revise(C,w , z) in Running Example

1

2

1

2

3

w z

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency: AC-1

function AC-1(C):
⟨V , dom, (Ruv)⟩ := C
repeat

for each nontrivial constraint Ruv :
revise(C, u, v)
revise(C, v , u)

until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: ?

O(n · e · k3), with n variables,
e nontrivial constraints and maximal domain size k

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency: AC-1

function AC-1(C):
⟨V , dom, (Ruv)⟩ := C
repeat

for each nontrivial constraint Ruv :
revise(C, u, v)
revise(C, v , u)

until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: O(n · e · k3), with n variables,
e nontrivial constraints and maximal domain size k

Inference Forward Checking Arc Consistency Summary

AC-1: Discussion

AC-1 does the job, but is rather inefficient.

Drawback: Variable pairs are often checked again and again
although their domains have remained unchanged.

These (redundant) checks can be saved.

⇝ more efficient algorithm: AC-3

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency: AC-3

idea: store potentially inconsistent variable pairs in a queue

function AC-3(C):
⟨V , dom, (Ruv)⟩ := C
queue := ∅
for each nontrivial constraint Ruv :

insert ⟨u, v⟩ into queue
insert ⟨v , u⟩ into queue

while queue ̸= ∅:
remove an arbitrary element ⟨u, v⟩ from queue
revise(C, u, v)
if dom(u) changed in the call to revise:

for each w ∈ V \ {u, v} where Rwu is nontrivial:
insert ⟨w , u⟩ into queue

Inference Forward Checking Arc Consistency Summary

AC-3: Discussion

queue can be an arbitrary data structure
that supports insert and remove operations
(the order of removal does not affect the result)

⇝ use data structure with fast insertion and removal, e.g., stack

AC-3 has the same effect as AC-1:
it enforces arc consistency

proof idea: invariant of the while loop:
If ⟨u, v⟩ /∈ queue, then u is arc consistent with respect to v

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity

Proposition (time complexity of AC-3)

Let C be a constraint network with e nontrivial constraints
and maximal domain size k.

The time complexity of AC-3 is O(e · k3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair ⟨u, v⟩ such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair ⟨u, v⟩ is inserted into the queue
at most k + 1 times ⇝ at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair ⟨u, v⟩ such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair ⟨u, v⟩ is inserted into the queue
at most k + 1 times ⇝ at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair ⟨u, v⟩ such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair ⟨u, v⟩ is inserted into the queue
at most k + 1 times ⇝ at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair ⟨u, v⟩ such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair ⟨u, v⟩ is inserted into the queue
at most k + 1 times ⇝ at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair ⟨u, v⟩ such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair ⟨u, v⟩ is inserted into the queue
at most k + 1 times ⇝ at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

Summary

Inference Forward Checking Arc Consistency Summary

Summary: Inference

inference: derivation of additional constraints
that are implied by the known constraints

⇝ tighter equivalent constraint network

trade-off search vs. inference

inference as preprocessing or integrated into backtracking

Inference Forward Checking Arc Consistency Summary

Summary: Forward Checking, Arc Consistency

cheap and easy inference: forward checking

remove values that conflict with already assigned values

more expensive and more powerful: arc consistency

iteratively remove values without a suitable “partner value”
for another variable until fixed-point reached
efficient implementation of AC-3: O(ek3)
with e: #nontrivial constraints, k : size of domain

Foundations of Artificial Intelligence
D5. Constraint Satisfaction Problems: Path Consistency

Malte Helmert

University of Basel

April 14, 2025

Beyond Arc Consistency Path Consistency Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

D1–D2. Introduction

D3–D5. Basic Algorithms

D3. Backtracking
D4. Arc Consistency
D5. Path Consistency

D6–D7. Problem Structure

Beyond Arc Consistency Path Consistency Summary

Beyond Arc Consistency

Beyond Arc Consistency Path Consistency Summary

Beyond Arc Consistency: Path Consistency

idea of arc consistency:

For every assignment to a variable u
there must be a suitable assignment to every other variable v .

If not: remove values of u for which
no suitable “partner” assignment to v exists.

⇝ tighter unary constraint on u

This idea can be extended to three variables (path consistency):

For every joint assignment to variables u, v
there must be a suitable assignment to every third variable w .

If not: remove pairs of values of u and v for which
no suitable “partner” assignment to w exists.

⇝ tighter binary constraint on u and v

German: Pfadkonsistenz

Beyond Arc Consistency Path Consistency Summary

Beyond Arc Consistency: i -Consistency

general concept of i-consistency for i ≥ 2:

For every joint assignment to variables v1, . . . , vi−1

there must be a suitable assignment to every i-th variable vi .

If not: remove value tuples of v1, . . . , vi−1 for which
no suitable “partner” assignment for vi exists.

⇝ tighter (i − 1)-ary constraint on v1, . . . , vi−1

2-consistency = arc consistency

3-consistency = path consistency (*)

We do not consider general i-consistency further
as larger values than i = 3 are rarely used
and we restrict ourselves to binary constraints in this course.

(*) usual definitions of 3-consistency vs. path consistency differ

(*)

when ternary constraints are allowed

Beyond Arc Consistency Path Consistency Summary

Path Consistency

Beyond Arc Consistency Path Consistency Summary

Path Consistency: Definition

Definition (path consistent)

Let C = ⟨V , dom, (Ruv)⟩ be a constraint network.

1 Two different variables u, v ∈ V are path consistent
with respect to a third variable w ∈ V if
for all values du ∈ dom(u), dv ∈ dom(v) with ⟨du, dv ⟩ ∈ Ruv

there is a value dw ∈ dom(w) with ⟨du, dw ⟩ ∈ Ruw and
⟨dv , dw ⟩ ∈ Rvw .

2 The constraint network C is path consistent
if for all triples of different variables u, v , w ,
the variables u and v are path consistent with respect to w .

Beyond Arc Consistency Path Consistency Summary

Path Consistency on Running Example

Running Example

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Rwy = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩,
⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,
⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩,
⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩, ⟨4, 4⟩}

Are w and y path consistent with respect to z?

Beyond Arc Consistency Path Consistency Summary

Path Consistency on Running Example

Running Example

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
Rwy = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩,

Rwy = {

⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,

Rwy = {

⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩,

Rwy = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩, ⟨4, 4⟩}

Are w and y path consistent with respect to z?

Beyond Arc Consistency Path Consistency Summary

Path Consistency on Running Example

Running Example

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
Rwy = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩,

Rwy = {

⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,

Rwy = {

⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩,

Rwy = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩, ⟨4, 4⟩}

Are w and y path consistent with respect to z? No!

Beyond Arc Consistency Path Consistency Summary

Path Consistency on Running Example

Running Example

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,
⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩,
⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩, ⟨4, 4⟩}

Are w and y path consistent with respect to z?

Beyond Arc Consistency Path Consistency Summary

Path Consistency on Running Example

Running Example

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,
⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩,
⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩, ⟨4, 4⟩}

Are w and y path consistent with respect to z? Yes!

Beyond Arc Consistency Path Consistency Summary

Path Consistency on Running Example

Running Example

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,
⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩,
⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩, ⟨4, 4⟩}

Are w and y path consistent with respect to z? Yes!

Beyond Arc Consistency Path Consistency Summary

Path Consistency on Running Example

Running Example

Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

⟨2, 1⟩, ⟨2, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩,
⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 3⟩, ⟨3, 4⟩,
⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩, ⟨4, 4⟩}

Are w and y path consistent with respect to z? Yes!

Beyond Arc Consistency Path Consistency Summary

Path Consistency: Remarks

remarks:

Even if the constraint Ruv is trivial, path consistency
can infer nontrivial constraints between u and v .

name “path consistency”:
path u → w → v leads to new information on u → v

w

u v

Beyond Arc Consistency Path Consistency Summary

Path Consistency: Example

red
blue

v1

red
blue

v2

red
blue

v3

̸= ̸=

̸=

arc consistent, but not path consistent

Beyond Arc Consistency Path Consistency Summary

Processing Variable Triples: revise-3

analogous to revise for arc consistency:

function revise-3(C, u, v ,w):

⟨V , dom, (Ruv)⟩ := C
for each ⟨du, dv ⟩ ∈ Ruv :

if there is no dw ∈ dom(w) with
⟨du, dw ⟩ ∈ Ruw and ⟨dv , dw ⟩ ∈ Rvw :
remove ⟨du, dv ⟩ from Ruv

input: constraint network C and three variables u, v , w of C
effect: u, v path consistent with respect to w .
All violating pairs are removed from Ruv .

time complexity: O(k3) where k is maximal domain size

Beyond Arc Consistency Path Consistency Summary

Enforcing Path Consistency: PC-2

analogous to AC-3 for arc consistency:

function PC-2(C):
⟨V , dom, (Ruv)⟩ := C
queue := ∅
for each set of two variables {u, v}:

for each w ∈ V \ {u, v}:
insert ⟨u, v ,w⟩ into queue

while queue ̸= ∅:
remove any element ⟨u, v ,w⟩ from queue
revise-3(C, u, v ,w)
if Ruv changed in the call to revise-3:

for each w ′ ∈ V \ {u, v}:
insert ⟨w ′, u, v⟩ into queue
insert ⟨w ′, v , u⟩ into queue

Beyond Arc Consistency Path Consistency Summary

PC-2: Discussion

The comments for AC-3 hold analogously.

PC-2 enforces path consistency

proof idea: invariant of the while loop:
if ⟨u, v ,w⟩ /∈ queue, then u, v path consistent
with respect to w

time complexity O(n3k5) for n variables and maximal domain
size k (Why?)

Beyond Arc Consistency Path Consistency Summary

Summary

Beyond Arc Consistency Path Consistency Summary

Summary

generalization of
arc consistency (considers pairs of variables)
to path consistency (considers triples of variables)
and i-consistency (considers i-tuples of variables)

arc consistency tightens unary constraints

path consistency tightens binary constraints

i-consistency tightens (i − 1)-ary constraints

higher levels of consistency more powerful
but more expensive than arc consistency

Foundations of Artificial Intelligence
D6. Constraint Satisfaction Problems: Constraint Graphs

Malte Helmert

University of Basel

April 14, 2025

Constraint Graphs Unconnected Graphs Trees Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

D1–D2. Introduction

D3–D5. Basic Algorithms

D6–D7. Problem Structure

D6. Constraint Graphs
D7. Decomposition Methods

Constraint Graphs Unconnected Graphs Trees Summary

Constraint Graphs

Constraint Graphs Unconnected Graphs Trees Summary

Motivation

To solve a constraint network consisting of n variables
and k values, kn assignments must be considered.

Inference can alleviate this combinatorial explosion,
but will not always avoid it.

Many practically relevant constraint networks are efficiently
solvable if their structure is taken into account.

Constraint Graphs Unconnected Graphs Trees Summary

Constraint Graphs

Definition (constraint graph)

Let C = ⟨V , dom, (Ruv)⟩ be a constraint network.

The constraint graph of C is the graph whose vertices are V and
which contains an edge {u, v} iff Ruv is a nontrivial constraint.

Constraint Graphs Unconnected Graphs Trees Summary

Constraint Graphs: Running Example

Nontrivial Constraints of Running Example

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

Resulting Constraint Graph:

x w z y

Constraint Graphs Unconnected Graphs Trees Summary

Constraint Graphs: Better Example

Coloring of the Australian states (plus Northern Territory)

Victoria

WA

NT

SA

Q

NSW

V

T

Constraint Graphs Unconnected Graphs Trees Summary

Unconnected Graphs

Constraint Graphs Unconnected Graphs Trees Summary

Unconnected Constraint Graphs

Proposition (unconnected constraint graphs)

If the constraint graph of C has multiple connected components,
the subproblems induced by each component can be solved
separately.

The union of the solutions of these subproblems is a solution for C.

Proof.

A total assignment consisting of combined subsolutions
satisfies all constraints that occur within the subproblems.

All constraints between two subproblems are trivial
(follows from the definitions of constraint graphs
and connected components).

Constraint Graphs Unconnected Graphs Trees Summary

Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently
from the rest of Australia.

Victoria

WA

NT

SA

Q

NSW

V

T

further example:
network with k = 2, n = 30 that decomposes
into three components of equal size

savings?
only 3 · 210 = 3072 assignments instead of 230 = 1073741824

Constraint Graphs Unconnected Graphs Trees Summary

Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently
from the rest of Australia.

Victoria

WA

NT

SA

Q

NSW

V

T

further example:
network with k = 2, n = 30 that decomposes
into three components of equal size

savings?
only 3 · 210 = 3072 assignments instead of 230 = 1073741824

Constraint Graphs Unconnected Graphs Trees Summary

Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently
from the rest of Australia.

Victoria

WA

NT

SA

Q

NSW

V

T

further example:
network with k = 2, n = 30 that decomposes
into three components of equal size

savings?
only 3 · 210 = 3072 assignments instead of 230 = 1073741824

Constraint Graphs Unconnected Graphs Trees Summary

Trees

Constraint Graphs Unconnected Graphs Trees Summary

Trees as Constraint Graphs

Proposition (trees as constraint graphs)

Let C be a constraint network with n variables and maximal
domain size k whose constraint graph is a tree or forest
(i.e., does not contain cycles).

Then we can solve C or prove that no solution exists
in time O(nk2).

example: k = 5, n = 10
⇝ kn = 9765625, nk2 = 250

Constraint Graphs Unconnected Graphs Trees Summary

Trees as Constraint Graphs: Algorithm

algorithm for trees:

Build a directed tree for the constraint graph.
Select an arbitrary variable as the root.

Order variables v1, . . . , vn such that parents are ordered
before their children.

For i ∈ ⟨n, n − 1, . . . , 2⟩: call revise(vparent(i), vi)
⇝ each variable is arc consistent with respect to its children

If a domain becomes empty, the problem is unsolvable.

Otherwise: solve with BacktrackingWithInference,
variable order v1, . . . , vn and forward checking.
⇝ solution is found without backtracking steps

proof: ⇝ exercises

Constraint Graphs Unconnected Graphs Trees Summary

Trees as Constraint Graphs: Example

1. constraint graph:

A

B

C

D

E

F

2. directed tree: A

B

C D

E F

4. revise steps:

revise(D, F)

revise(D, E)

revise(B, D)

revise(B, C)

revise(A, B)

3. order:

A B C D E F

5. finding a solution:
backtracking with forward checking and order
A ≺ B ≺ C ≺ D ≺ E ≺ F

Constraint Graphs Unconnected Graphs Trees Summary

Trees as Constraint Graphs: Example

1. constraint graph:

A

B

C

D

E

F

2. directed tree: A

B

C D

E F

4. revise steps:

revise(D, F)

revise(D, E)

revise(B, D)

revise(B, C)

revise(A, B)

3. order:

A B C D E F

5. finding a solution:
backtracking with forward checking and order
A ≺ B ≺ C ≺ D ≺ E ≺ F

Constraint Graphs Unconnected Graphs Trees Summary

Trees as Constraint Graphs: Example

1. constraint graph:

A

B

C

D

E

F

2. directed tree: A

B

C D

E F

4. revise steps:

revise(D, F)

revise(D, E)

revise(B, D)

revise(B, C)

revise(A, B)

3. order:

A B C D E F

5. finding a solution:
backtracking with forward checking and order
A ≺ B ≺ C ≺ D ≺ E ≺ F

Constraint Graphs Unconnected Graphs Trees Summary

Trees as Constraint Graphs: Example

1. constraint graph:

A

B

C

D

E

F

2. directed tree: A

B

C D

E F

4. revise steps:

revise(D, F)

revise(D, E)

revise(B, D)

revise(B, C)

revise(A, B)

3. order:

A B C D E F

5. finding a solution:
backtracking with forward checking and order
A ≺ B ≺ C ≺ D ≺ E ≺ F

Constraint Graphs Unconnected Graphs Trees Summary

Trees as Constraint Graphs: Example

1. constraint graph:

A

B

C

D

E

F

2. directed tree: A

B

C D

E F

4. revise steps:

revise(D, F)

revise(D, E)

revise(B, D)

revise(B, C)

revise(A, B)

3. order:

A B C D E F

5. finding a solution:
backtracking with forward checking and order
A ≺ B ≺ C ≺ D ≺ E ≺ F

Constraint Graphs Unconnected Graphs Trees Summary

Summary

Constraint Graphs Unconnected Graphs Trees Summary

Summary

Constraint networks with simple structure are easy to solve.

Constraint graphs formalize this structure:

several connected components:
solve separately for each component
tree: algorithm linear in number of variables

Foundations of Artificial Intelligence
D7. Constraint Satisfaction Problems:

Decomposition Methods

Malte Helmert

University of Basel

April 16, 2025

Decomposition Methods Conditioning Tree Decomposition Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

D1–D2. Introduction

D3–D5. Basic Algorithms

D6–D7. Problem Structure

D6. Constraint Graphs
D7. Decomposition Methods

Decomposition Methods Conditioning Tree Decomposition Summary

Decomposition Methods

Decomposition Methods Conditioning Tree Decomposition Summary

More Complex Graphs

What if the constraint graph is not a tree
and does not decompose into several components?

idea 1: conditioning

idea 2: tree decomposition

German: Konditionierung, Baumzerlegung

Decomposition Methods Conditioning Tree Decomposition Summary

Conditioning

Decomposition Methods Conditioning Tree Decomposition Summary

Conditioning

Conditioning

idea: Apply backtracking with forward checking until the
constraint graph restricted to the remaining unassigned variables
decomposes or is a tree.

remaining problem ⇝ algorithms for simple constraint graphs

cutset conditioning:
Choose variable order such that early variables form a small cutset
(i.e., set of variables such that removing these variables
results in an acyclic constraint graph).

German: Cutset

time complexity: n variables, m < n in cutset,
maximal domain size k : O(km · (n −m)k2)

(Finding optimal cutsets is an NP-complete problem.)

Decomposition Methods Conditioning Tree Decomposition Summary

Conditioning

Conditioning

idea: Apply backtracking with forward checking until the
constraint graph restricted to the remaining unassigned variables
decomposes or is a tree.

remaining problem ⇝ algorithms for simple constraint graphs

cutset conditioning:
Choose variable order such that early variables form a small cutset
(i.e., set of variables such that removing these variables
results in an acyclic constraint graph).

German: Cutset

time complexity: n variables, m < n in cutset,
maximal domain size k : O(km · (n −m)k2)

(Finding optimal cutsets is an NP-complete problem.)

Decomposition Methods Conditioning Tree Decomposition Summary

Conditioning: Example

Australia example: Cutset of size 1 suffices:

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Decomposition Methods Conditioning Tree Decomposition Summary

Tree Decomposition

Decomposition Methods Conditioning Tree Decomposition Summary

Tree Decomposition

basic idea of tree decomposition:

Decompose constraint network into smaller subproblems
(overlapping).

Find solutions for the subproblems.

Build overall solution based on the subsolutions.

more details:

“Overall solution building problem” based on subsolutions
is a constraint network itself (meta constraint network).

