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Teaching Staff: Lecturer

Prof. Dr. Malte Helmert
@ email: malte.helmert@unibas.ch
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Teaching Staff: Tutors

Remo Christen
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Simon Dold
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Students

target audience:

Bachelor Computer Science, ~3rd year
Bachelor Computational Sciences, ~3rd year

Master Data Science

other students welcome

prerequisites:
@ algorithms and data structures

@ basic mathematical concepts
(formal proofs; sets, functions, relations, graphs)

complexity theory

programming skills (mainly for exercises)
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Structure Overview

Foundations of Al week structure:
@ Monday: release of exercise sheet
e Monday and Wednesday: lectures
@ Wednesday: exercise session
@ Sunday: exercise sheet due

@ exceptions due to holidays
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Time & Place

@ Mon 16:15-18:00 in Biozentrum, lecture hall U1.141
@ Wed 14:15-16:00 in Biozentrum, lecture hall U1.141

Exercise Sessions

@ Wed 16:15-18:00 in Biozentrum, SR U1.195
@ Fri 10:15-12:00 in Spiegelgasse 1, room U1.001 (changed)

first exercise session: February 19 (this week)
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Exercises

exercise sheets (homework assignments):
@ mostly theoretical exercises

@ occasional programming exercises

exercise sessions:
@ initial part:
e discuss common mistakes in previous exercise sheet
@ answer questions on previous exercise sheet
@ main part:

e we support you solving the current exercise sheet
e we answer your questions
e we assist you comprehend the course content
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Theoretical Exercises

theoretical exercises:

exercises on ADAM every Monday

covers material of that week (Monday and Wednesday)
due Sunday of the same week (23:59) via ADAM
solved in groups of at most two (2 = 2)

support in exercise session of current week

discussed in exercise session of following week
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Programming Exercises

programming exercises (project):

project with 3—4 parts over the duration of the semester
additional one-off programming exercises (not on every sheet)

integrated into the exercise sheets (no special treatment)

°
°

@ solved in groups of at most two (2 < 3)

@ implemented in Java; need working Linux system for some
°

solutions that obviously do not work: 0 marks
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Course Material

course material that is relevant for the exam:
@ slides
@ content of lecture
@ exercise sheets
additional (optional) course material:
@ textbook
@ bonus material

Artificial Intelligence: A Modern Approach
by Stuart Russell and Peter Norvig
(4th edition, Global edition)

@ covers large parts of the course
(and much more), but not everything
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written exam on Wednesday, July 2

e 14:00-16:00
e 105 minutes for working on the exam
o location: Biozentrum, lecture hall U1.131

8 ECTS credits
admission to exam: 50% of the exercise marks

class participation not required but highly recommended

no repeat exam
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Plagiarism

Plagiarism (Wikipedia)
Plagiarism is the “wrongful appropriation” and ‘stealing
and publication” of another author’s “language, thoughts,
ideas, or expressions” and the representation of them as
one's own original work.

consequences:
@ 0 marks for the exercise sheet (first time)

@ exclusion from exam (second time)

if in doubt: check with us what is (and isn't) OK before submitting

exercises too difficult? Join the exercise session!
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Course Homepage and Enrolment

Course Homepage

https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£fs25/
13548-lecture-foundations-of-artificial-intelligence/

@ course information

@ slides

@ bonus material (not relevant for the exam)
@ link to ADAM workspace

enrolment:

@ https://services.unibas.ch/


https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://services.unibas.ch/

Communication Channels

Communication Channels

@ lectures and exercise sessions
e ADAM workspace (linked from course homepage)

link to Discord server

exercise sheets and submission

exercise FAQ

bonus material that we cannot share publicly

@ Discord server (linked from ADAM workspace)
o opportunity for Q&A and informal interactions

@ contact us by email
@ meet us in person (by arrangement)

@ meet us on Zoom (by arrangement)
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Classical Al Curriculum

“Classical” Al Curriculum

. introduction

. rational agents

. uninformed search
. informed search

1
2
3
4
5.
6
7
8

constraint satisfaction

. board games
. propositional logic

. predicate logic

9.
10.
11.
12.
13.
14.
15.
16.

About this Course
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modeling with logic
classical planning
probabilistic reasoning
decisions under uncertainty
acting under uncertainty
machine learning

deep learning

reinforcement learning

~> wide coverage, but somewhat superficial



Our Al Curriculum
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introduction

rational agents
uninformed search
informed search
constraint satisfaction
board games
propositional logic
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9.
10.
11.
12.
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14.
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About this Course
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classical planning
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acting under uncertainty
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Topic Selection

guidelines for topic selection:
o fewer topics, more depth
@ more emphasis on programming projects

@ connections between topics
@ avoiding overlap with other courses

o Pattern Recognition (B.Sc.)
e Machine Learning (M.Sc.)