Choose subproblems in a way that the constraint graph
of the meta constraint network is a tree/forest.
⇝ build overall solution with efficient tree algorithm

Decomposition Methods Conditioning Tree Decomposition Summary

Tree Decomposition: Example

constraint network:

Victoria

WA

NT

SA

Q

NSW

V

T

tree decomposition:

WA

NT

SA

T

SA NSW

V

SA

Q

NSW

NT

SA

Q

Decomposition Methods Conditioning Tree Decomposition Summary

Tree Decomposition: Definition

Definition (tree decomposition)

Consider a constraint network C with variables V .

A tree decomposition of C
is a graph T with the following properties.

requirements on vertices:

Every vertex of T corresponds to a subset of the variables V .
Such a vertex (and corresponding variable set) is called
a subproblem of C.
Every variable of V appears in at least one subproblem of T .

For every nontrivial constraint Ruv of C, the variables u and v
appear together in at least one subproblem in T .

. . .

Decomposition Methods Conditioning Tree Decomposition Summary

Tree Decomposition: Definition

Definition (tree decomposition)

Consider a constraint network C with variables V .

A tree decomposition of C
is a graph T with the following properties.

. . .
requirements on edges:

For each variable v ∈ V , let Tv be the set of vertices
corresponding to the subproblems that contain v .

For each variable v , the set Tv is connected,
i.e., each vertex in Tv is reachable from every other vertex
in Tv without visiting vertices not contained in Tv .
T is acyclic (a tree/forest)

Decomposition Methods Conditioning Tree Decomposition Summary

Meta Constraint Network

meta constraint network CT = ⟨V T , domT , (RT
uv)⟩

based on tree decomposition T
V T := vertices of T (i.e., subproblems of C occurring in T)

domT (v) := set of solutions of subproblem v

RT
uv := {⟨s, t⟩ | s, t compatible solutions of subproblems u, v}

if {u, v} is an edge of T . (All constraints between
subproblems not connected by an edge of T are trivial.)

German: Meta-Constraintnetz

Solutions of two subproblems are called compatible
if all overlapping variables are assigned identically.

Decomposition Methods Conditioning Tree Decomposition Summary

Solving with Tree Decompositions: Algorithm

algorithm:

Find all solutions for all subproblems in the decomposition
and build a tree-like meta constraint network.

Constraints in meta constraint network:
subsolutions must be compatible.

Solve meta constraint network
with an algorithm for tree-like networks.

Decomposition Methods Conditioning Tree Decomposition Summary

Good Tree Decompositions

goal: each subproblem has as few variables as possible

crucial: subproblem V ′ in T with highest number of variables

number of variables in V ′ minus 1
is called width of the decomposition

best width over all decompositions: tree width
of the constraint graph (computation is NP-complete)

time complexity of solving algorithm based on tree decompositions:
O(nkw+1), where w is width of decomposition
(requires specialized version of revise; otherwise O(nk2w+2).)

Decomposition Methods Conditioning Tree Decomposition Summary

Summary

Decomposition Methods Conditioning Tree Decomposition Summary

Summary: This Chapter

Reduce complex constraint graphs to simple constraint graphs.

cutset conditioning:

Choose as few variables as possible (cutset)
such that an assignment to these variables yields
a remaining problem which is structurally simple.
search over assignments of variables in cutset

tree decomposition: build tree-like meta constraint network

meta variables: groups of original variables
that jointly cover all variables and constraints
values correspond to consistent assignments to the groups
constraints between overlapping groups to ensure compatibility
overall algorithm exponential in width of decomposition
(size of largest group)

Decomposition Methods Conditioning Tree Decomposition Summary

Summary: CSPs

Constraint Satisfaction Problems (CSP)

General formalism for problems where

values have to be assigned to variables

such that the given constraints are satisfied.

algorithms: backtracking search + inference
(e.g., forward checking, arc consistency, path consistency)

variable and value orders important

more efficient: exploit structure of constraint graph
(connected components; trees)

Decomposition Methods Conditioning Tree Decomposition Summary

More Advanced Topics

more advanced topics (not considered in this course):

backjumping: backtracking over several layers

no-good learning: infer additional constraints based on
information collected during backtracking

local search methods in the space of total,
but not necessarily consistent assignments

tractable constraint classes: identification of constraint types
that allow for polynomial algorithms

solutions of different quality:
constraint optimization problems (COP)

⇝ more than enough content for a one-semester course

Foundations of Artificial Intelligence
E1. Propositional Logic: Syntax and Semantics

Malte Helmert

University of Basel

April 16, 2025

Motivation Syntax Semantics Properties of Formulas Summary

Propositional Logic: Overview

Chapter overview: propositional logic

E1. Syntax and Semantics

E2. Equivalence and Normal Forms

E3. Reasoning and Resolution

E4. DPLL Algorithm

E5. Local Search and Outlook

Motivation Syntax Semantics Properties of Formulas Summary

Classification

classification:

Propositional Logic

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

(applications also in more complex environments)

Motivation Syntax Semantics Properties of Formulas Summary

Motivation

Motivation Syntax Semantics Properties of Formulas Summary

Propositional Logic: Motivation

propositional logic

modeling and representing problems and knowledge

basis for general problem descriptions and solving strategies
⇝ automated planning (Part F)

allows for automated reasoning

German: Aussagenlogik, automatisches Schliessen

Motivation Syntax Semantics Properties of Formulas Summary

Relationship to CSPs

previous part: constraint satisfaction problems

satisfiability problem in propositional logic can be viewed
as non-binary CSP over {F,T}
formula encodes constraints

solution: satisfying assignment of values to variables

backtracking with inference ≈ DPLL (Chapter E4)

Motivation Syntax Semantics Properties of Formulas Summary

Propositional Logic: Description of State Spaces

propositional variables for missionaries and cannibals problem:

two-missionaries-are-on-left-shore

one-cannibal-is-on-left-shore

boat-is-on-left-shore

...

problem description for general problem solvers

states represented as truth values of atomic propositions

German: Aussagenvariablen

Motivation Syntax Semantics Properties of Formulas Summary

Propositional Logic: Intuition

propositions: atomic statements over the world
that cannot be divided further

Propositions with logical connectives like
“and”, “or” and “not” form the propositional formulas.

German: logische Verknüpfungen

Motivation Syntax Semantics Properties of Formulas Summary

Syntax and Semantics

Today, we define syntax and semantics of propositional logic.
⇝ reminder from Discrete Mathematics in Computer Science

syntax:

defines which symbols are allowed in formulas
(,),ℵ,∧,A,B,C ,X ,♡,→,↗, . . . ?

. . . and which sequences of these symbols are correct formulas
(A ∧ B), ((A) ∧ B), ∧)A(B, . . . ?

semantics:

defines the meaning of formulas

uses interpretations to describe a possible world
I = {A 7→ T,B 7→ F}
tells us which formulas are true in which worlds

Motivation Syntax Semantics Properties of Formulas Summary

Syntax

Motivation Syntax Semantics Properties of Formulas Summary

Alphabet of Propositions

Logical formulas use an alphabet Σ of propositions,
for example Σ = {P,Q,R,S} or Σ = {X1,X2,X3, . . . }.
We do not mention the alphabet in the following.

More formally, all definitions are parameterized by Σ.

German: Alphabet

Motivation Syntax Semantics Properties of Formulas Summary

Syntax

Definition (propositional formula)

⊤ and ⊥ are formulas (constant true/constant false).

Every proposition in Σ is a formula (atomic formula).

If φ is a formula, then ¬φ is a formula (negation).

If φ and ψ are formulas, then so are

(φ ∧ ψ) (conjunction)
(φ ∨ ψ) (disjunction)
(φ→ ψ) (implication)

German: aussagenlogische Formel, konstant wahr/falsch,

German:

atomare Formel, Konjunktion, Disjunktion, Implikation

Note: minor differences to Discrete Mathematics course

Motivation Syntax Semantics Properties of Formulas Summary

Abbreviating Notations: Omitting Parenthesis

may omit redundant parentheses:

outer parentheses of formula:

(P ∧ Q) ∨ R instead of ((P ∧ Q) ∨ R)

multiple conjunctions/disjunctions:

P ∧ Q ∧ ¬R ∧ S instead of (((P ∧ Q) ∧ ¬R) ∧ S)

implicit binding strength: (¬) > (∧) > (∨) > (→):

P ∨ Q ∧ R instead of P ∨ (Q ∧ R)
use responsibly

Motivation Syntax Semantics Properties of Formulas Summary

Abbreviating Notations: Prefix Notation

prefix notations used like
∑

for sums:
4∨

i=1

Xi instead of (X1 ∨ X2 ∨ X3 ∨ X4)

3∧
i=1

Yi instead of (Y1 ∧ Y2 ∧ Y3)

Motivation Syntax Semantics Properties of Formulas Summary

Semantics

Motivation Syntax Semantics Properties of Formulas Summary

Intuition for Semantics

A formula is true or false
depending on the interpretation of the propositions.

Semantics: Intuition

A proposition P is either true or false.
The truth value of P is determined by an interpretation.

The truth value of a formula follows from
the truth values of the propositions.

Example

example interpretations for φ = (P ∨ Q) ∧ R:

If P and Q are false and R is true, then φ is false.

If P is false and Q and R are true, then φ is true.

Motivation Syntax Semantics Properties of Formulas Summary

Interpretations

Definition (interpretation)

An interpretation I is a function I : Σ → {T,F}.

Interpretations are sometimes called truth assignments.

German: Interpretation/Belegung/Wahrheitsbelegung

Motivation Syntax Semantics Properties of Formulas Summary

The Semantics of Formulas

When is a formula φ true under interpretation I?
symbolically: When does I |= φ hold?

Definition (Models and the |= Relation)

The relation “|=” is a relation between interpretations
and formulas and is defined as follows:

I |= ⊤ and I ̸|= ⊥
I |= P if I (P) = T for P ∈ Σ

I |= ¬φ if I ̸|= φ

I |= (φ ∧ ψ) if I |= φ and I |= ψ

I |= (φ ∨ ψ) if I |= φ or I |= ψ

I |= (φ→ ψ) if I ̸|= φ or I |= ψ

If I |= φ (I ̸|= φ), we say φ is true (false) under I .

Motivation Syntax Semantics Properties of Formulas Summary

Examples

Example (Interpretation I)

I = {P 7→ T,Q 7→ T,R 7→ F,S 7→ F}

Which formulas are true under I?

φ1 = ¬(P ∧ Q) ∧ (R ∧ ¬S). Does I |= φ1 hold?

φ2 = (P ∧ Q) ∧ ¬(R ∧ ¬S). Does I |= φ2 hold?

φ3 = (R → P). Does I |= φ3 hold?

Motivation Syntax Semantics Properties of Formulas Summary

Properties of Formulas

Motivation Syntax Semantics Properties of Formulas Summary

Models of Formulas and Sets of Formulas

Definition (model)

An interpretation I is called a model of φ if I |= φ.

Definition (I |= Φ)

Let Φ be a set of propositional formulas.
We write I |= Φ if I |= φ for all φ ∈ Φ.
Such an interpretation I is called a model of Φ.

If I is a model of formula φ, we also say “I satisfies φ”
or “φ holds under I” (similarly for sets of formulas Φ).

German: Modell, erfüllt, gilt unter

Motivation Syntax Semantics Properties of Formulas Summary

Satisfiable, Unsatisfiable, Falsifiable, Valid

Definition (satisfiable etc.)

A formula φ is called

satisfiable if there exists a model for φ

unsatisfiable if there exists no model for φ

valid (= a tautology) if all interpretations are models of φ

falsifiable if not all interpretations are models of φ

German: erfüllbar, unerfüllbar, allgemeingültig (gültig, Tautologie),

German:

falsifizierbar

Motivation Syntax Semantics Properties of Formulas Summary

Truth Tables

Truth Tables

How to determine automatically if a given formula
is (un)satisfiable, valid, falsifiable?

⇝ simple method: truth tables

example: Is φ = ((P ∨ H) ∧ ¬H) → P valid?

P H P ∨ H ((P ∨ H) ∧ ¬H) ((P ∨ H) ∧ ¬H) → P

F F F F T

F T T F T

T F T T T

T T T F T

I |= φ for all interpretations I , hence φ is valid.

Is it satisfiable/unsatisfiable/falsifiable?

Motivation Syntax Semantics Properties of Formulas Summary

Terminology (Side Note)

What does “φ is true” mean?

not formally defined

the statement misses an interpretation

could be meant as “in the obvious interpretation”
in some cases
or as “in all possible interpretations” (tautology)

imprecise language ⇝ avoid

Motivation Syntax Semantics Properties of Formulas Summary

Summary

Motivation Syntax Semantics Properties of Formulas Summary

Summary

Propositional logic forms the basis for a general
representation of problems and knowledge.

Propositions (atomic formulas) are statements over the world
that cannot be divided further.

Propositional formulas combine constant and atomic formulas
with ¬, ∧, ∨, → to more complex statements.

Interpretations determine which atomic formulas are true
and which ones are false.

Interpretations making a formula true are called models.

important properties a formula may have:
satisfiable, unsatisfiable, valid, falsifiable

Foundations of Artificial Intelligence
E2. Propositional Logic: Equivalence and Normal Forms

Malte Helmert

University of Basel

April 23, 2025

Equivalence Normal Forms Summary

Propositional Logic: Overview

Chapter overview: propositional logic

E1. Syntax and Semantics

E2. Equivalence and Normal Forms

E3. Reasoning and Resolution

E4. DPLL Algorithm

E5. Local Search and Outlook

Equivalence Normal Forms Summary

Equivalence

Equivalence Normal Forms Summary

Logical Equivalance

Definition (logically equivalent)

Formulas φ and ψ are called logically equivalent (φ ≡ ψ)
if for all interpretations I : I |= φ iff I |= ψ.

German: logisch äquivalent

Equivalence Normal Forms Summary

Equivalences

Logical Equivalences

Let φ, ψ, and η be formulas.

(φ ∧ ψ) ≡ (ψ ∧ φ) and (φ ∨ ψ) ≡ (ψ ∨ φ) (commutativity)

((φ ∧ ψ) ∧ η) ≡ (φ ∧ (ψ ∧ η)) and
((φ ∨ ψ) ∨ η) ≡ (φ ∨ (ψ ∨ η)) (associativity)

((φ ∧ ψ) ∨ η) ≡ ((φ ∨ η) ∧ (ψ ∨ η)) and
((φ ∨ ψ) ∧ η) ≡ ((φ ∧ η) ∨ (ψ ∧ η)) (distributivity)

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) and
¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ) (De Morgan)

¬¬φ ≡ φ (double negation)

(φ→ ψ) ≡ (¬φ ∨ ψ) ((→)-elimination)

Commutativity and associativity are often used implicitly
⇝ We write (X1 ∧X2 ∧X3 ∧X4) instead of (X1 ∧ (X2 ∧ (X3 ∧X4)))

Equivalence Normal Forms Summary

Normal Forms

Equivalence Normal Forms Summary

Normal Forms: Terminology

Definition (literal)

If P ∈ Σ, then the formulas P and ¬P are called literals.

P is called positive literal, ¬P is called negative literal.

The complementary literal to P is ¬P and vice versa.
For a literal ℓ, the complementary literal to ℓ is denoted with ℓ̄.

German: Literal, positives/negatives/komplementäres Literal

Question: What is the difference between ℓ̄ and ¬ℓ?

Equivalence Normal Forms Summary

Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause.
The empty clause (with 0 literals) is ⊥.
Clauses consisting of exactly one literal are called unit clauses.

German: Klausel, leere Klausel, Einheitsklausel

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.

German: Monom

Equivalence Normal Forms Summary

Normal Forms

Definition (normal forms)

A formula φ is in conjunctive normal form (CNF, clause form)
if φ is a conjunction of 0 or more clauses:

φ =
n∧

i=1

 mi∨
j=1

ℓi ,j


A formula φ is in disjunctive normal form (DNF)
if φ is a disjunction of 0 or more monomials:

φ =
n∨

i=1

 mi∧
j=1

ℓi ,j


German: konjunktive Normalform, disjunktive Normalform

Equivalence Normal Forms Summary

Normal Forms

For every propositional formula, there exists
a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF with equivalences

1 eliminate implications
(φ→ ψ) ≡ (¬φ ∨ ψ) ((→)-elimination)

2 move negations inside
¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) (De Morgan)
¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ) (De Morgan)
¬¬φ ≡ φ (double negation)

3 distribute ∨ over ∧
((φ ∧ ψ) ∨ η) ≡ ((φ ∨ η) ∧ (ψ ∨ η)) (distributivity)

4 simplify constant subformulas (⊤,⊥)

There are formulas φ for which every logically equivalent formula
in CNF and DNF is exponentially longer than φ.

Equivalence Normal Forms Summary

Summary

Equivalence Normal Forms Summary

Summary

two formulas are logically equivalent
if they have the same models

different kinds of formulas:

atomic formulas and literals
clauses and monomials
conjunctive normal form (CNF) and
disjunctive normal form (DNF)

for every formula, there is a logically equivalent formula
in CNF and a logically equivalent formula in DNF

Foundations of Artificial Intelligence
E3. Propositional Logic: Reasoning and Resolution

Malte Helmert

University of Basel

April 23, 2025

Reasoning Resolution Summary

Propositional Logic: Overview

Chapter overview: propositional logic

E1. Syntax and Semantics

E2. Equivalence and Normal Forms

E3. Reasoning and Resolution

E4. DPLL Algorithm

E5. Local Search and Outlook

Reasoning Resolution Summary

Reasoning

Reasoning Resolution Summary

Reasoning: Intuition

Reasoning: Intuition

Generally, formulas only represent
an incomplete description of the world.

In many cases, we want to know
if a formula logically follows from (a set of) other formulas.

What does this mean?

Reasoning Resolution Summary

Reasoning: Intuition

example: φ = (P ∨ Q) ∧ (R ∨ ¬P) ∧ S

S holds in every model of φ.
What about P, Q and R?

⇝ consider all models of φ:

I1 = {P 7→ F,Q 7→ T,R 7→ F,S 7→ T}
I2 = {P 7→ F,Q 7→ T,R 7→ T,S 7→ T}
I3 = {P 7→ T,Q 7→ F,R 7→ T,S 7→ T}
I4 = {P 7→ T,Q 7→ T,R 7→ T,S 7→ T}

Observation

In all models of φ, the formula Q ∨ R holds as well.

We say: “Q ∨ R logically follows from φ.”

Reasoning Resolution Summary

Reasoning: Formally

Definition (logical consequence)

Let Φ be a set of formulas. A formula ψ logically follows from Φ
(in symbols: Φ |= ψ) if all models of Φ are also models of ψ.

German: logische Konsequenz, folgt logisch

In other words: for each interpretation I ,
if I |= φ for all φ ∈ Φ, then also I |= ψ.

Question

How can we automatically compute if Φ |= ψ?

One possibility: Build a truth table. (How?)

Are there “better” possibilities that (potentially) avoid
generating the whole truth table?

Reasoning Resolution Summary

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of formulas and let ψ be a formula. Then

Φ |= ψ iff (
∧
φ∈Φ

φ) → ψ is a tautology.

German: Deduktionssatz

Proof.

iff

Φ |= ψ
iff for each interpretation I : if I |= φ for all φ ∈ Φ, then I |= ψ
iff for each interpretation I : if I |=

∧
φ∈Φ φ, then I |= ψ

iff for each interpretation I : I ̸|=
∧

φ∈Φ φ or I |= ψ
iff for each interpretation I : I |= (

∧
φ∈Φ φ) → ψ

iff (
∧

φ∈Φ φ) → ψ is tautology

Reasoning Resolution Summary

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of formulas and let ψ be a formula. Then

Φ |= ψ iff (
∧
φ∈Φ

φ) → ψ is a tautology.

German: Deduktionssatz

Proof.

iff

Φ |= ψ
iff for each interpretation I : if I |= φ for all φ ∈ Φ, then I |= ψ
iff for each interpretation I : if I |=

∧
φ∈Φ φ, then I |= ψ

iff for each interpretation I : I ̸|=
∧

φ∈Φ φ or I |= ψ
iff for each interpretation I : I |= (

∧
φ∈Φ φ) → ψ

iff (
∧

φ∈Φ φ) → ψ is tautology

Reasoning Resolution Summary

Reasoning by Unsatisfiability Testing

Consequence of Deduction Theorem

Reasoning can be reduced to testing unsatisfiability.

Question: Does Φ |= ψ hold?

Idea:

Let χ = (
∧

φ∈Φ φ) → ψ.

We know that Φ |= ψ iff χ is a tautology.

A formula is a tautology iff its negation is unsatisfiable.

Hence, Φ |= ψ iff ¬χ is unsatisfiable.

Use equivalences:
¬χ = ¬((

∧
φ∈Φ φ) → ψ) ≡ ¬(¬(

∧
φ∈Φ φ) ∨ ψ)

≡ (¬¬(
∧

φ∈Φ φ) ∧ ¬ψ) ≡
∧

φ∈Φ φ ∧ ¬ψ
We have that Φ |= ψ iff

∧
φ∈Φ φ ∧ ¬ψ is unsatisfiable.

Reasoning Resolution Summary

Algorithm for Reasoning

Question: Does Φ |= ψ hold?

Algorithm (given an algorithm for testing unsatisfiability):

1 Let η =
∧

φ∈Φ φ ∧ ¬ψ.
2 Test if η is unsatisfiable.

3 If yes, return “Φ |= ψ”.

4 Otherwise, return “Φ ̸|= ψ”.

In the following: Can we test unsatisfiability in a more efficient way
than by computing the whole truth table?

Reasoning Resolution Summary

Resolution

Reasoning Resolution Summary

Sets of Clauses

for the rest of this chapter:

prerequisite: formulas in conjunctive normal form

clause represented as a set C of literals

formula represented as a set ∆ of clauses

Example

Let φ = (P ∨ Q) ∧ ¬P.
φ in conjunctive normal form

φ consists of clauses (P ∨ Q) and ¬P
representation of φ as set of sets of literals: {{P,Q}, {¬P}}

Reasoning Resolution Summary

Sets of Clauses (Corner Cases)

Distinguish ⊥ (empty clause = empty set of literals)
vs. ∅ (empty set of clauses).

C = ⊥ (= ∅) represents a disjunction over zero literals:∨
L∈∅

L = ⊥

∆1 = {⊥} represents a conjunction over one clause:∧
φ∈{⊥}

φ = ⊥

∆2 = ∅ represents a conjunction over zero clauses:∧
φ∈∅

φ = ⊤

Reasoning Resolution Summary

Resolution: Idea

Resolution

method to test CNF formula φ for unsatisfiability

idea: derive new clauses from φ that logically follow from φ

if empty clause ⊥ can be derived ⇝ φ unsatisfiable

German: Resolution

Reasoning Resolution Summary

The Resolution Rule

C1 ∪ {ℓ},C2 ∪ {ℓ̄}
C1 ∪ C2

“From C1 ∪ {ℓ} and C2 ∪ {ℓ̄}, we can conclude C1 ∪ C2.”

C1 ∪ C2 is resolvent of parent clauses C1 ∪ {ℓ} and C2 ∪ {ℓ̄}.
The literals ℓ and ℓ̄ are called resolution literals,
the corresponding proposition is called resolution variable.

resolvent follows logically from parent clauses (Why?)

German: Resolutionsregel, Resolvent, Elternklauseln,
Resolutionsliterale, Resolutionsvariable

Example

resolvent of {A,B,¬C} and {A,D,C}?
resolvents of {¬A,B,¬C} and {A,D,C}?

Reasoning Resolution Summary

Resolution: Derivations

Definition (derivation)

Notation: R(∆) = ∆ ∪ {C | C is resolvent of two clauses in ∆}

A clause D can be derived from ∆ (in symbols ∆ ⊢ D) if there is a
sequence of clauses C1, . . . ,Cn = D such that for all i ∈ {1, . . . , n}
we have Ci ∈ R(∆ ∪ {C1, . . . ,Ci−1}).

German: Ableitung, abgeleitet

Lemma (soundness of resolution)

If ∆ ⊢ D, then ∆ |= D.

Does the converse direction hold as well (completeness)?

German: Korrektheit, Vollständigkeit

Reasoning Resolution Summary

Resolution: Completeness?

The converse of the lemma does not hold in general.

example:

{{A,B}, {¬B,C}} |= {A,B,C}, but
{{A,B}, {¬B,C}} ̸⊢ {A,B,C}

but: converse holds for special case of empty clause ⊥ (no proof)

Theorem (refutation-completeness of resolution)

∆ is unsatisfiable iff ∆ ⊢ ⊥

German: Widerlegungsvollständigkeit

consequences:

Resolution is a complete proof method
for testing unsatisfiability of CNF formulas.

Resolution can be used for general reasoning
by reducing to a test for unsatisfiability of CNF formulas.

Reasoning Resolution Summary

Example

Let Φ = {P ∨ Q,¬P}. Does Φ |= Q hold?

Solution

test if ((P ∨ Q) ∧ ¬P) → Q is tautology

equivalently: test if ((P ∨ Q) ∧ ¬P) ∧ ¬Q is unsatisfiable

resulting set of clauses: Φ′ = {{P,Q}, {¬P}, {¬Q}}
resolving {P,Q} with {¬P} yields {Q}
resolving {Q} with {¬Q} yields ⊥
observation: empty clause can be derived,
hence Φ′ unsatisfiable

consequently Φ |= Q

Reasoning Resolution Summary

Resolution: Discussion

Resolution is a complete proof method
to test formulas for unsatisfiability.

In the worst case, resolution proofs can take exponential time.

In practice, a strategy which determines
the next resolution step is needed.

In the following chapter, we discuss the DPLL algorithm,
which is a combination of backtracking and resolution.

Reasoning Resolution Summary

Summary

Reasoning Resolution Summary

Summary

Reasoning: the formula ψ follows from the set of formulas Φ
if all models of Φ are also models of ψ.

Reasoning can be reduced to testing validity
(with the deduction theorem).

Testing validity can be reduced to testing unsatisfiability.

Resolution is a refutation-complete proof method
applicable to formulas in conjunctive normal form.

⇝ can be used to test if a set of clauses is unsatisfiable

Foundations of Artificial Intelligence
E4. Propositional Logic: DPLL Algorithm

Malte Helmert

University of Basel

April 28, 2025

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Propositional Logic: Overview

Chapter overview: propositional logic

E1. Syntax and Semantics

E2. Equivalence and Normal Forms

E3. Reasoning and Resolution

E4. DPLL Algorithm

E5. Local Search and Outlook

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Motivation

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Propositional Logic: Motivation

Propositional logic allows for the representation of knowledge
and for deriving conclusions based on this knowledge.

many practical applications can be directly encoded, e.g.

constraint satisfaction problems of all kinds
circuit design and verification

many problems contain logic as ingredient, e.g.

automated planning
general game playing
description logic queries (semantic web)

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Propositional Logic: Algorithmic Problems

main problems:

reasoning (Φ |= φ?):
Does the formula φ logically follow from the formulas Φ?

equivalence (φ ≡ ψ):
Are the formulas φ and ψ logically equivalent?

satisfiability (SAT):
Is formula φ satisfiable? If yes, find a model.

German: Schlussfolgern, Äquivalenz, Erfüllbarkeit

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:
propositional formula in conjunctive normal form (CNF)

usually represented as pair ⟨V ,∆⟩:
V set of propositional variables (propositions)

∆ set of clauses over V
(clause = set of literals v or ¬v with v ∈ V)

find:

satisfying interpretation (model)

or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Relevance of SAT

The name “SAT” is often used for the satisfiability problem for
general propositional formulas (instead of restriction to CNF).

General SAT can be reduced to CNF case in linear time.

All previously mentioned problems can be reduced to SAT
or its complement UNSAT (is a given CNF formula
unsatisfiable?) in linear time.

⇝ SAT algorithms important and intensively studied

this and next chapter: SAT algorithms

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Systematic Search: DPLL

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

SAT vs. CSP

SAT can be considered a constraint satisfaction problem:

CSP variables = propositions

domains = {F,T}
constraints = clauses

However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:

search

inference

variable and value orders

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

The DPLL Algorithm

The DPLL algorithm (Davis/Putnam/Logemann/Loveland)
corresponds to backtracking with inference for CSPs.

recursive call DPLL(∆, I)
for clause set ∆ and partial interpretation I

result is a model of ∆ that extends I ;
unsatisfiable if no such model exists

first call DPLL(∆, ∅)

inference in DPLL:

simplify: after assigning value d to variable v ,
simplify all clauses that contain v
⇝ forward checking (for constraints of arbitrary arity)

unit propagation: variables that occur in clauses without other
variables (unit clauses) are assigned immediately
⇝ minimum remaining values variable order

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

The DPLL Algorithm: Pseudo-Code

function DPLL(∆, I):

if ⊥ ∈ ∆: [empty clause exists ⇝ unsatisfiable]
return unsatisfiable

else if ∆ = ∅: [no clauses left ⇝ interpretation I satisfies formula]
return I

else if there exists a unit clause {v} or {¬v} in ∆: [unit propagation]
Let v be such a variable, d the truth value that satisfies the clause.
∆′ := simplify(∆, v , d)
return DPLL(∆′, I ∪ {v 7→ d})

else: [splitting rule]
Select some variable v which occurs in ∆.
for each d ∈ {F,T} in some order:

∆′ := simplify(∆, v , d)
I ′ := DPLL(∆′, I ∪ {v 7→ d})
if I ′ ̸= unsatisfiable

return I ′

return unsatisfiable

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

The DPLL Algorithm: simplify

function simplify(∆, v , d)

Let ℓ be the literal for v that is satisfied by v 7→ d .
∆′ := {C | C ∈ ∆ such that ℓ /∈ C}
∆′′ := {C \ {ℓ̄} | C ∈ ∆′}
return ∆′′

Remove clauses containing ℓ
⇝ clause is satisfied by v 7→ d

Remove ℓ̄ from remaining clauses
⇝ clause has to be satisfied with another variable

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (1)

∆ = {{X ,Y ,¬Z}, {¬X ,¬Y }, {Z}, {X ,¬Y }}

1. unit propagation: Z 7→ T
{{X ,Y }, {¬X ,¬Y }, {X ,¬Y }}

2. splitting rule:

2a. X 7→ F
{{Y }, {¬Y }}

3a. unit propagation: Y 7→ T
{⊥}

2b. X 7→ T
{{¬Y }}

3b. unit propagation: Y 7→ F
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (2)

∆ = {{W ,¬X ,¬Y ,¬Z}, {X ,¬Z}, {Y ,¬Z}, {Z}}

1. unit propagation: Z 7→ T
{{W ,¬X ,¬Y }, {X}, {Y }}

2. unit propagation: X 7→ T
{{W ,¬Y }, {Y }}

3. unit propagation: Y 7→ T
{{W }}

4. unit propagation: W 7→ T
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (2)

∆ = {{W ,¬X ,¬Y ,¬Z}, {X ,¬Z}, {Y ,¬Z}, {Z}}

1. unit propagation: Z 7→ T
{{W ,¬X ,¬Y }, {X}, {Y }}

2. unit propagation: X 7→ T
{{W ,¬Y }, {Y }}

3. unit propagation: Y 7→ T
{{W }}

4. unit propagation: W 7→ T
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (2)

∆ = {{W ,¬X ,¬Y ,¬Z}, {X ,¬Z}, {Y ,¬Z}, {Z}}

1. unit propagation: Z 7→ T
{{W ,¬X ,¬Y }, {X}, {Y }}

2. unit propagation: X 7→ T
{{W ,¬Y }, {Y }}

3. unit propagation: Y 7→ T
{{W }}

4. unit propagation: W 7→ T
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (2)

∆ = {{W ,¬X ,¬Y ,¬Z}, {X ,¬Z}, {Y ,¬Z}, {Z}}

1. unit propagation: Z 7→ T
{{W ,¬X ,¬Y }, {X}, {Y }}

2. unit propagation: X 7→ T
{{W ,¬Y }, {Y }}

3. unit propagation: Y 7→ T
{{W }}

4. unit propagation: W 7→ T
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (2)

∆ = {{W ,¬X ,¬Y ,¬Z}, {X ,¬Z}, {Y ,¬Z}, {Z}}

1. unit propagation: Z 7→ T
{{W ,¬X ,¬Y }, {X}, {Y }}

2. unit propagation: X 7→ T
{{W ,¬Y }, {Y }}

3. unit propagation: Y 7→ T
{{W }}

4. unit propagation: W 7→ T
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (2)

∆ = {{W ,¬X ,¬Y ,¬Z}, {X ,¬Z}, {Y ,¬Z}, {Z}}

1. unit propagation: Z 7→ T
{{W ,¬X ,¬Y }, {X}, {Y }}

2. unit propagation: X 7→ T
{{W ,¬Y }, {Y }}

3. unit propagation: Y 7→ T
{{W }}

4. unit propagation: W 7→ T
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Example (2)

∆ = {{W ,¬X ,¬Y ,¬Z}, {X ,¬Z}, {Y ,¬Z}, {Z}}

1. unit propagation: Z 7→ T
{{W ,¬X ,¬Y }, {X}, {Y }}

2. unit propagation: X 7→ T
{{W ,¬Y }, {Y }}

3. unit propagation: Y 7→ T
{{W }}

4. unit propagation: W 7→ T
{}

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Properties of DPLL

DPLL is sound and complete.

DPLL computes a model if a model exists.

Some variables possibly remain unassigned in the solution I ;
their values can be chosen arbitrarily.

time complexity in general exponential

⇝ important in practice: good variable order and
additional inference methods (in particular clause learning)

Best known SAT algorithms are based on DPLL.

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

DPLL on Horn Formulas

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Horn Formulas

important special case: Horn formulas

Definition (Horn formula)

A Horn clause is a clause with at most one positive literal,
i.e., of the form

¬x1 ∨ · · · ∨ ¬xn ∨ y or ¬x1 ∨ · · · ∨ ¬xn

(n = 0 is allowed.)

A Horn formula is a propositional formula
in conjunctive normal form that only consists of Horn clauses.

German: Hornformel

foundation of logic programming (e.g., PROLOG)

critical in many kinds of practical reasoning problems

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula φ is a Horn formula, then
the time complexity of DPLL is polynomial in the length of φ.

Proof.

properties:

1. If ∆ is a Horn formula, then so is simplify(∆, v , d). (Why?)

⇝ all formulas encountered during DPLL search

⇝

are Horn formulas if input is Horn formula
2. Every Horn formula without empty or unit clauses is

satisfiable:

all such clauses consist of at least two literals
Horn property: at least one of them is negative
assigning F to all variables satisfies formula

. . .

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

DPLL on Horn Formulas (Continued)

Proof (continued).

3. From 2. we can conclude:

if splitting rule applied, then current formula satisfiable, and
if a wrong decision is taken, then this will be recognized
without applying further splitting rules (i.e., only by applying
unit propagation and by deriving the empty clause).

4. Hence the generated search tree for n variables can only
contain at most n nodes where the splitting rule is applied
(i.e., where the tree branches).

5. It follows that the search tree is of polynomial size,
and hence the runtime is polynomial.

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Summary

Motivation Systematic Search: DPLL DPLL on Horn Formulas Summary

Summary

satisfiability basic problem in propositional logic
to which other problems can be reduced

here: satisfiability for CNF formulas

Davis-Putnam-Logemann-Loveland procedure (DPLL):
systematic backtracking search with unit propagation
as inference method

DPLL successful in practice, in particular when combined
with other ideas such as clause learning

polynomial on Horn formulas
(= at most one positive literal per clause)

Foundations of Artificial Intelligence
E5. Propositional Logic: Local Search and Outlook

Malte Helmert

University of Basel

April 28, 2025

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Propositional Logic: Overview

Chapter overview: propositional logic

E1. Syntax and Semantics

E2. Equivalence and Normal Forms

E3. Reasoning and Resolution

E4. DPLL Algorithm

E5. Local Search and Outlook

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Local Search: GSAT

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Local Search for SAT

Apart from systematic search, there are also successful
local search methods for SAT.

These are usually not complete and in particular
cannot prove unsatisfiability for a formula.

They are often still interesting
because they can find models for hard problems.

However, all in all, DPLL-based methods have been
more successful in recent years.

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Local Search for SAT: Ideas

local search methods directly applicable to SAT:

candidates: (complete) assignments

solutions: satisfying assignments

search neighborhood: change assignment of one variable

heuristic: depends on algorithm; e.g., #unsatisfied clauses

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

GSAT (Greedy SAT): Pseudo-Code

auxiliary functions:

violated(∆, I): number of clauses in ∆ not satisfied by I

flip(I , v): assignment that results from I
when changing the valuation of proposition v

function GSAT(∆):

repeat max-tries times:
I := a random assignment
repeat max-flips times:

if I |= ∆:
return I

Vgreedy := the set of variables v occurring in ∆
for which violated(∆, flip(I , v)) is minimal

randomly select v ∈ Vgreedy

I := flip(I , v)
return no solution found

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

GSAT: Discussion

GSAT has the usual ingredients of local search methods:

hill climbing

randomness (although relatively little!)

restarts

empirically, much time is spent on plateaus:

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Local Search: Walksat

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Walksat: Pseudo-Code

lost(∆, I , v): #clauses in ∆ satisfied by I , but not by flip(I , v)

function Walksat(∆):

repeat max-tries times:
I := a random assignment
repeat max-flips times:

if I |= ∆:
return I

C := randomly chosen unsatisfied clause in ∆
if there is a variable v in C with lost(∆, I , v) = 0:

Vchoices := all such variables in C
else with probability pnoise:

Vchoices := all variables occurring in C
else:

Vchoices := variables v in C that minimize lost(∆, I , v)
randomly select v ∈ Vchoices

I := flip(I , v)
return no solution found

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Walksat vs. GSAT

Comparison GSAT vs. Walksat:

much more randomness in Walksat
because of random choice of considered clause

“counter-intuitive” steps that temporarily increase
the number of unsatisfied clauses are possible in Walksat

⇝ smaller risk of getting stuck in local minima

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

How Difficult Is SAT?

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

How Difficult is SAT in Practice?

SAT is NP-complete.

⇝ known algorithms like DPLL
need exponential time in the worst case

What about the average case?

depends on how the average is computed
(no “obvious” way to define the average)

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

SAT: Polynomial Average Runtime

Good News (Goldberg 1979)

construct random CNF formulas
with n variables and k clauses as follows:

In every clause, every variable occurs

positively with probability 1
3 ,

negatively with probability 1
3 ,

not at all with probability 1
3 .