@ focus on algorithmic core of model-based Al



About this Course
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Under Construction. ..

@ A course is never “done”.

@ We are always happy about feedback,
corrections and suggestions!
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What is Al?

What do we mean by artificial intelligence?

~~ no generally accepted definition!

often pragmatic definitions:
@ "“Al is what Al researchers do.”

@ “Al is the solution of hard problems.”

in this chapter: some common attempts at defining Al
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What Do We Mean by Artificial Intelligence?



https://www.imdb.com/title/tt0092455/
https://www.imdb.com/title/tt0088247/
https://www.imdb.com/title/tt0076759
https://www.imdb.com/title/tt0133093/
https://www.imdb.com/title/tt0470752/
https://www.imdb.com/title/tt0910970
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What is Al: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

ARTIFICIAL
INTELLIGENCE

ARTIFICIAL
INTELLIGENCE
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What is Al: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-
ties that we associate with hu-
man thinking, activities such as
decision-making, problem solv-
ing, learning” (Bellman, 1978)

ugene Charmiak
Drew McDermott

ARTIFICIAL
INTELLIGENCE
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What is Al: Humanly vs. Rationally; Thinking vs

what scientists tell us:

thinking like humans

ARTIFICIAL
INTELLIGENCE
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What is Al: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

thinking like humans

“the study of how to make
computers do things at which,
at the moment, people are bet-

ter
(Rich & Knight, 1991)
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What is Al: Humanly vs. Rationally; Thinking vs

what scientists tell us:

thinking like humans

acting like humans

ARTIFICIAL
INTELLIGENCE
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What is Al: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“the study of mental faculties
through the use of computa-
thinking like humans tional models”

(Charniak & McDermott, 1985)

ARTIFICIAL

acting like humans
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What is Al: Humanly vs. Rationally; Thinking vs

what scientists tell us:

thinking like humans

thinking rationally

acting like humans

ARTIFICIAL
INTELLIGENCE
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What is Al: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

thinking like humans thinking rationally

“the branch of computer sci-
ence that is concerned with the
acting like humans automation of intelligent be-
havior”

(Luger & Stubblefield, 1993)
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What is Al: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

thinking like humans thinking rationally

acting like humans acting rationally
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Cognitive (Neuro-) Science

@ requires knowledge of how humans think

Motor Cortex Sensory Cortex

@ two ways to a scientific oo, AT .
theory of brain activity: ((a? | arietal Lobe
e psychological: observation of L - Occipital Lobe

human behavior
e neurological: observation of Temporal Lobe
brain activity

Cerebellum

@ roughly corresponds to cognitive science and
cognitive neuroscience

@ today separate research areas from Al
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Machines that Think Like Humans



https://youtu.be/9yVtGHbmN4s?t=29

Thinking Like Humans
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What Do We Mean by Artificial Intelligence?

<ing like hur

thinking rationally

acting like humans

acting rationally
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Acting Like Humans
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The Turing Test

Alan Turing, Computing Machinery and Intelligence (1950):
@ central question: Can machines think?
@ hypothesis: yes, if they can act like humans

@ operationalization: the imitation game

HUMAN
INTERROGATOR
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Turing Test in Cinema

“THE BEST BRITISH FILM OF THE YEAR”
* %k Kk k

“A TENSE, THOUGHT-
BASED ON THE INCREDIBLE PROVOKING THRILLER"

TRUE STORY OF ALAN TURING



https://www.imdb.com/title/tt2084970/
https://www.imdb.com/title/tt0470752/
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Turing Test: Brief History

@ Eliza

@ developed in 1966 by J. Weizenbaum
@ uses combination of pattern matching and scripted rules
@ most famous script mimics a psychologist ~» many questions

@ fooled early users



http://www.med-ai.com/models/eliza.html

Acting Like Humans
[e]e]e] lele)

Turing Test: Brief History

@ Eliza

@ Loebner Prize

@ annual competition between 1991-2019
@ most human-like Al is awarded

@ highly controversial
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Turing Test: Brief History

@ Eliza
Eugene Goostman

(*] Loebner Prize THE WEIRDEST CREATURE I

@ Eugene Goostman

Type your question here:

—

@ mimics a 13-year-old boy from Odessa, Ukraine with a guinea pig
@ “not too old to know everything and not too young to know nothing”

@ 33% of judges were convinced it was human in 2014
~ first system that passed the Turing test (?)



http://eugenegoostman.elasticbeanstalk.com/

Acting Like Humans
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Turing Test: Brief History

@ Eliza
@ Loebner Prize
@ Eugene Goostman

@ Kuki (formerly Mitsuku)

I'm an artificial
intelligence. I'm
always here to talk.