Then the runtime of DPLL in the average case
is polynomial in n and k.

⇝ not a realistic model for practically relevant CNF formulas
(because almost all of the random formulas are satisfiable)

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Phase Transitions

How to find interesting random problems?

conjecture of Cheeseman et al.:

Cheeseman et al., IJCAI 1991

Every NP-complete problem has at least one size parameter
such that the difficult instances are close to a critical value
of this parameter.

This so-called phase transition separates two problem regions,
e.g., an over-constrained and an under-constrained region.

⇝ confirmed for, e.g., graph coloring, Hamiltonian paths and SAT

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Phase Transitions for 3-SAT

Problem Model of Mitchell et al., AAAI 1992

fixed clause size of 3

in every clause, choose the variables randomly

literals positive or negative with equal probability

critical parameter: #clauses divided by #variables
phase transition at ratio ≈ 4.3

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Phase Transition of DPLL

DPLL shows high runtime close to the phase transition region:

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Phase Transition: Intuitive Explanation

If there are many clauses and hence the instance is
unsatisfiable with high probability, this can be shown efficiently
with unit propagation.

If there are few clauses, there are many satisfying
assignments, and it is easy to find one of them.

Close to the phase transition, there are many
“almost-solutions” that have to be considered
by the search algorithm.

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Outlook

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

State of the Art

research on SAT in general:
⇝ http://www.satlive.org/

conferences on SAT since 1996 (annually since 2000)
⇝ http://www.satisfiability.org/

competitions for SAT algorithms since 1992
⇝ http://www.satcompetition.org/

largest instances have more than 1 000 000 literals
different tracks (e.g., SAT vs. SAT+UNSAT;
industrial vs. random instances)

http://www.satlive.org/
http://www.satisfiability.org/
http://www.satcompetition.org/

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

More Advanced Topics

DPLL-based SAT algorithms:

efficient implementation techniques

accurate variable orders

clause learning

local search algorithms:

efficient implementation techniques

adaptive search methods (“difficult” clauses
are recognized after some time and then prioritized)

SAT modulo theories:

extension with background theories
(e.g., real numbers, data structures, . . .)

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Summary

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Summary (1)

local search for SAT searches in the space of interpretations;
neighbors: assignments that differ only in one variable

has typical properties of local search methods:
evaluation functions, randomization, restarts

example: GSAT (Greedy SAT)

hill climbing with heuristic function: #unsatisfied clauses
randomization through tie-breaking and restarts

example: Walksat

focuses on randomly selected unsatisfied clauses
does not follow the heuristic always, but also injects noise
consequence: more randomization as GSAT
and lower risk of getting stuck in local minima

Local Search: GSAT Local Search: Walksat How Difficult Is SAT? Outlook Summary

Summary (2)

more detailed analysis of SAT shows: the problem
is NP-complete, but not all instances are difficult

randomly generated SAT instances are
easy to satisfy if they contain few clauses, and
easy to prove unsatisfiable if they contain many clauses

in between: phase transition

Foundations of Artificial Intelligence
F1. Automated Planning: Introduction

Malte Helmert

University of Basel

April 30, 2025

Introduction State Spaces Compact Descriptions Summary

Automated Planning: Overview

Chapter overview: automated planning

F1. Introduction

F2. Planning Formalisms

F3. Delete Relaxation

F4. Delete Relaxation Heuristics

F5. Abstraction

F6. Abstraction Heuristics

Introduction State Spaces Compact Descriptions Summary

Classification

classification:

Automated Planning

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning

(applications also in more complex environments)

Introduction State Spaces Compact Descriptions Summary

Introduction

Introduction State Spaces Compact Descriptions Summary

Automated Planning

What is Automated Planning?

“Planning is the art and practice of thinking before acting.”
— P. Haslum

⇝ finding plans (sequences of actions)

⇝

that lead from an initial state to a goal state

our topic in this course: classical planning

general approach to finding solutions
for state-space search problems (Part B)

classical = static, deterministic, fully observable

variants: probabilistic planning, planning under partial
observability, online planning, . . .

Introduction State Spaces Compact Descriptions Summary

Planning: Informally

given:

state space description in terms of suitable problem
description language (planning formalism)

required:

a plan, i.e., a solution for the described state space
(sequence of actions from initial state to goal)

or a proof that no plan exists

distinguish between

optimal planning: guarantee that returned plans
are optimal, i.e., have minimal overall cost

suboptimal planning (satisficing):
suboptimal plans are allowed

Introduction State Spaces Compact Descriptions Summary

What is New?

Many previously encountered problems are planning tasks:

blocks world

missionaries and cannibals

15-puzzle

New: we are now interested in general algorithms, i.e.,
the developer of the search algorithm does not know
the tasks that the algorithm needs to solve.

⇝ no problem-specific heuristics!

⇝ input language to model the planning task

Introduction State Spaces Compact Descriptions Summary

Repetition: State Spaces

Introduction State Spaces Compact Descriptions Summary

Formal Models for State-Space Search

To cleanly study search problems we need a formal model.

Nothing New Here!

This section is a repetition of Section B1.2
of the chapter “State-Space Search: State Spaces”.

Introduction State Spaces Compact Descriptions Summary

State Spaces

Definition (state space)

A state space or transition system is a
6-tuple S = ⟨S ,A, cost,T , sI, SG⟩ with

finite set of states S

finite set of actions A

action costs cost : A → R+
0

transition relation T ⊆ S × A× S that is
deterministic in ⟨s, a⟩ (see next slide)

initial state sI ∈ S

set of goal states SG ⊆ S

German: Zustandsraum, Transitionssystem, Zustände, Aktionen,
Aktionskosten, Transitions-/Übergangsrelation, deterministisch,
Anfangszustand, Zielzustände

Introduction State Spaces Compact Descriptions Summary

State Spaces: Terminology & Notation

Definition (transition, deterministic)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

The triples ⟨s, a, s ′⟩ ∈ T are called (state) transitions.

We say S has the transition ⟨s, a, s ′⟩ if ⟨s, a, s ′⟩ ∈ T .
We write this as s

a−→ s ′, or s → s ′ when a does not matter.

Transitions are deterministic in ⟨s, a⟩: it is forbidden to have
both s

a−→ s1 and s
a−→ s2 with s1 ̸= s2.

Introduction State Spaces Compact Descriptions Summary

Graph Interpretation

state spaces are often depicted as directed, labeled graphs

states: graph vertices

transitions: labeled arcs

(here: colors instead of labels)

initial state: incoming arrow

goal states: double circles

actions: the arc labels

action costs: described separately
(or implicitly = 1)

0

1

2

3

45

6

7

8

9

Introduction State Spaces Compact Descriptions Summary

Graph Interpretation

state spaces are often depicted as directed, labeled graphs

states: graph vertices

transitions: labeled arcs
(here: colors instead of labels)

initial state: incoming arrow

goal states: double circles

actions: the arc labels

action costs: described separately
(or implicitly = 1)

0

1

2

3

45

6

7

8

9

Introduction State Spaces Compact Descriptions Summary

State Spaces: Terminology

terminology:

predecessor, successor

applicable action

path, length, costs

reachable

solution, optimal solution

German: Vorgänger, Nachfolger, anwendbare Aktion, Pfad, Länge,
Kosten, erreichbar, Lösung, optimale Lösung

Introduction State Spaces Compact Descriptions Summary

Compact Descriptions

Introduction State Spaces Compact Descriptions Summary

State Spaces with Declarative Representations

How do we represent state spaces in the computer?

previously: as black box

now: as declarative description

reminder: Chapter B2

State Spaces with Declarative Representations

represent state spaces declaratively:

compact description of state space as input to algorithms
⇝ state spaces exponentially larger than the input

algorithms directly operate on compact description

⇝ allows automatic reasoning about problem:
reformulation, simplification, abstraction, etc.

Introduction State Spaces Compact Descriptions Summary

Reminder: Blocks World

problem: n blocks ⇝ more than n! states

Introduction State Spaces Compact Descriptions Summary

Compact Description of State Spaces

How to describe state spaces compactly?

Compact Description of Several States

introduce state variables

states: assignments to state variables

⇝ e.g., n binary state variables can describe 2n states

transitions and goal states are compactly described
with a logic-based formalism

different variants: different planning formalisms

Introduction State Spaces Compact Descriptions Summary

Summary

Introduction State Spaces Compact Descriptions Summary

Summary

planning: search in general state spaces

input: compact, declarative description of state space

Foundations of Artificial Intelligence
F2. Automated Planning: Planning Formalisms

Malte Helmert

University of Basel

April 30, 2025

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Automated Planning: Overview

Chapter overview: automated planning

F1. Introduction

F2. Planning Formalisms

F3. Delete Relaxation

F4. Delete Relaxation Heuristics

F5. Abstraction

F6. Abstraction Heuristics

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Four Formalisms

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Four Planning Formalisms

A description language for state spaces (planning tasks)
is called a planning formalism.

We introduce four planning formalisms:
1 STRIPS (Stanford Research Institute Problem Solver)
2 ADL (Action Description Language)
3 SAS+ (Simplified Action Structures)
4 PDDL (Planning Domain Definition Language)

STRIPS and SAS+ are the most simple formalisms;
in the next chapters, we only consider these.

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS: Basic Concepts

basic concepts of STRIPS:

STRIPS is the most simple common planning formalism.

state variables are binary (true or false)

states s (based on a given set of state variables V)
can be represented in two equivalent ways:

as assignments s : V → {F,T}
as sets s ⊆ V ,
where s encodes the set of state variables that are true in s

We will use the set representation.

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS: Basic Concepts

basic concepts of STRIPS:

STRIPS is the most simple common planning formalism.

state variables are binary (true or false)

states s (based on a given set of state variables V)
can be represented in two equivalent ways:

as assignments s : V → {F,T}
as sets s ⊆ V ,
where s encodes the set of state variables that are true in s

We will use the set representation.

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS: Basic Concepts

basic concepts of STRIPS:

STRIPS is the most simple common planning formalism.

state variables are binary (true or false)

states s (based on a given set of state variables V)
can be represented in two equivalent ways:

as assignments s : V → {F,T}
as sets s ⊆ V ,
where s encodes the set of state variables that are true in s

We will use the set representation.

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS Planning Task

Definition (STRIPS Planning Task)

A STRIPS planning task is a 4 tuple Π = ⟨V , I ,G ,A⟩ with
V : finite set of state variables

I ⊆ V : the initial state

G ⊆ V : the set of goals

A: finite set of actions,
where for all actions a ∈ A, the following is defined:

pre(a) ⊆ V : the preconditions of a
add(a) ⊆ V : the add effects of a
del(a) ⊆ V : the delete effects of a
cost(a) ∈ N0: the costs of a

German: STRIPS-Planungsaufgabe, Zustandsvariablen,
Anfangszustand, Ziele, Aktionen, Add-/Delete-Effekte, Kosten
remark: action costs are an extension of “traditional” STRIPS

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)

Let Π = ⟨V , I ,G ,A⟩ be a STRIPS planning task.

Then Π induces the state space S(Π) = ⟨S ,A, cost,T , sI,SG⟩:
set of states: S = 2V (= power set of V)

actions: actions A as defined in Π

action costs: cost as defined in Π

transitions: s
a−→ s ′ for states s, s ′ ∈ S and action a ∈ A iff

pre(a) ⊆ s (preconditions satisfied)
s ′ = (s \ del(a)) ∪ add(a) (effects are applied)

initial state: sI = I

goal states: s ∈ SG for state s iff G ⊆ s (goals reached)

German: induziert den Zustandsraum

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

Π = ⟨V , I ,G ,A⟩ with:
V = {onR,B , onR,G , onB,R , onB,G , onG ,R , onG ,B ,

on-tableR , on-tableB , on-tableG ,
clearR , clearB , clearG}

I = {onG ,R , on-tableR , on-tableB , clearG , clearB}
G = {onR,B , onB,G}
A = {moveR,B,G ,moveR,G ,B ,moveB,R,G ,

moveB,G ,R ,moveG ,R,B ,moveG ,B,R ,
to-tableR,B , to-tableR,G , to-tableB,R ,
to-tableB,G , to-tableG ,R , to-tableG ,B ,
from-tableR,B , from-tableR,G , from-tableB,R ,
from-tableB,G , from-tableG ,R , from-tableG ,B}

. . .

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

move actions encode moving a block
from one block to another

example:

pre(moveR,B,G) = {onR,B , clearR , clearG}
add(moveR,B,G) = {onR,G , clearB}
del(moveR,B,G) = {onR,B , clearG}
cost(moveR,B,G) = 1

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

to-table actions encode moving a block
from a block to the table

example:

pre(to-tableR,B) = {onR,B , clearR}
add(to-tableR,B) = {on-tableR , clearB}
del(to-tableR,B) = {onR,B}
cost(to-tableR,B) = 1

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

from-table actions encode moving a block
from the table to a block

example:

pre(from-tableR,B) = {on-tableR , clearR , clearB}
add(from-tableR,B) = {onR,B}
del(from-tableR,B) = {on-tableR , clearB}
cost(from-tableR,B) = 1

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Why STRIPS?

STRIPS is particularly simple.

⇝ simplifies the design and implementation
of planning algorithms

often cumbersome for the user
to model tasks directly in STRIPS

but: STRIPS is equally “powerful”
to much more complex planning formalisms

⇝ automatic “compilers” exist that translate more complex
formalisms (like ADL and SAS+) to STRIPS

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

ADL, SAS+ and PDDL

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concepts of ADL

basic concepts of ADL:

Like STRIPS, ADL uses propositional variables (true/false)
as state variables.

preconditions of actions and goal are arbitrary logic formulas
(action applicable/goal reached in states
that satisfy the formula)

in addition to STRIPS effects, there are conditional effects:
variable v is only set to true/false if a given logical formula
is true in the current state

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concepts of SAS+

basic concepts of SAS+:

very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)

states are assignments to these variables (cf. CSPs)

preconditions and goals given as partial assignments

example: {v1 7→ a, v3 7→ b} as preconditions (or goals)

If s(v1) = a and s(v3) = b,
then the action is applicable in s (or goal is reached)
values of other variables do not matter

effects are assignments to subset of variables

example: effect {v1 7→ b, v2 7→ c} means

In the successor state s ′, s ′(v1) = b and s ′(v2) = c .
All other variables retain their values.

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concept of PDDL

PDDL is the standard language used in practice
to describe planning tasks.

descriptions in (restricted) predicate logic instead of
propositional logic (⇝ even more compact)

other features like numeric variables and derived variables
(axioms) for defining complex logical conditions
(formulas that are automatically evaluated in every state
and can, e.g., be used in preconditions)

There exist defined PDDL fragments for STRIPS and ADL;
many planners only support the STRIPS fragment.

example: blocks world in PDDL

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Summary

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Summary

planning formalisms:

STRIPS: particularly simple, easy to handle for algorithms

binary state variables
preconditions, add and delete effects, goals:
sets of variables

ADL: extension of STRIPS

logic formulas for complex preconditions and goals
conditional effects

SAS+: extension of STRIPS

state variables with arbitrary finite domains

PDDL: input language used in practice

based on predicate logic
(more compact than propositional logic)
only partly supported by most algorithms
(e.g., STRIPS or ADL fragment)

Foundations of Artificial Intelligence
F3. Automated Planning: Delete Relaxation

Malte Helmert

University of Basel

May 5, 2025

How to Design Heuristics? Delete Relaxation Examples Summary

Automated Planning: Overview

Chapter overview: automated planning

F1. Introduction

F2. Planning Formalisms

F3. Delete Relaxation

F4. Delete Relaxation Heuristics

F5. Abstraction

F6. Abstraction Heuristics

How to Design Heuristics? Delete Relaxation Examples Summary

How to Design Heuristics?

How to Design Heuristics? Delete Relaxation Examples Summary

A Simple Planning Heuristic

The STRIPS planner (Fikes & Nilsson, 1971) uses the number of
goals not yet satisfied in a STRIPS planning task as heuristic:

h(s) = |G \ s|.

intuition: fewer unsatisfied goals ⇝ closer to goal state

⇝ STRIPS heuristic

How to Design Heuristics? Delete Relaxation Examples Summary

Problems of STRIPS Heuristic

drawback of STRIPS heuristic?

rather uninformed:
For state s, if there is no applicable action a in s such that
applying a in s satisfies strictly more (or fewer) goals,
then all successor states have the same heuristic value as s.

ignores almost the whole task structure:
The heuristic values do not depend on the actions.

⇝ we need better methods to design heuristics

How to Design Heuristics? Delete Relaxation Examples Summary

Planning Heuristics

We consider two basic ideas for general heuristics:

delete relaxation ⇝ this and next chapter

abstraction ⇝ Chapters F5–F6

Delete Relaxation: Basic Idea

Estimate solution costs by considering a simplified planning task,
where all negative action effects are ignored.

How to Design Heuristics? Delete Relaxation Examples Summary

Delete Relaxation

How to Design Heuristics? Delete Relaxation Examples Summary

Relaxed Planning Tasks: Idea

In STRIPS planning tasks,
good and bad effects are easy to distinguish:

Add effects are always useful.

Delete effects are always harmful.

Why?

idea for designing heuristics: ignore all delete effects

How to Design Heuristics? Delete Relaxation Examples Summary

Relaxed Planning Tasks

Definition (relaxation of actions)

The relaxation a+ of STRIPS action a is the action with

pre(a+) = pre(a),

add(a+) = add(a),

cost(a+) = cost(a), and

del(a+) = ∅.

German: Relaxierung von Aktionen

Definition (relaxation of planning tasks)

The relaxation Π+ of a STRIPS planning task Π = ⟨V , I ,G ,A⟩
is the task Π+ = ⟨V , I ,G , {a+ | a ∈ A}⟩.

German: Relaxierung von Planungsaufgaben

How to Design Heuristics? Delete Relaxation Examples Summary

Relaxed Planning Tasks: Terminology

STRIPS planning tasks without delete effects
are called relaxed planning tasks
or delete-free planning tasks.

Plans for relaxed planning tasks are called relaxed plans.

If Π is a STRIPS planning task and π+ is a plan for Π+,
then π+ is called relaxed plan for Π.

How to Design Heuristics? Delete Relaxation Examples Summary

Optimal Relaxation Heuristic

Definition (optimal relaxation heuristic h+)

Let Π be a STRIPS planning task with the relaxation
Π+ = ⟨V , I ,G ,A+⟩.
The optimal relaxation heuristic h+ for Π maps each state s
to the cost of an optimal plan for the planning task ⟨V , s,G ,A+⟩.

In other words, the heuristic value for s is the optimal solution cost
in the relaxation of Π with s as the initial state.

How to Design Heuristics? Delete Relaxation Examples Summary

Examples

How to Design Heuristics? Delete Relaxation Examples Summary

Example: Logistics

→

Example (Logistics Task)

variables: V = {atAL, atAR, atBL, atBR, atTL, atTR, inAT, inBT}
initial state: I = {atAL, atBR, atTL}
goals: G = {atAR, atBL}
actions: {moveLR,moveRL, loadAL, loadAR, loadBL, loadBR,

unloadAL, unloadAR, unloadBL, unloadBR}
. . .

How to Design Heuristics? Delete Relaxation Examples Summary

Example: Logistics

→

Example (Logistics Task)

pre(moveLR) = {atTL}, add(moveLR) = {atTR},
del(moveLR) = {atTL}, cost(moveLR) = 1

pre(loadAL) = {atTL, atAL}, add(loadAL) = {inAT},
del(loadAL) = {atAL}, cost(loadAL) = 1

pre(unloadAL) = {atTL, inAT}, add(unloadAL) = {atAL},
del(unloadAL) = {inAT}, cost(unloadAL) = 1

. . .

How to Design Heuristics? Delete Relaxation Examples Summary

Example: Logistics

→

optimal plan:
1 loadAL
2 moveLR
3 unloadAR
4 loadBR
5 moveRL
6 unloadBL

optimal relaxed plan: ?

h∗(I) = 6, h+(I) = ?

How to Design Heuristics? Delete Relaxation Examples Summary

Example: 8-Puzzle

2 3 1

4 5 6

7 8

1 2 3

4 5 6

7 8

actual goal distance: h∗(s) = 17

Manhattan distance: hMD(s) = 5

optimal delete relaxation: h+(s) = 7

relationship (no proof):
h+ dominates the Manhattan distance in the sliding tile puzzle
(i.e., hMD(s) ≤ h+(s) ≤ h∗(s) for all states s)

How to Design Heuristics? Delete Relaxation Examples Summary

Relaxed Solutions: Suboptimal or Optimal?

For general STRIPS planning tasks, h+

is an admissible and consistent heuristic (no proof).

Can h+ be computed efficiently?

It is easy to solve delete-free planning tasks
suboptimally. (How?)
optimal solution (and hence the computation of h+)
is NP-hard (reduction from Set Cover)

In practice, heuristics approximate h+ from below or above.

How to Design Heuristics? Delete Relaxation Examples Summary

Summary

How to Design Heuristics? Delete Relaxation Examples Summary

Summary

delete relaxation:

ignore negative effects (delete effects) of actions

use solution costs of relaxed planning task
as heuristic for solution costs of the original planning task

computation of optimal relaxed solution costs h+ is NP-hard,
hence usually approximated from below or above

Foundations of Artificial Intelligence
F4. Automated Planning: Delete Relaxation Heuristics

Malte Helmert

University of Basel

May 5, 2025

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Automated Planning: Overview

Chapter overview: automated planning

F1. Introduction

F2. Planning Formalisms

F3. Delete Relaxation

F4. Delete Relaxation Heuristics

F5. Abstraction

F6. Abstraction Heuristics

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Relaxed Planning Graphs

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Relaxed Planning Graphs

relaxed planning graphs: represent which variables in Π+

can be reached and how

graphs with variable layers V i and action layers Ai

variable layer V 0 contains the variable vertex v0 for all v ∈ I
action layer Ai+1 contains the action vertex ai+1 for action a
if V i contains the vertex v i for all v ∈ pre(a)
variable layer V i+1 contains the variable vertex v i+1

if previous variable layer contains v i ,
or previous action layer contains ai+1 with v ∈ add(a)

German: relaxierter Planungsgraph, Variablenknoten,
Aktionsknoten

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Relaxed Planning Graphs (Continued)

a goal vertex g if vn ∈ V n for all v ∈ G ,
where n is last layer

graph can be constructed for arbitrary many layers
but stabilizes after a bounded number of layers
⇝ V i+1 = V i and Ai+1 = Ai (Why?)

directed edges:

from v i to ai+1 if v ∈ pre(a) (precondition edges)
from ai to v i if v ∈ add(a) (effect edges)
from v i to v i+1 (no-op edges)
from vn to g if v ∈ G (goal edges)

German: Zielknoten, Vorbedingungskanten, Effektkanten,
Zielkanten, No-Op-Kanten

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example

We write actions a with pre(a) = {p1, . . . , pk},
add(a) = {q1, . . . , ql}, del(a) = ∅ and cost(a) = c
as p1, . . . , pk

c−→ q1, . . . , ql

V = {m, n, o, p, q, r , s, t}
I = {m}
G = {o, p, q, r , s}
A = {a1, a2, a3, a4, a5, a6}
a1 = m 3−→ n, o

a2 = m, o 1−→ p

a3 = n, o 1−→ q

a4 = n 1−→ r

a5 = p 1−→ q, r

a6 = p 1−→ s

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

m2

n2

o2

p2

q2

r2

s2

t2

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

m2

n2

o2

p2

q2

r2

s2

t2

a1

a2

a3

a4

a5

a6

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

m2

n2

o2

p2

q2

r2

s2

t2

a1

a2

a3

a4

a5

a6

m3

n3

o3

p3

q3

r3

s3

t3

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

m2

n2

o2

p2

q2

r2

s2

t2

a1

a2

a3

a4

a5

a6

m3

n3

o3

p3

q3

r3

s3

t3

a1

a2

a3

a4

a5

a6

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

m2

n2

o2

p2

q2

r2

s2

t2

a1

a2

a3

a4

a5

a6

m3

n3

o3

p3

q3

r3

s3

t3

a1

a2

a3

a4

a5

a6

m4

n4

o4

p4

q4

r4

s4

t4

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

m2

n2

o2

p2

q2

r2

s2

t2

a1

a2

a3

a4

a5

a6

m3

n3

o3

p3

q3

r3

s3

t3

a1

a2

a3

a4

a5

a6

m4

n4

o4

p4

q4

r4

s4

t4

o4

p4

q4

r4

s4

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: Relaxed Planning Graph

m0

n0

o0

p0

q0

r0

s0

t0

a1
m1

n1

o1

p1

q1

r1

s1

t1

a1

a2

a3

a4

m2

n2

o2

p2

q2

r2

s2

t2

a1

a2

a3

a4

a5

a6

m3

n3

o3

p3

q3

r3

s3

t3

a1

a2

a3

a4

a5

a6

m4

n4

o4

p4

q4

r4

s4

t4

g

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Generic Relaxed Planning Graph Heuristic

Heuristic Values from Relaxed Planning Graph

function generic-rpg-heuristic(⟨V , I ,G ,A⟩, s):
Π+ := ⟨V , s,G ,A+⟩
for k ∈ {0, 1, 2, . . . }:

rpg := RPGk(Π
+) [relaxed planning graph to layer k]

if rpg contains a goal node:
Annotate nodes of rpg.
if termination criterion is true:

return heuristic value from annotations
else if graph has stabilized:

return ∞

⇝ general template for RPG heuristics

⇝ to obtain concrete heuristic: instantiate highlighted elements

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.

In this course:

maximum heuristic hmax (Bonet & Geffner, 1999)

additive heuristic hadd (Bonet, Loerincs & Geffner, 1997)

Keyder & Geffner’s (2008) variant of the FF heuristic hFF

(Hoffmann & Nebel, 2001)

German: Maximum-Heuristik, additive Heuristik, FF-Heuristik

remark:

The most efficient implementations of these heuristics
do not use explicit planning graphs,
but rather alternative (equivalent) definitions.

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Maximum and Additive Heuristics

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Maximum and Additive Heuristics

hmax and hadd are the simplest RPG heuristics.

Vertex annotations are numerical values.

The vertex values estimate the costs

to make a given variable true
to reach and apply a given action
to reach the goal

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Maximum and Additive Heuristics: Filled-in Template

hmax and hadd

computation of annotations:

costs of variable vertices:
0 in layer 0;
otherwise minimum of the costs of predecessor vertices

costs of action and goal vertices:
maximum (hmax) or sum (hadd) of predecessor vertex costs;
for action vertices ai , also add cost(a)

termination criterion:

stability: terminate if V i = V i−1 and costs of all vertices
in V i equal corresponding vertex costs in V i−1

heuristic value:

value of goal vertex

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Maximum and Additive Heuristics: Intuition

intuition:

variable vertices:

choose cheapest way of reaching the variable

action/goal vertices:

hmax is optimistic: assumption:
when reaching the most expensive precondition variable,
we can reach the other precondition variables in parallel
(hence maximization of costs)
hadd is pessimistic: assumption:
all precondition variables must be reached completely
independently of each other (hence summation of costs)

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

4

4

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

4

4

0

3

3

4

4

4

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

4

4

0

3

3

4

4

4

3

4

4

4

5

5

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

4

4

0

3

3

4

4

4

3

4

4

4

5

5

0

3

3

4

4

4

5

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

4

4

0

3

3

4

4

4

3

4

4

4

5

5

0

3

3

4

4

4

5

3

4

4

4

5

5

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

4

4

0

3

3

4

4

4

3

4

4

4

5

5

0

3

3

4

4

4

5

3

4

4

4

5

5

0

3

3

4

4

4

5

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hmax

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

4

4

0

3

3

4

4

4

3

4

4

4

5

5

0

3

3

4

4

4

5

3

4

4

4

5

5

0

3

3

4

4

4

5

5

hmax({m}) = 5

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hadd

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

21

hadd({m}) = 21

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

hmax and hadd: Remarks

comparison of hmax and hadd:

both are safe and goal-aware

hmax is admissible and consistent; hadd is neither.

⇝ hadd not suited for optimal planning

However, hadd is usually much more informative than hmax.
Greedy best-first search with hadd is a decent algorithm.

Apart from not being admissible, hadd often vastly
overestimates the actual costs because
positive synergies between subgoals are not recognized.

⇝ FF heuristic

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

hmax and hadd: Remarks

comparison of hmax and hadd:

both are safe and goal-aware

hmax is admissible and consistent; hadd is neither.

⇝ hadd not suited for optimal planning

However, hadd is usually much more informative than hmax.
Greedy best-first search with hadd is a decent algorithm.

Apart from not being admissible, hadd often vastly
overestimates the actual costs because
positive synergies between subgoals are not recognized.

⇝ FF heuristic

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

hmax and hadd: Remarks

comparison of hmax and hadd:

both are safe and goal-aware

hmax is admissible and consistent; hadd is neither.

⇝ hadd not suited for optimal planning

However, hadd is usually much more informative than hmax.
Greedy best-first search with hadd is a decent algorithm.

Apart from not being admissible, hadd often vastly
overestimates the actual costs because
positive synergies between subgoals are not recognized.

⇝ FF heuristic

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

hmax and hadd: Remarks

comparison of hmax and hadd:

both are safe and goal-aware

hmax is admissible and consistent; hadd is neither.

⇝ hadd not suited for optimal planning

However, hadd is usually much more informative than hmax.
Greedy best-first search with hadd is a decent algorithm.

Apart from not being admissible, hadd often vastly
overestimates the actual costs because
positive synergies between subgoals are not recognized.

⇝ FF heuristic

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

FF Heuristic

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

FF Heuristic

The FF Heuristic

identical to hadd, but additional steps at the end:

Mark goal vertex.

Apply the following marking rules until nothing more to do:

marked action or goal vertex?
⇝ mark all predecessors
marked variable vertex v i in layer i ≥ 1?
⇝ mark one predecessor with minimal hadd value
(tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

The actions corresponding to the marked action vertices
build a relaxed plan.

The cost of this plan is the heuristic value.

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

21

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

3

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

3

0

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

3

0
3

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

3

0
3

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

3

0
3

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

3

0
3M

M

M

M

M

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Illustrative Example: hFF

m0

n0

o0

p0

q0

r0

s0

t0

a1
+3

m1

n1

o1

p1

q1

r1

s1

t1

a1
+3

a2
+1

a3
+1

a4
+1

m2

n2

o2

p2

q2

r2

s2

t2

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m3

n3

o3

p3

q3

r3

s3

t3

a1
+3

a2
+1

a3
+1

a4
+1

a5
+1

a6
+1

m4

n4

o4

p4

q4

r4

s4

t4

g

0
3

0

3

3

3

4

7

4

0

3

3

4

7

4

3

4

7

4

5

5

0

3

3

4

5

4

5

3

4

7

4

5

5

0

3

3

4

5

4

5

2121

3

4

5

4

5

3

4

5

4

5

3

4

5
4

5

3
4

4

0

3

0
3M

M

M

M

M

hFF({m}) = 3 + 1 + 1 + 1 + 1 = 7

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

FF Heuristic: Remarks

Like hadd, hFF is safe and goal-aware,
but neither admissible nor consistent.

approximation of h+ which is always at least as good as hadd

usually significantly better

can be computed in almost linear time (O(n log n))
in the size of the description of the planning task

computation of heuristic value depends on tie-breaking
of marking rules (hFF not well-defined)

one of the most successful planning heuristics

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

FF Heuristic: Remarks

Like hadd, hFF is safe and goal-aware,
but neither admissible nor consistent.

approximation of h+ which is always at least as good as hadd

usually significantly better

can be computed in almost linear time (O(n log n))
in the size of the description of the planning task

computation of heuristic value depends on tie-breaking
of marking rules (hFF not well-defined)

one of the most successful planning heuristics

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task ⟨V , I ,G ,A⟩.

Then

hmax(s) ≤ h+(s) ≤ h∗(s)

hmax(s) ≤ h+(s) ≤ hFF(s) ≤ hadd(s)

h∗ and hFF are incomparable

h∗ and hadd are incomparable

further remarks:

For non-admissible heuristics, it is generally neither good
nor bad to compute higher values than another heuristic.

For relaxation heuristics, the objective is to approximate h+

as closely as possible.

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Summary

Relaxed Planning Graphs Maximum and Additive Heuristics FF Heuristic Summary

Summary

Many delete relaxation heuristics can be viewed
as computations on relaxed planning graphs (RPGs).

examples: hmax, hadd, hFF

hmax and hadd propagate numeric values in the RPGs

difference: hmax computes the maximum of predecessor costs
for action and goal vertices; hadd computes the sum

hFF marks vertices and sums the costs
of marked action vertices.

generally: hmax(s) ≤ h+(s) ≤ hFF(s) ≤ hadd(s)

Foundations of Artificial Intelligence
F5. Automated Planning: Abstraction

Malte Helmert

University of Basel

May 7, 2025

SAS+ Abstractions Summary

Automated Planning: Overview

Chapter overview: automated planning

F1. Introduction

F2. Planning Formalisms

F3. Delete Relaxation

F4. Delete Relaxation Heuristics

F5. Abstraction

F6. Abstraction Heuristics

SAS+ Abstractions Summary

Planning Heuristics

We consider two basic ideas for general heuristics:

Delete Relaxation

Abstraction ⇝ this chapter

Abstraction: Idea

Estimate solution costs by considering a smaller planning task.

SAS+ Abstractions Summary

Planning Heuristics

We consider two basic ideas for general heuristics:

Delete Relaxation

Abstraction ⇝ this chapter

Abstraction: Idea

Estimate solution costs by considering a smaller planning task.

SAS+ Abstractions Summary

SAS+

SAS+ Abstractions Summary

SAS+ Encoding

in this chapter: SAS+ encoding
instead of STRIPS (see Chapter F2)

difference: state variables v not binary,
but with finite domain dom(v)

accordingly, preconditions, effects, goals
specified as partial assignments

everything else equal to STRIPS

(In practice, planning systems convert automatically
between STRIPS and SAS+.)

SAS+ Abstractions Summary

SAS+ Planning Task

Definition (SAS+ planning task)

A SAS+ planning task is a 5-tuple Π = ⟨V , dom, I ,G ,A⟩
with the following components:

V : finite set of state variables

dom: domain; dom(v) finite and non-empty for all v ∈ V

states: total assignments for V according to dom

I : the initial state (state = total assignment)

G : goals (partial assignment)

A: finite set of actions a with

pre(a): its preconditions (partial assignment)
eff(a): its effects (partial assignment)
cost(a) ∈ N0: its cost

German: SAS+-Planungsaufgabe

SAS+ Abstractions Summary

State Space of SAS+ Planning Task

Definition (state space induced by SAS+ planning task)

Let Π = ⟨V , dom, I ,G ,A⟩ be a SAS+ planning task.
Then Π induces the state space S(Π) = ⟨S ,A, cost,T , sI,SG⟩:

set of states: total assignments of V according to dom

actions: actions A defined as in Π

action costs: cost as defined in Π

transitions: s
a−→ s ′ for states s, s ′ and action a iff

pre(a) agrees with s (precondition satisfied)
s ′ agrees with eff(a) for all variables mentioned in eff; agrees
with s for all other variables (effects are applied)

initial state: sI = I

goal states: s ∈ SG for state s iff G agrees with s

German: durch SAS+-Planungsaufgabe induzierter Zustandsraum

SAS+ Abstractions Summary

Example: Logistics Task with One Package, Two Trucks

Example (one package, two trucks)

Consider the SAS+ planning task ⟨V , dom, I ,G ,A⟩ with:
V = {p, tA, tB}
dom(p) = {L,R,A,B} and dom(tA) = dom(tB) = {L,R}
I = {p 7→ L, tA 7→ R, tB 7→ R}
G = {p 7→ R}
A = {loadi ,j | i ∈ {A,B}, j ∈ {L,R}}

∪ {unloadi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei ,j ,j ′ | i ∈ {A,B}, j , j ′ ∈ {L,R}, j ̸= j ′} with:

loadi,j has preconditions {ti 7→ j , p 7→ j}, effects {p 7→ i}
unloadi,j has preconditions {ti 7→ j , p 7→ i}, effects {p 7→ j}
movei,j,j′ has preconditions {ti 7→ j}, effects {ti 7→ j ′}
All actions have cost 1.

SAS+ Abstractions Summary

State Space for Example Task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

state {p 7→ i , tA 7→ j , tB 7→ k} denoted as ijk

annotations of edges not shown for simplicity

for example, edge from LLL to ALL has annotation loadA,L

SAS+ Abstractions Summary

Abstractions

SAS+ Abstractions Summary

State Space Abstraction

State space abstractions drop distinctions between certain states,
but preserve the state space behavior as well as possible.

An abstraction of a state space S is defined by
an abstraction function α that determines which states
can be distinguished in the abstraction.

Based on S and α, we compute the abstract state space Sα

which is “similar” to S but smaller.

main idea: use optimal solution cost in Sα as heuristic

German: Abstraktionsfunktion, abstrakter Zustandsraum

SAS+ Abstractions Summary

Induced Abstraction

Definition (induced abstraction)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space,
and let α : S → S ′ be a surjective function.

The abstraction of S induced by α, denoted as Sα,
is the state space Sα = ⟨S ′,A, cost,T ′, s ′I , S

′
G⟩ with:

T ′ = {⟨α(s), a, α(t)⟩ | ⟨s, a, t⟩ ∈ T}
s ′I = α(sI)

S ′
G = {α(s) | s ∈ SG}

German: induzierte Abstraktion

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Abstraction: Example

concrete state space with
states S = {A,B,C ,D,E ,F}

A B C

D E F

abstraction function α : S → Sα

α(A) = W α(B) = X α(C) = Y

α(D) = Z α(E) = Z α(F) = Y

abstract state space with
states Sα = {W ,X ,Y ,Z}

W X

Y

Z

intuition: grouping states

A B C

D E FD E

C

F

SAS+ Abstractions Summary

Summary

SAS+ Abstractions Summary

Summary

basic idea of abstractions: simplify state space
by considering a smaller version

formally: abstraction function α maps states to abstract
states and thus defines which states can be distinguished
by the resulting abstraction

induces abstract state space

Foundations of Artificial Intelligence
F6. Automated Planning: Abstraction Heuristics

Malte Helmert

University of Basel

May 7, 2025

Abstraction Heuristics Pattern Databases Summary

Automated Planning: Overview

Chapter overview: automated planning

F1. Introduction

F2. Planning Formalisms

F3. Delete Relaxation

F4. Delete Relaxation Heuristics

F5. Abstraction

F6. Abstraction Heuristics

Abstraction Heuristics Pattern Databases Summary

Abstraction Heuristics

Abstraction Heuristics Pattern Databases Summary

Abstraction Heuristic

Given an abstraction function α for a state space S,
use abstract solution cost (solution cost of α(s) in Sα) as
heuristic for concrete solution cost (solution cost of s in S).

Definition (abstraction heuristic)

The abstraction heuristic for abstraction α maps each state s
to its abstract solution cost

hα(s) = h∗Sα(α(s)),

where h∗Sα is the perfect heuristic in Sα.

German: abstrakte/konkrete Zielabstände, Abstraktionsheuristik

Abstraction Heuristics Pattern Databases Summary

Abstraction: Example

concrete state space

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Abstraction Heuristics Pattern Databases Summary

Abstraction: Example

(an) abstract state space

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Remark: Most arcs correspond to several (parallel) transitions

Remark:

with different labels.

Abstraction Heuristics Pattern Databases Summary

Abstraction Heuristic: Example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hα({p 7→ L, tA 7→ R, tB 7→ R}) = 3

Abstraction Heuristics Pattern Databases Summary

Abstraction Heuristics: Discussion

Every abstraction heuristic is admissible and consistent.
(proof idea?)

The choice of the abstraction function α is very important.

Every α yields an admissible and consistent heuristic.
But most α lead to poor heuristics.

An effective α must yield an informative heuristic . . .

. . . as well as being efficiently computable.

How to find a suitable α?

Abstraction Heuristics Pattern Databases Summary

Automatic Computation of Suitable Abstractions

Main Problem with Abstraction Heuristics

How to find a good abstraction?

Several successful methods:

pattern databases (PDBs) ⇝ this course
(Culberson & Schaeffer, 1996)

merge-and-shrink abstractions
(Dräger, Finkbeiner & Podelski, 2006)

Cartesian abstractions (Seipp & Helmert, 2013)

domain abstractions (Kreft et al., 2023)

German: Pattern Databases, Merge-and-Shrink-Abstraktionen,
Kartesische Abstraktionen, Domänenabstraktionen

Abstraction Heuristics Pattern Databases Summary

Pattern Databases

Abstraction Heuristics Pattern Databases Summary

Pattern Databases: Background

The most common abstraction heuristics are
pattern database heuristics.

originally introduced for the 15-puzzle (Culberson &
Schaeffer, 1996) and for Rubik’s Cube (Korf, 1997)

introduced for automated planning by Edelkamp (2001)

for many search problems the best known heuristics

many many research papers studying

theoretical properties
efficient implementation and application
pattern selection
. . .

Abstraction Heuristics Pattern Databases Summary

Pattern Databases: Projections

A PDB heuristic for a planning task is an abstraction heuristic
where

some aspects (= state variables) of the task
are preserved with perfect precision while

all other aspects are not preserved at all.

formalized as projections to a pattern P ⊆ V :

πP(s) = {v 7→ s(v) | v ∈ P}

example:

s = {p 7→ L, tA 7→ R, tB 7→ R}
projection on P = {p} (= ignore trucks):
πP(s) = {p 7→ L}
projection on P = {p, tA} (= ignore truck B):
πP(s) = {p 7→ L, tA 7→ R}

German: Projektionen

Abstraction Heuristics Pattern Databases Summary

Pattern Databases: Definition

Definition (pattern database heuristic)

Let P be a subset of the variables of a planning task.

The abstraction heuristic induced by the projection πP on P is
called pattern database heuristic (PDB heuristic) with pattern P.

abbreviated notation: hP for hπP

German: Pattern-Database-Heuristik

remark:

“pattern databases” in analogy to endgame databases
(which have been successfully applied in 2-person-games)

Abstraction Heuristics Pattern Databases Summary

Example: Concrete State Space

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}

Abstraction Heuristics Pattern Databases Summary

Example: Projection (1)

abstraction induced by π{package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h{package}(LRR) = 2

Abstraction Heuristics Pattern Databases Summary

Example: Projection (2)

abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

Abstraction Heuristics Pattern Databases Summary

Example: Projection (2)

abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

Abstraction Heuristics Pattern Databases Summary

Pattern Databases in Practice

practical aspects which we do not discuss in detail:

How to automatically find good patterns?

How to combine multiple PDB heuristics?

How to implement PDB heuristics efficiently?

good implementations efficiently handle abstract state spaces
with 107, 108 or more abstract states
effort independent of the size of the concrete state space
usually all heuristic values are precomputed
⇝ space complexity = number of abstract states

Abstraction Heuristics Pattern Databases Summary

Summary

Abstraction Heuristics Pattern Databases Summary

Summary

basic idea of abstraction heuristics: estimate solution cost
by considering a smaller planning task.

formally: abstraction function α maps states to abstract
states and thus defines which states can be distinguished
by the resulting heuristic.

induces abstract state space whose solution costs
are used as heuristic

Pattern database heuristics are abstraction heuristics
based on projections onto state variable subsets (patterns):
states are distinguishable iff they differ on the pattern.

Foundations of Artificial Intelligence
G1. Board Games: Introduction and State of the Art

Malte Helmert

University of Basel

May 14, 2025

Introduction Games State of the Art Summary

Board Games: Overview

chapter overview:

G1. Introduction and State of the Art

G2. Minimax Search and Evaluation Functions

G3. Alpha-Beta Search

G4. Stochastic Games

G5. Monte-Carlo Tree Search Framework

G6. Monte-Carlo Tree Search Variants

Introduction Games State of the Art Summary

Introduction

Introduction Games State of the Art Summary

Why Board Games?

Board games are one of the oldest areas of AI
(Shannon 1950; Turing 1950).

abstract class of problems, easy to formalize

obviously “intelligence” is needed (really?)

dream of an intelligent machine capable of playing chess
is older than electronic computers

cf. von Kempelen’s “Schachtürke” (1769),
Torres y Quevedo’s “El Ajedrecista” (1912)

Introduction Games State of the Art Summary

Board Games

algorithms considered previously:

agent has full control over environment:

agent is only acting entity

effects of actions fully predictable

games considered now (Chapters G1–G3):games considered later (Chapter G4):

environment changes independently of agent:

other agent (with opposing objective) acts

effects of actions underly chance

Introduction Games State of the Art Summary

Board Games

algorithms considered previously:

agent has full control over environment:

agent is only acting entity

effects of actions fully predictable

games considered now (Chapters G1–G3):

games considered later (Chapter G4):

environment changes independently of agent:

other agent (with opposing objective) acts

effects of actions underly chance

Introduction Games State of the Art Summary

Board Games

algorithms considered previously:

agent has full control over environment:

agent is only acting entity

effects of actions fully predictable

games considered now (Chapters G1–G3):

games considered later (Chapter G4):

environment changes independently of agent:

other agent (with opposing objective) acts

effects of actions underly chance

Introduction Games State of the Art Summary

Applications

Introduction Games State of the Art Summary

Game Applications Beyond Specific Board Games

video games general game playing cyber security

wildlife preservation generative adversarial networks auctions

http://ggp.stanford.edu/
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Introduction Games State of the Art Summary

Game Environments

game environments cover entire spectrum of properties
⇝ need some restrictions

important classes of games that we do not consider:

with randomness (e.g., backgammon) (⇝ Chapter G4)

with more than two players (e.g., poker)

with hidden information (e.g., scrabble)

with simultaneous moves (e.g., rock-paper-scissors)

without turns (e.g., many video games)

without zero-sum property (e.g., auctions)

. . .

many of these can be handled with similar/generalized algorithms

Introduction Games State of the Art Summary

Properties of Games Considered (for Now)

current situation representable by finite set of positions

there is a finite set of moves players can play

effects of actions are deterministic

the game ends when a terminal position is reached

a terminal position is reached after a finite number of steps (*)

terminal positions yield a utility

no randomness, no hidden information

(*) Our definitions do not enforce this, and there are some subtleties

(*)

associated with this requirement which we ignore.

Introduction Games State of the Art Summary

Properties of Games Considered (for Now)

there are exactly two players
called MAX and MIN

both players observe the entire position
(perfect information)

it is the turn of exactly one player
in each non-terminal position

utility for MAX is opposite of
utility for MIN (zero-sum game)

MAX aims to maximize utility,
MIN aims to minimize utility

Introduction Games State of the Art Summary

Classification

classification:

Board Games

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent (adversarial)

problem solving method:

problem-specific vs. general vs. learning

Introduction Games State of the Art Summary

Informal Description

objective of the agent:

compute a strategy

that determines which move to execute

in the current position or in any (reachable) position

performance measure:

maximize utility (given available resources)

To study board games, we need a formal model.

Introduction Games State of the Art Summary

Games

Introduction Games State of the Art Summary

Example: Chess

Example (Chess)

positions described by:

configuration of pieces
whose turn it is
en-passant and castling rights

turns alternate

terminal positions: checkmate and stalemate positions

utility of terminal position for first player (white):

+1 if black is checkmated
0 if stalemate position
−1 if white is checkmated

Introduction Games State of the Art Summary

Terminology Compared to State-Space Search

Many concepts for board games are similar to state-space search.
Terminology differs, but is often in close correspondence:

state ⇝ position

goal state ⇝ terminal position

action ⇝ move

search tree ⇝ game tree

Introduction Games State of the Art Summary

Definition

Definition (game)

A game is a 7-tuple S = ⟨S ,A,T , sI, SG, utility, player⟩ with
finite set of positions S

finite set of moves A

deterministic transition relation T ⊆ S × A× S

initial position sI ∈ S

set of terminal positions SG ⊆ S

utility function utility : SG → R
player function player : S \ SG → {MAX,MIN}

Introduction Games State of the Art Summary

Reminder: Bounded Inc-and-Square Search Problem

informal description:

find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions

on the natural numbers from 0 to 9

that reaches the number 6 or 7

starting from the number 1

assuming each action costs 1.

0

1

2

3

45

6

7

8

9

Introduction Games State of the Art Summary

Running Example: Bounded Inc-and-Square Game

informal description:

Players alternatingly apply a

increment-mod10 (inc) or
square-mod10 (sqr) move

on the natural numbers from 0 to 9

starting from the number 1;

if the game reaches the number 6 or 7

or after a fixed number of 4 moves

MAX obtains utility u (MIN: −u)
where u is the current number.

formal model:

S = {ski | 0 ≤ i ≤ 9, 0 ≤ k ≤ 4}

A = {inc, sqr}

for 0 ≤ i ≤ 9 and 0 ≤ k < 4:

⟨ski , inc, s
k+1
(i+1) mod 10⟩ ∈ T

⟨ski , sqr, s
k+1
i2 mod 10⟩ ∈ T

sI = s01

SG = {ski | i ∈ {6, 7} ∨ k = 4}

utility(ski) = i for all ski ∈ SG

player(ski) = MAX if k even and
player(ski) = MIN otherwise

Introduction Games State of the Art Summary

Running Example: Bounded Inc-and-Square Game

informal description:

Players alternatingly apply a

increment-mod10 (inc) or
square-mod10 (sqr) move

on the natural numbers from 0 to 9

starting from the number 1;

if the game reaches the number 6 or 7

or after a fixed number of 4 moves

MAX obtains utility u (MIN: −u)
where u is the current number.

formal model:

S = {ski | 0 ≤ i ≤ 9, 0 ≤ k ≤ 4}

A = {inc, sqr}

for 0 ≤ i ≤ 9 and 0 ≤ k < 4:

⟨ski , inc, s
k+1
(i+1) mod 10⟩ ∈ T

⟨ski , sqr, s
k+1
i2 mod 10⟩ ∈ T

sI = s01

SG = {ski | i ∈ {6, 7} ∨ k = 4}

utility(ski) = i for all ski ∈ SG

player(ski) = MAX if k even and
player(ski) = MIN otherwise

Introduction Games State of the Art Summary

Why are Board Games Difficult?

As in classical search problems, the number of positions
of (interesting) board games is huge:

Chess: roughly 1040 reachable positions;
game with 50 moves/player and branching factor 35:
tree size roughly 35100 ≈ 10154

Go: more than 10100 positions;
game with roughly 300 moves and branching factor 200:
tree size roughly 200300 ≈ 10690

In addition, it is not sufficient to find a solution path:

We need a strategy reacting to all possible opponent moves.

Usually, such a strategy is implemented as an algorithm
that provides the next move on the fly (i.e., not precomputed).

Introduction Games State of the Art Summary

Strategies

Definition (strategy, partial strategy)

Let S = ⟨S ,A,T , sI,SG, utility, player⟩ be a game
and let SMAX = {s ∈ S | player(s) = MAX}.
A partial strategy for player MAX is a function

π : S ′
MAX 7→ A

with S ′
MAX ⊆ SMAX and π(s) = a implies that a is applicable in s.

If S ′
MAX = SMAX, then π is also called total strategy (or strategy).

We always take the viewpoint of MAX, but SMIN and
a (partial/total) strategy for MIN are defined accordingly.

Introduction Games State of the Art Summary

Specific vs. General Algorithms

We consider approaches that must be tailored
to a specific board game for good performance,
e.g., by using a suitable evaluation function.

⇝ see chapters on informed search methods

Analogously to the generalization of search methods
to declaratively described problems (automated planning),
board games can be considered in a more general setting,
where game rules (state spaces) are part of the input.

⇝ general game playing: regular competitions since 2005

Introduction Games State of the Art Summary

Algorithms for Board Games

properties of good algorithms for board games:

look ahead as far as possible (deep search)

consider only interesting parts of the game tree
(selective search, analogously to heuristic search algorithms)

evaluate current position as accurately as possible
(evaluation functions, analogously to heuristics)

Introduction Games State of the Art Summary

State of the Art

Introduction Games State of the Art Summary

State of the Art

some well-known board games:

Chess, Go: ⇝ next slides

Othello: Logistello defeated human world champion in 1997;
best computer players significantly stronger than best humans

Checkers: Chinook official world champion (since 1994);
proved in 2007 that it cannot be defeated
and perfect game play results in a draw (game “solved”)

Introduction Games State of the Art Summary

Computer Chess

World champion Garry Kasparov was defeated by Deep Blue
in 1997 (6 matches, result 3.5–2.5).

specialized chess hardware (30 cores with 16 chips each)

alpha-beta search (⇝ Chapter G3) with extensions

database of opening moves from millions of chess games

Nowadays, chess programs on standard PCs are much stronger
than all human players.

Introduction Games State of the Art Summary

Computer Chess: Quotes

Claude Shannon (1950)

The chess machine is an ideal one to start with, since

1 the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

2 it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

3 chess is generally considered to require “thinking”
for skillful play, [. . .]

4 the discrete structure of chess fits well
into the digital nature of modern computers.

Alexander Kronrod (1965)

Chess is the drosophila of Artificial Intelligence.

Introduction Games State of the Art Summary

Computer Chess: Quotes

Claude Shannon (1950)

The chess machine is an ideal one to start with, since

1 the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

2 it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

3 chess is generally considered to require “thinking”
for skillful play, [. . .]

4 the discrete structure of chess fits well
into the digital nature of modern computers.

Alexander Kronrod (1965)

Chess is the drosophila of Artificial Intelligence.

Introduction Games State of the Art Summary

Computer Chess: Another Quote

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
“Chess is the drosophila of artificial intelligence.”

However, computer chess has developed much as genetics
might have if the geneticists had concentrated their efforts
starting in 1910 on breeding racing drosophilae. We would have
some science, but mainly we would have very fast fruit flies.

Introduction Games State of the Art Summary

Computer Chess: Another Quote

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
“Chess is the drosophila of artificial intelligence.”

However, computer chess has developed much as genetics
might have if the geneticists had concentrated their efforts
starting in 1910 on breeding racing drosophilae. We would have
some science, but mainly we would have very fast fruit flies.

Introduction Games State of the Art Summary

Computer Go

Computer Go

The best Go programs use Monte-Carlo techniques (UCT).

Until autumn 2015, leading programs Zen, Mogo, Crazystone
played on the level of strong amateurs (1 kyu/1 dan).

Until then, Go was considered as one of the “last” games that
are too complex for computers.

In October 2015, Deep Mind’s AlphaGo defeated
the European Champion Fan Hui (2p dan) with 5:0.

In March 2016, AlphaGo defeated world-class player
Lee Sedol (9p dan) with 4:1. The prize for the winner was
1 million US dollars.

Introduction Games State of the Art Summary

Summary

Introduction Games State of the Art Summary

Summary

Board games can be considered as classical search problems
extended by an opponent.

Both players try to reach a terminal position
with (for the respective player) maximal utility.

very successful for a large number of popular games

Deep Blue defeated the world chess champion in 1997.
Today, chess programs play vastly more strongly than humans.

AlphaGo defeated one of the world’s best players
in the game of Go in 2016.

Foundations of Artificial Intelligence
G2. Board Games: Minimax Search and Evaluation Functions

Malte Helmert

University of Basel

May 14, 2025

Minimax Search Evaluation Functions Summary

Board Games: Overview

chapter overview:

G1. Introduction and State of the Art

G2. Minimax Search and Evaluation Functions

G3. Alpha-Beta Search

G4. Stochastic Games

G5. Monte-Carlo Tree Search Framework

G6. Monte-Carlo Tree Search Variants

Minimax Search Evaluation Functions Summary

Minimax Search

Minimax Search Evaluation Functions Summary

Example: Tic-Tac-Toe

consider it’s the turn of player :

If the utility for win/draw/lose for player is +1/0/-1,
what is an appropriate utility value for the depicted position?

Minimax Search Evaluation Functions Summary

Example: Tic-Tac-Toe

consider it’s the turn of player :

And what about this one?

what is an appropriate utility value for the depicted position?

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s125

incinc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s345

incinc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s345

incinc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s345

incinc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqrsqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr incsqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr inc

sqr inc

Minimax Search Evaluation Functions Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
position with utility function

strategy: action that maximizes
utility value (minimax decision)

compute utility value of inner nodes

from below to above through the tree:

MIN’s turn: utility value is minimum of
utility values of children
MAX’s turn: utility value is maximum of
utility values of children

s01

5

s12

5

inc

inc

3

s23

inc

5

inc

s24

sqr

6

sqr

5 3

s34

5

inc

inc

s39

sqr

0

sqr

6

sqr

sqr

s35

inc

5

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr inc

sqr inc

Minimax Search Evaluation Functions Summary

Minimax: Pseudo-Code

function minimax(p)

if p is terminal position:
return ⟨utility(p),none⟩

best move := none
if player(p) = MAX:

v := −∞
else:

v := ∞
for each ⟨move, p′⟩ ∈ succ(p):

⟨v ′, best move′⟩ := minimax(p′)
if (player(p) = MAX and v ′ > v) or

if

(player(p) = MIN and v ′ < v):
v := v ′

best move := move
return ⟨v , best move⟩

Minimax Search Evaluation Functions Summary

Discussion

minimax is the simplest (decent) search algorithm for games

yields optimal strategy (in the game-theoretic sense, i.e.,
under the assumption that the opponent plays perfectly)

MAX obtains at least the utility value computed for the root,
no matter how MIN plays

if MIN plays perfectly, MAX obtains exactly
the computed value

Minimax Search Evaluation Functions Summary

Limitations of Minimax

What if the size of the game tree is too big for minimax?

⇝ heuristic alpha-beta search

heuristics (evaluation functions): rest of this chapter

alpha-beta search: next chapter

Minimax Search Evaluation Functions Summary

Evaluation Functions

Minimax Search Evaluation Functions Summary

Evaluation Functions

Definition (evaluation function)

Let S be a game with set of positions S .
An evaluation function for S is a function

h : S → R

which assigns a real-valued number to each position s ∈ S .

Looks familiar? Commonalities? Differences?

Minimax Search Evaluation Functions Summary

Intuition

problem: game tree too big

idea: search only up to predefined depth

depth reached: estimate the utility value according to
heuristic criteria (as if terminal position had been reached)

accuracy of evaluation function is crucial

high values should relate to high “winning chances”

at the same time, the evaluation should be
efficiently computable in order to be able to search deeply

Minimax Search Evaluation Functions Summary

Example: Connect Four

⇕ 3/2 0/1 1/3 1/0 0/1 3/1 3/3 ⇕
⇔

0/0

0/0

0/0

4/4

4/4

4/4

⇔
⇕ , ⇕ accordingly

evalution function: difference of number of possible lines of four

Minimax Search Evaluation Functions Summary

General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:

h(s) = w0 + w1f1(s) + w2f2(s) + · · ·+ wnfn(s),

where wi are weights and fi are features.

assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

features are (usually) provided by human experts

weights provided by human experts or learned automatically

example: evaluation function in chess (cf. Lolli 1763)

feature f playerp f playerk f playerb f playerr f playerq

no. of pieces pawn knight bishop rook queen
weight for MAX 1 3 3 5 9
weight for MIN −1 −3 −3 −5 −9

often additional features based on pawn structure, mobility, . . .

⇝ h(s) = f MAX
p (s) + 3f MAX

k (s) + 3f MAX
b (s) + 5f MAX

r (s) + 9f MAX
q (s)

−f MIN
p (s)− 3f MIN

k (s)− 3f MIN
b (s)− 5f MIN

r (s)− 9f MIN
q (s)

Minimax Search Evaluation Functions Summary

General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:

h(s) = w0 + w1f1(s) + w2f2(s) + · · ·+ wnfn(s),

where wi are weights and fi are features.

assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

features are (usually) provided by human experts

weights provided by human experts or learned automatically

example: evaluation function in chess (cf. Lolli 1763)

feature f playerp f playerk f playerb f playerr f playerq

no. of pieces pawn knight bishop rook queen
weight for MAX 1 3 3 5 9
weight for MIN −1 −3 −3 −5 −9

often additional features based on pawn structure, mobility, . . .

⇝ h(s) = f MAX
p (s) + 3f MAX

k (s) + 3f MAX
b (s) + 5f MAX

r (s) + 9f MAX
q (s)

−f MIN
p (s)− 3f MIN

k (s)− 3f MIN
b (s)− 5f MIN

r (s)− 9f MIN
q (s)

Minimax Search Evaluation Functions Summary

General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:

h(s) = w0 + w1f1(s) + w2f2(s) + · · ·+ wnfn(s),

where wi are weights and fi are features.

assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

features are (usually) provided by human experts

weights provided by human experts or learned automatically

example: evaluation function in chess (cf. Lolli 1763)

feature f playerp f playerk f playerb f playerr f playerq

no. of pieces pawn knight bishop rook queen
weight for MAX 1 3 3 5 9
weight for MIN −1 −3 −3 −5 −9

often additional features based on pawn structure, mobility, . . .

⇝ h(s) = f MAX
p (s) + 3f MAX

k (s) + 3f MAX
b (s) + 5f MAX

r (s) + 9f MAX
q (s)

−f MIN
p (s)− 3f MIN

k (s)− 3f MIN
b (s)− 5f MIN

r (s)− 9f MIN
q (s)

Minimax Search Evaluation Functions Summary

General Method: State Value Networks

alternative: evaluation functions based on neural networks

value network takes position features as input
(usually provided by human experts)

and outputs utility value prediction

weights of network learned automatically

example: value network of AlphaGo

start with policy network trained on human expert games

train sequence of policy networks by self-play against earlier version

final step: convert to utility value network
(slightly worse informed but much faster)

⇝ Mastering the game of Go with deep neural networks and tree search

⇝

(Silver et al., 2016)

Minimax Search Evaluation Functions Summary

General Method: State Value Networks

alternative: evaluation functions based on neural networks

value network takes position features as input
(usually provided by human experts)

and outputs utility value prediction

weights of network learned automatically

example: value network of AlphaGo

start with policy network trained on human expert games

train sequence of policy networks by self-play against earlier version

final step: convert to utility value network
(slightly worse informed but much faster)

⇝ Mastering the game of Go with deep neural networks and tree search

⇝

(Silver et al., 2016)

Minimax Search Evaluation Functions Summary

How Deep Shall We Search?

objective: search as deeply as possible within a given time

problem: search time difficult to predict

solution: iterative deepening

sequence of searches of increasing depth
time expires: return result of previously finished search
overhead acceptable (⇝ Chapter B8)

refinement: search deeper in “turbulent” states
(i.e., with strong fluctuations of the evaluation function)
⇝ quiescence search

example chess: deepen the search after capturing moves

Minimax Search Evaluation Functions Summary

Summary

Minimax Search Evaluation Functions Summary

Summary

Minimax is a tree search algorithm that plays perfectly
(in the game-theoretic sense), but its complexity is O(bd)
(branching factor b, search depth d).

In practice, the search depth must be bounded
⇝ apply evaluation functions.

Foundations of Artificial Intelligence
G3. Board Games: Alpha-Beta Search

Malte Helmert

University of Basel

May 19, 2025

Alpha-Beta Search Move Ordering Summary

Board Games: Overview

chapter overview:

G1. Introduction and State of the Art

G2. Minimax Search and Evaluation Functions

G3. Alpha-Beta Search

G4. Stochastic Games

G5. Monte-Carlo Tree Search Framework

G6. Monte-Carlo Tree Search Configurations

Alpha-Beta Search Move Ordering Summary

Limitations of Minimax

What if the size of the game tree is too big for minimax?

⇝ heuristic alpha-beta search

heuristics (evaluation functions): previous chapter

alpha-beta search: this chapter

Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search

Alpha-Beta Search Move Ordering Summary

Can We Save Search Effort?

What do we know about the utility
value of s24 in this situation?

it’s 6 or higher

And about the utility value of s12?

it’s 5 (independently of the
missing subtree below s24)

⇝ we don’t have to look at this

5

s01

5

s12

inc

3

5

inc

6

s24

sqr

5 3

5

inc

0

sqr

6

sqr

5

inc

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr inc

Alpha-Beta Search Move Ordering Summary

Can We Save Search Effort?

What do we know about the utility
value of s24 in this situation?

it’s 6 or higher

And about the utility value of s12?

it’s 5 (independently of the
missing subtree below s24)

⇝ we don’t have to look at this

5

s01

5

s12

inc

3

5

inc

6

s24

sqr

5 3

5

inc

0

sqr

6

sqr

5

inc

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr inc

Alpha-Beta Search Move Ordering Summary

Can We Save Search Effort?

What do we know about the utility
value of s24 in this situation?
it’s 6 or higher

And about the utility value of s12?

it’s 5 (independently of the
missing subtree below s24)

⇝ we don’t have to look at this

5

s01

5

s12

inc

3

5

inc

6

s24

sqr

5 3

5

inc

0

sqr

6

sqr

5

inc

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr inc

Alpha-Beta Search Move Ordering Summary

Can We Save Search Effort?

What do we know about the utility
value of s24 in this situation?
it’s 6 or higher

And about the utility value of s12?
it’s 5 (independently of the
missing subtree below s24)

⇝ we don’t have to look at this

5

s01

5

s12

inc

3

5

inc

6

s24

sqr

5 3

5

inc

0

sqr

6

sqr

5

inc

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr inc

Alpha-Beta Search Move Ordering Summary

Can We Save Search Effort?

What do we know about the utility
value of s24 in this situation?
it’s 6 or higher

And about the utility value of s12?
it’s 5 (independently of the
missing subtree below s24)

⇝ we don’t have to look at this

5

s01

5

s12

inc

3

5

inc

6

s24

sqr

5 3

5

inc

0

sqr

6

sqr

5

inc

inc

4 5 3 1

5

inc

6

sqr

0

inc

1

sqr

6

inc

5

sqr

4 9 5 6 3 4 2 1

sqr

inc sqr

inc sqr

inc sqr inc sqr inc sqr inc sqr

sqr inc

Alpha-Beta Search Move Ordering Summary

Idea

idea: for every search node, use two values α and β such that
we know that the subtree rooted at the node

is irrelevant if its utility is ≤ α
because MAX will prevent entering it when playing optimally

is irrelevant if its utility is ≥ β
because MIN will prevent entering it when playing optimally

We can prune every node with α ≥ β
because it must be irrelevant (no matter what its utility is).

Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Pseudo Code

algorithm skeleton the same as minimax

function signature extended by two variables α and β

function alpha-beta-main(p)

⟨v ,move⟩ := alpha-beta(p,−∞,+∞)
return move

Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Pseudo-Code

function alpha-beta(p, α, β)

if p is terminal position:
return ⟨utility(p),none⟩

initialize v and best move [as in minimax]
for each ⟨move, p′⟩ ∈ succ(p):

⟨v ′, best move′⟩ := alpha-beta(p′, α, β)
update v and best move [as in minimax]
if player(p) = MAX:

if v ≥ β:
return ⟨v ,none⟩

α := max{α, v}
if player(p) = MIN:

if v ≤ α:
return ⟨v ,none⟩

β := min{β, v}
return ⟨v , best move⟩

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞
5

5 +∞
5

5 +∞
5

5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞
5

5 +∞
5

5 +∞

inc

+∞−∞ +∞5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞
5

5 +∞
5

5 +∞

inc

+∞−∞ +∞5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞

−∞−∞ +∞
5

5 +∞
5

5 +∞
5

5 +∞

inc

+∞−∞ +∞5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5

5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5

5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞

0
5 +∞0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞

0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞

+∞−∞ +∞

5−∞ 5
5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞
5

5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞

5−∞ 5

5−∞ 5
5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5
6

−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5

5−∞ 5

5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5

6
−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5

5−∞ 5

5−∞ 5
5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5

6
−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞

−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5

5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞

5
5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

−∞5 +∞

−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞
5

5 +∞

inc

+∞
5 +∞4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

−∞5 +∞

−∞5 +∞

4
5 +∞

4
5 +∞

5
5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

−∞5 +∞

−∞5 +∞

4
5 +∞

4
5 +∞

5
5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞

4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞

4
5 +∞

4
5 +∞

5
5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞

4
5 +∞

5
5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞

4
5 +∞

5
5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞

5
5 +∞

5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞

+∞
5 +∞

5
5 +∞5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞

5
5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞

5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞

5
5 +∞

5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞

5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Example

α: lower bound of relevant utility

a MAX subtree is pruned if utility ≥ β

β: upper bound of relevant utility

a MIN subtree is pruned if utility ≤ α

−∞−∞ +∞−∞−∞ +∞
5

5 +∞
5

5 +∞

5
5 +∞

+∞−∞ +∞+∞−∞ +∞5−∞ 5
5−∞ 5
5−∞ 5

5−∞ 5

inc

−∞−∞ +∞−∞−∞ +∞
5

5 +∞

5
5 +∞

5
5 +∞

inc

+∞−∞ +∞

5−∞ 5
5−∞ 5

inc

5

inc

6

sqr

+∞
5 +∞0
5 +∞

0
5 +∞

sqr

0

inc

−∞−∞ 5
6

−∞ 5

6
−∞ 5

sqr

6

sqr

+∞
5 +∞+∞
5 +∞5
5 +∞

5
5 +∞

sqr

−∞5 +∞−∞5 +∞
4

5 +∞
4

5 +∞
5

5 +∞

5
5 +∞

inc

+∞
5 +∞

4
5 +∞4
5 +∞

inc

4

inc

+∞
5 +∞5
5 +∞

5
5 +∞

sqr

5

inc

Alpha-Beta Search Move Ordering Summary

Discussion

5

5

inc

5

inc

5

inc

5

inc

6

sqr

0

sqr

0

inc

6

sqr

6

sqr

5

sqr

5

inc

4

inc

4

inc

5

sqr

5

inc

What do the utility values express?

some utility values exact

some utility
values missing

some utility values are

lower or upper bounds

What does this mean for the computed policy?

only partial

need to take earliest move in case of ties

optimal in positions reachable under optimal play

Alpha-Beta Search Move Ordering Summary

Discussion

5

5

inc

5

inc

5

inc

5

inc

6

sqr

0

sqr

0

inc

6

sqr

6

sqr

5

sqr

5

inc

4

inc

4

inc

5

sqr

5

inc

What do the utility values express?

some utility values exact

some utility
values missing

some utility values are

lower or upper bounds

What does this mean for the computed policy?

only partial

need to take earliest move in case of ties

optimal in positions reachable under optimal play

Alpha-Beta Search Move Ordering Summary

Discussion

5

5

inc

5

inc

5

inc

5

inc

6

sqr

0

sqr

0

inc

6

sqr

6

sqr

5

sqr

5

inc

4

inc

4

inc

5

sqr

5

inc

What do the utility values express?

some utility values exact

some utility
values missing

some utility values are

lower or upper bounds

What does this mean for the computed policy?

only partial

need to take earliest move in case of ties

optimal in positions reachable under optimal play

Alpha-Beta Search Move Ordering Summary

Discussion

5

5

inc

5

inc

5

inc

5

inc

6

sqr

0

sqr

0

inc

6

sqr

6

sqr

5

sqr

5

inc

4

inc

4

inc

5

sqr

5

inc

What do the utility values express?

some utility values exact

some utility
values missing

some utility values are

lower or upper bounds

What does this mean for the computed policy?

only partial

need to take earliest move in case of ties

optimal in positions reachable under optimal play

Alpha-Beta Search Move Ordering Summary

Move Ordering

Alpha-Beta Search Move Ordering Summary

How Much Effort Do We Save?

5

5

inc

5

inc

5

inc

5

inc

6

sqr

0

sqr

0

inc

6

sqr

6

sqr

5

sqr

5

inc

4

inc

4

inc

5

sqr

5

inc

1

sqr

inc

6

inc

5

sqr

9

sqr

6

sqr

sqr

inc sqr

3

inc

4

sqr

2

inc

1

sqr

if successors are considered in opposite order, we prune only a few positions

Alpha-Beta Search Move Ordering Summary

How Much Effort Do We Save?

5

5

inc

5

inc

5

inc

5

inc

6

sqr

0

sqr

0

inc

6

sqr

6

sqr

5

sqr

5

inc

4

inc

4

inc

5

sqr

5

inc

1

sqr

inc

6

inc

5

sqr

9

sqr

6

sqr

sqr

inc sqr

3

inc

4

sqr

2

inc

1

sqr

if successors are considered in opposite order, we prune only a few positions

Alpha-Beta Search Move Ordering Summary

Were We Lucky?

5

5

inc

5

inc

5

inc

5

inc

6

sqr

0

sqr

0

inc

6

sqr

6

sqr

5

sqr

5

inc

inc

4

inc

5

sqr

5

inc

1

sqr

5

inc

6

inc

5

sqr

9

sqr

6

sqr

3

sqr

3

inc

1

sqr

3

inc

4

sqr

2

inc

1

sqr

if successors are considered in reverse order, we prune only a few positions

Alpha-Beta Search Move Ordering Summary

Move Ordering

idea: first consider the successors that are likely to be best

domain-specific ordering function
e.g., chess: captures < threats < forward moves < backward moves

dynamic move-ordering

first try moves that were good in the past
e.g., in iterative deepening search:
best moves from previous iteration

Alpha-Beta Search Move Ordering Summary

How Much Do We Gain with Alpha-Beta Pruning?

assumption: uniform game tree, depth d , branching factor b ≥ 2;

assumption:

MAX and MIN positions alternate

perfect move ordering

best move at every position is considered first
maximizing move for MAX, minimizing move for MIN
effort reduced from O(bd) (minimax) to O(bd/2)
doubles the search depth that can be achieved in same time

random move ordering

effort still reduced to O(b3d/4)

In practice, we can often get close to the perfect move ordering.

Alpha-Beta Search Move Ordering Summary

Heuristic Alpha-Beta Search

combines evaluation function and alpha-beta search

often uses additional techniques, e.g.

quiescence search
transposition tables
forward pruning
specialized subprocedures for certain parts of the game
(e.g., opening libraries and endgame databases)
. . .

Alpha-Beta Search Move Ordering Summary

Summary

Alpha-Beta Search Move Ordering Summary

Summary

alpha-beta search

stores which utility both players can force
somewhere else in the game tree

exploits this information to avoid unnecessary computations

can have significantly lower search effort than minimax

best case: search twice as deep in the same time

Foundations of Artificial Intelligence
G4. Board Games: Stochastic Games

Malte Helmert

University of Basel

May 19, 2025

Expected Value Stochastic Games Expectiminimax Summary

Board Games: Overview

chapter overview:

G1. Introduction and State of the Art

G2. Minimax Search and Evaluation Functions

G3. Alpha-Beta Search

G4. Stochastic Games

G5. Monte-Carlo Tree Search Framework

G6. Monte-Carlo Tree Search Variants

Expected Value Stochastic Games Expectiminimax Summary

Expected Value

Expected Value Stochastic Games Expectiminimax Summary

Discrete Random Variable

a random event (like the result of a die roll)

is described in terms of a random variable X
with associated domain dom(X)
and a probability distribution over the domain

if the number of outcomes of a random event is finite
(like here), the random variable is a discrete random variable

and the probability distribution is given as a probability
P(X = x) that the outcome is x ∈ dom(X)

Expected Value Stochastic Games Expectiminimax Summary

Discrete Random Variable: Example

informal description:

you plan to invest in stocks
and can afford one share

your analyst expects these
stock price changes:

Bellman Inc.
+2 with 30%
+1 with 60%
±0 with 10%

Markov Tec.
+4 with 20%
+2 with 30%
−1 with 50%

formal model:

discrete random variables B and M

dom(B) = {2, 1, 0}
dom(M) = {4, 2,−1}

P(B = 2) = 0.3
P(B = 1) = 0.6
P(B = 0) = 0.1

P(M = 4) = 0.2
P(M = 2) = 0.3
P(M = −1) = 0.5

Expected Value Stochastic Games Expectiminimax Summary

Discrete Random Variable: Example

informal description:

you plan to invest in stocks
and can afford one share

your analyst expects these
stock price changes:

Bellman Inc.
+2 with 30%
+1 with 60%
±0 with 10%

Markov Tec.
+4 with 20%
+2 with 30%
−1 with 50%

formal model:

discrete random variables B and M

dom(B) = {2, 1, 0}
dom(M) = {4, 2,−1}

P(B = 2) = 0.3
P(B = 1) = 0.6
P(B = 0) = 0.1

P(M = 4) = 0.2
P(M = 2) = 0.3
P(M = −1) = 0.5

Expected Value Stochastic Games Expectiminimax Summary

Expected Value

the expected value E[X] of a random variable X
is a weighted average of its outcomes

it is computed as the probability-weighted sum
of all outcomes x ∈ dom(X), i.e.,

E[X] =
∑

x∈dom(X)

P(X = x) · x

in stochastic environments, it is rational to deal
with uncertainty by optimizing expected values

Expected Value Stochastic Games Expectiminimax Summary

Expected Value: Example

formal model:
discrete random variables
B and M

dom(B) = {2, 1, 0}
dom(M) = {4, 2,−1}
P(B = 2) = 0.3
P(B = 1) = 0.6
P(B = 0) = 0.1

P(M = 4) = 0.2
P(M = 2) = 0.3
P(M = −1) = 0.5

expected gain:
E[B] = P(B = 2) · 2 + P(B = 1) · 1 + P(B = 0) · 0

= 0.3 · 2 + 0.6 · 1 + 0.1 · 0 = 1.2

E[M] = P(M = 4)·4+P(M = 2)·2+P(M = −1)·−1
= 0.2 · 4 + 0.3 · 2 + 0.5 · −1 = 0.9

rational decision: buy Bellman Inc.

Expected Value Stochastic Games Expectiminimax Summary

Expected Value: Example

formal model:
discrete random variables
B and M

dom(B) = {2, 1, 0}
dom(M) = {4, 2,−1}
P(B = 2) = 0.3
P(B = 1) = 0.6
P(B = 0) = 0.1

P(M = 4) = 0.2
P(M = 2) = 0.3
P(M = −1) = 0.5

expected gain:
E[B] = P(B = 2) · 2 + P(B = 1) · 1 + P(B = 0) · 0

= 0.3 · 2 + 0.6 · 1 + 0.1 · 0 = 1.2

E[M] = P(M = 4)·4+P(M = 2)·2+P(M = −1)·−1
= 0.2 · 4 + 0.3 · 2 + 0.5 · −1 = 0.9

rational decision: buy Bellman Inc.

Expected Value Stochastic Games Expectiminimax Summary

Expected Value: Example

formal model:
discrete random variables
B and M

dom(B) = {2, 1, 0}
dom(M) = {4, 2,−1}
P(B = 2) = 0.3
P(B = 1) = 0.6
P(B = 0) = 0.1

P(M = 4) = 0.2
P(M = 2) = 0.3
P(M = −1) = 0.5

expected gain:
E[B] = P(B = 2) · 2 + P(B = 1) · 1 + P(B = 0) · 0

= 0.3 · 2 + 0.6 · 1 + 0.1 · 0 = 1.2

E[M] = P(M = 4)·4+P(M = 2)·2+P(M = −1)·−1
= 0.2 · 4 + 0.3 · 2 + 0.5 · −1 = 0.9

rational decision: buy Bellman Inc.

Expected Value Stochastic Games Expectiminimax Summary

Stochastic Games

Expected Value Stochastic Games Expectiminimax Summary

Definition

Definition (stochastic game)

A stochastic game is a
7-tuple S = ⟨S ,A,T , sI,SG, utility, player⟩ with

finite set of positions S

finite set of moves A

transition function T : S × A× S 7→ [0, 1] that is
well-defined for ⟨s, a⟩ (see below)

initial position sI ∈ S

set of terminal positions SG ⊆ S

utility function utility : SG → R
player function player : S \ SG → {MAX,MIN}

A transition function is well-defined for ⟨s, a⟩ if
∑

s′∈S T (s, a, s ′) = 1

(then a is applicable in s) or
∑

s′∈S T (s, a, s ′) = 0.

Expected Value Stochastic Games Expectiminimax Summary

Example: Stochastic Inc-and-Square Game

As an example, we consider a variant of the bounded
inc-and-square game from Chapter G1.

The sqr move now acts stochastically:

It squares the current value v (mod 10) with probability v
10 .

Otherwise it doubles the current value v (mod 10)
(with prob. 1− v

10).

We also reduce the maximum game length to 3 moves
(counting both players) to make the example smaller.

Everything else stays the same.

Expected Value Stochastic Games Expectiminimax Summary

Expectiminimax

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s126.9

s236.9

4 6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s236.9

4 6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4

6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4

6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4

6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4

6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s247.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5

7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5

7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5

7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5

7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Idea and Example

depth-first search in game tree

determine utility value of terminal
positions with utility function

compute utility value of inner nodes

bottom-up through the tree:

MIN’s turn: utility value is
minimum of utility values of children
MAX’s turn: utility value is
maximum of utility values of children
chance: utility value is expected
value of utility values of children

policy for MAX: select action that leads to
maximum utility value of children

s01

6.9

s12

6.9

s23

6.9

4 6.9

9

0.3

6

0.7

s24

7.2

5 7.2

6

0.4

8

0.6

6.59

3.8

0.1

6.9

0.9

4 3.8 6.9 7.2

3 4 2

0.1

4

0.9

2 1.9

1

0.1

2

0.9

3 4

4 6.9

9

0.3

6

0.7

5 7.2

6

0.4

8

0.6

Expected Value Stochastic Games Expectiminimax Summary

Discussion

expectiminimax is the simplest (decent) search algorithm
for stochastic games

yields optimal policy (in the game-theoretic sense, i.e.,
under the assumption that the opponent plays perfectly)

MAX obtains at least the utility value computed for the root
in expectation, no matter how MIN plays

if MIN plays perfectly, MAX obtains exactly the computed
value in expectation

The same improvements as for minimax are possible
(evaluation functions, alpha-beta search).

Expected Value Stochastic Games Expectiminimax Summary

Summary

Expected Value Stochastic Games Expectiminimax Summary

Summary

Stochastic games are board games
with an additional element of chance.

Expectiminimax is a minimax variant for stochastic games
with identical behavior in MAX and MIN nodes.

In chance nodes, it propagates the expected value
(probability-weighted sum) of all successors.

Expectiminimax has same guarantees as minimax,
but in expectation.

Foundations of Artificial Intelligence
G5. Board Games: Monte-Carlo Tree Search Framework

Malte Helmert

University of Basel

May 21, 2025

Introduction Monte-Carlo Tree Search Summary

Board Games: Overview

chapter overview:

G1. Introduction and State of the Art

G2. Minimax Search and Evaluation Functions

G3. Alpha-Beta Search

G4. Stochastic Games

G5. Monte-Carlo Tree Search Framework

G6. Monte-Carlo Tree Search Variants

Introduction Monte-Carlo Tree Search Summary

Introduction

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

systematic exploration of search space

computation of (state) quality
follows performance metric

algorithms considered today:

search based on Monte-Carlo methods:

sampling of game simulations

estimation of (state) quality by
averaging over simulation results

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

systematic exploration of search space

computation of (state) quality
follows performance metric

algorithms considered today:

search based on Monte-Carlo methods:

sampling of game simulations

estimation of (state) quality by
averaging over simulation results

Introduction Monte-Carlo Tree Search Summary

Game Applications

board games hidden information games stochastic games

general game playing real-time strategy games dynamic difficulty adjustment

Świechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)

http://ggp.stanford.edu/

Introduction Monte-Carlo Tree Search Summary

Applications Beyond Games

story generation chemical synthesis UAV routing

coast security forest harvesting Earth observation

Świechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)

Introduction Monte-Carlo Tree Search Summary

MCTS Environments

MCTS environments cover entire spectrum of properties.

We study MCTS under the same restrictions as before, i.e.,

environment classification,

problem solving method,

objective of the agent and

performance measure

are identical to Chapters G1–G3.

MCTS extensions exist that allow us to drop most restrictions.

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Introduction Monte-Carlo Tree Search Summary

Data Structures

Monte-Carlo tree search

is a tree search variant
⇝ no closed list

iteratively performs game simulations from the initial position
(called trial or rollout)
⇝ no (explicit) open list

⇝ MCTS nodes are the only used data structure

Introduction Monte-Carlo Tree Search Summary

Data Structure: MCTS Nodes

11
8

12
2

14
4

6
1

7
1

18
1

18
2

2
1

16
1

a1 a2 a3
a4

a5 a6 a7

a8

MCTS nodes store

a reached position

how it was reached

its successors

a utility estimate (v̂)

a visit counter (N)

possibly additional information

18
2

position: not displayed

move: a6

successors: [none,]

v̂ : 18

N: 2

. . . : . . .

16
1

Introduction Monte-Carlo Tree Search Summary

Data Structure: MCTS Nodes

11
8

12
2

14
4

6
1

7
1

18
1

18
2

2
1

16
1

a1 a2 a3
a4

a5 a6 a7

a8

MCTS nodes store

a reached position

how it was reached

its successors

a utility estimate (v̂)

a visit counter (N)

possibly additional information

18
2

position: not displayed

move: a6

successors: [none,]

v̂ : 18

N: 2

. . . : . . .

16
1

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

build a partial game tree

by performing trials as long as resources
(deliberation time, memory) allow

initially, the tree contains only the root node

each trial adds (at most) one node to the tree

after termination, play the associated move of a successor
of the root node with highest utility estimate

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4

19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0

39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0

39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0

39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4

19
5

19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4
14
4
19
5

19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4
14
4
19
5

19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

n0 := create root node()
while time allows():

visit node(n0)
nbest := argmaxn∈succ(n0) n.v̂
return nbest.move

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := utility(n.position)

else:
s := n.get unvisited successor()
if s is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
utility := simulate game(s)
n.add and initialize child node(s, utility)

n.N := n.N + 1
n.v̂ := n.v̂ + utility−n.v̂

n.N
return utility

Introduction Monte-Carlo Tree Search Summary

Summary

Introduction Monte-Carlo Tree Search Summary

Summary

Monte-Carlo methods compute averages
over a number of random samples.

Monte-Carlo Tree Search (MCTS) algorithms
simulate a playout of the game

and iteratively build a search tree,
adding (at most) one node in each iteration.

MCTS is parameterized by a tree policy and a default policy.

Foundations of Artificial Intelligence
G6. Board Games: Monte-Carlo Tree Search Variants

Malte Helmert

University of Basel

May 21, 2025

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Board Games: Overview

chapter overview:

G1. Introduction and State of the Art

G2. Minimax Search and Evaluation Functions

G3. Alpha-Beta Search

G4. Stochastic Games

G5. Monte-Carlo Tree Search Framework

G6. Monte-Carlo Tree Search Variants

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := utility(n.position)

else:
s := n.get unvisited successor()
if s is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
utility := simulate game(s)
n.add and initialize child node(s, utility)

n.N := n.N + 1
n.v̂ := n.v̂ + utility−n.v̂

n.N
return utility

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Simulation Phase

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Simulation Phase

idea: determine initial utility estimate by
simulating game following a default policy

Definition (default policy)

Let S = ⟨S ,A,T , sI,SG, utility, player⟩ be a game.
A default policy for S is a mapping πdef : S × A 7→ [0, 1] s.t.

1 πdef(s, a) > 0 implies that move a is applicable in position s

2
∑

a∈A πdef(s, a) = 1 for all s ∈ S

In the call to simulate game(s),

the default policy is applied starting from position s
(determining decisions for both players)

until a terminal position sG is reached

and utility(sG) is returned.

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Implementations

“standard” implementation: Monte-Carlo random walk

in each position, select a move uniformly at random

until a terminal position is reached

policy very cheap to compute

uninformed ⇝ often not sufficient for good results

not always cheap to simulate

alternative: game-specific default policy

hand-crafted or

learned offline

Gelly and Silver, Combining Online and Offline Knowledge in UCT (ICML, 2007)

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Default Policy vs. Evaluation Function

default policy simulates a game to obtain utility estimate
⇝ default policy must be evaluated in many positions

if default policy is expensive to compute or poorly informed,
simulations are expensive

observe: simulating a game to the end is just a
specific implementation of an evaluation function

many modern implementations replace default policy with
evaluation function that directly computes a utility estimate

⇝ MCTS becomes a heuristic search algorithm

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Tree Policy

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
⇝ prefer successors with high (MAX)

or low utility estimate (MIN)

explore areas that have
not been investigated thoroughly
⇝ also consider other successors,

in particular with low visit count

These are contradictory objectives!
⇝ 1st central challenge for tree policy:

balance exploration and exploitation

13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
⇝ prefer successors with high (MAX)

or low utility estimate (MIN)

explore areas that have
not been investigated thoroughly
⇝ also consider other successors,

in particular with low visit count

These are contradictory objectives!
⇝ 1st central challenge for tree policy:

balance exploration and exploitation

13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
⇝ prefer successors with high (MAX)

or low utility estimate (MIN)

explore areas that have
not been investigated thoroughly
⇝ also consider other successors,

in particular with low visit count

These are contradictory objectives!
⇝ 1st central challenge for tree policy:

balance exploration and exploitation

13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
⇝ prefer successors with high (MAX)

or low utility estimate (MIN)

explore areas that have
not been investigated thoroughly
⇝ also consider other successors,

in particular with low visit count

These are contradictory objectives!
⇝ 1st central challenge for tree policy:

balance exploration and exploitation
13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Objective of Tree Policy (2)

What’s wrong with this subtree?

right move is better for MIN, but left move
has higher influence on utility estimate

⇝ 2nd central challenge for tree policy:
exploit much more often than explore
(in the limit)

13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Objective of Tree Policy (2)

What’s wrong with this subtree?

right move is better for MIN, but left move
has higher influence on utility estimate

⇝ 2nd central challenge for tree policy:
exploit much more often than explore
(in the limit)

13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Objective of Tree Policy (2)

What’s wrong with this subtree?

right move is better for MIN, but left move
has higher influence on utility estimate

⇝ 2nd central challenge for tree policy:
exploit much more often than explore
(in the limit)

13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Asymptotic Optimality

Definition (asymptotic optimality)

Let S be a game with set of positions S .
Let v∗(s) denote the (true) utility of position s ∈ S .

Let n.v̂k denote the utility estimate
of a search node n after k trials.

An MCTS algorithm is asymptotically optimal if

lim
k→∞

n.v̂k = v∗(n.position)

for all search nodes n.

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Asymptotic Optimality

a tree policy is asymptotically optimal if

it explores forever:

every position is eventually added to the game tree
and visited infinitely often
(requires that the game tree is finite)

⇝ after a finite number of trials, all trials end in a terminal
position and the default policy is no longer used

and it is greedy in the limit:

the probability that an optimal move is selected converges to 1
⇝ in the limit, backups based on trials where only

an optimal policy is followed dominate suboptimal backups

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Tree Policy: Examples

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

ε-greedy: Idea and Example

tree policy with constant parameter ε

with probability 1− ε, pick a greedy move which leads to:

a successor with highest utility estimate (for MAX)
a successor with lowest utility estimate (for MIN)

otherwise, pick a non-greedy successor uniformly at random

ε = 0.2

3 5 0

(P(n) denotes probability that successor n is selected)

P(n1) = 0.1 P(n2) = 0.8 P(n3) = 0.1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

ε-greedy: Idea and Example

tree policy with constant parameter ε

with probability 1− ε, pick a greedy move which leads to:

a successor with highest utility estimate (for MAX)
a successor with lowest utility estimate (for MIN)

otherwise, pick a non-greedy successor uniformly at random

ε = 0.2

3 5 0

(P(n) denotes probability that successor n is selected)

P(n1) = 0.1 P(n2) = 0.8 P(n3) = 0.1

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

ε-greedy: Optimality

ε-greedy is not asymptotically optimal:

ε = 0.2

2.2 2.8

2 3 10 1

converges to
0.8 · 1 + 0.2 · 10
with k → ∞

variants that are asymptotically optimal exist
(e.g., decaying ε, minimax backups)

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

ε-greedy: Weakness

problem:
when ε-greedy explores, all non-greedy moves are treated equally

50 49 0 . . . 0

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
ℓ nodes

e.g., ε = 0.2, ℓ = 9: P(n1) = 0.8, P(n2) = 0.02

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Softmax: Idea and Example

tree policy with constant parameter τ > 0

select moves with a frequency that directly relates
to their utility estimate

Boltzmann exploration selects moves proportionally to

P(n) ∝ e
n.v̂
τ for MAX and to P(n) ∝ e

−n.v̂
τ for MIN

50 49 0 . . . 0

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
ℓ nodes

e.g., τ = 10, ℓ = 9: P(n1) ≈ 0.51, P(n2) ≈ 0.46

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Softmax: Idea and Example

tree policy with constant parameter τ > 0

select moves with a frequency that directly relates
to their utility estimate

Boltzmann exploration selects moves proportionally to

P(n) ∝ e
n.v̂
τ for MAX and to P(n) ∝ e

−n.v̂
τ for MIN

50 49 0 . . . 0

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
ℓ nodes

e.g., τ = 10, ℓ = 9: P(n1) ≈ 0.51, P(n2) ≈ 0.46

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Boltzmann exploration: Optimality

Boltzmann exploration is not asymptotically optimal:

τ = 10

2.53 2.97

2 3 10 1

converges to
≈ 0.71 · 1 + 0.29 · 10
with k → ∞

variants that are asymptotically optimal exist
(e.g., decaying τ , minimax backups)

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Boltzmann Exploration: Weakness

m1

m2

m3

scenario 1: high variance for m3

P

m1

m2

m3

scenario 2: low variance for m3

P

Boltzmann exploration only considers mean
of sampled utilities for the given moves

as we sample the same node many times, we can also gather
information about variance (how reliable the information is)

Boltzmann exploration ignores the variance,
treating the two scenarios equally

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Upper Confidence Bounds: Idea

balance exploration and exploitation by preferring moves that

have been successful in earlier iterations (exploit)

have been selected rarely (explore)

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Upper Confidence Bounds: Idea

upper confidence bound for MAX:

select successor n′ of n that maximizes n′.v̂ + B(n′)

based on utility estimate n′.v̂

and a bonus term B(n′)

select B(n′) such that v∗(n′.position) ≤ n′.v̂ + B(n′)
with high probability

idea: n′.v̂ + B(n′) is an upper confidence bound
on n′.v̂ under the collected information

(for MIN: maximize −n′.v̂ + B(n′))

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Upper Confidence Bounds: UCB1

use B(n′) =
√

2·ln n.N
n′.N as bonus term

bonus term is derived from Chernoff-Hoeffding bound, which

gives the probability that a sampled value (here: n′.v̂)
is far from its true expected value (here: v∗(n′.position))
in dependence of the number of samples (here: n′.N)

picks an optimal move exponentially more often in the limit

UCB1 is asymptotically optimal.

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Comparison of Game Algorithms

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Minimax Tree

full tree up to depth 4

alpha-beta search with same effort:
⇝ depth 6–8 with good move ordering

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

MCTS Tree

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Summary

Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithms Summary

Summary

tree policy is crucial for MCTS

ϵ-greedy favors greedy moves and treats all others equally
Boltzmann exploration selects moves proportionally to
an exponential function of their utility estimates
UCB1 favors moves that were successful in the past
or have been explored rarely

for each, there are applications where they perform best

good default policies are domain-dependent and hand-crafted
or learned offline

using evaluation functions instead of a default policy
often pays off