@ five times winner of Loebner prize competitions (2015-2019)

@ winner of “bot battle” versus Facebook’s Blenderbot
~> https://youtu.be/RBK5j0yXDT8



https://www.kuki.ai/
https://youtu.be/RBK5j0yXDT8
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Turing Test: Brief History

@ Eliza

@ Loebner Prize

@ Eugene Goostman

@ Kuki (formerly Mitsuku) ... C ®
[

@ Google Duplex i Soion

@ commercial product announced in 2018

@ performs phone calls (making appointments) fully autonomously

@ after criticism, it now starts conversation by identifying as a robot



https://youtu.be/D5VN56jQMWM?t=69
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Turing Test: Brief History

Eliza

Loebner Prize o~
Eugene Goostman al-
Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

@ systems like LaMDA and ChatGPT would likely pass the Turing test

@ example conversation: https://www.nytimes.com/2023/02/16/
technology/bing-chatbot-transcript.html

@ ChatGPT even passed some exams (but failed on others)



https://www.nytimes.com/2023/02/16/technology/bing-chatbot-transcript.html
https://www.nytimes.com/2023/02/16/technology/bing-chatbot-transcript.html
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Value of the Turing Test

@ human actions not always intelligent TURING TEST EXTRA CREDIT:
e scientific value of Turing test questionable: Epv ey

o Test for Al or for interrogator? Y00 KN 100 HACE
GOME REALLY GOOD POINTS.

o results not reproducible i
. . . T'™M ... NOTEVEN SURE
o strategies to succeed # intelligence: WHO T AN ANYHORE.

@ deceive interrogator
@ mimic human behavior

~> not important in Al “mainstream”

practical application: CAPTCHA
C (“Completely Automated Public Turing
test to tell Computers and Humans Apart”)

D I'm not a robot

aaaaaa A



https://xkcd.com/329/

Acting Like Humans
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What Do We Mean by Artificial Intelligence?

<ing like hur

thinking rationally

ing like hum

acting rationally
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Thinking Rationally
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Thinking Rationally: Laws of Thought

@ Aristotle: What are correct arguments
and modes of thought?

@ syllogisms: structures for arguments that
always yield correct conclusions given
correct premises:

e Socrates is a human.
o All humans are mortal.
o Therefore Socrates is mortal.

@ direct connection to modern Al
via mathematical logic




Thinking Rationally
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Problems of the Logical Approach

not all intelligent behavior
stems from logical thinking
and formal reasoning




Thinking Rationally
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What Do We Mean by Artificial Intelligence?

<ing like hur king ratior

ing like hum acting rationally
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Acting Rationally

acting rationally: “doing the right thing”

@ the right thing: maximize utility
given available information

@ does not necessarily require “thought” (e.g., reflexes)

advantages of Al as development of rational agents:

@ more general than thinking rationally

(logical inference only one way to obtain rational behavior)
@ better suited for scientific method

than approaches based on human thinking and acting

~» most common view of Al scientists today
~» what we use in this course



Summary



Summary
oce

Summary

What is Al? ~» many possible definitions
@ guided by humans vs. by utility (rationality)
@ based on externally observable actions or inner thoughts?
~ four combinations:
acting like humans: e.g., Turing test
thinking like humans: cf. cognitive (neuro-)science
thinking rationally: logic
acting rationally: most common view today

~~ amenable to scientific method
~~ used in this course
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A Short History of Al
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Precursors (Until ca. 1943)

1960 1970 1980 1990 2000

Philosophy and mathematics ask similar questions
that influence Al.
@ Aristotle (384-322 BC)

@ Leibniz (1646-1716)
@ Hilbert program (1920s)
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Gestation (1943-1956)

1950 1960 1970 1980 1990 2000

Invention of electrical computers raised question:
Can computers mimic the human mind?
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Gestation (1943-1956)

Artificial
Neurons

1950 1960 1970 1980 1990

W. McCulloch & W. Pitts (1943)
@ first computational model of artificial neuron

@ network of neurons can compute any computable function

@ basis of deep learning
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Gestation (1943-1956)

Artificial
Neurons

Vor wz. No, 284.]

MIND

A QUARTERLY REVIEW

ar

PSYCHOLOGY AND PHILOSOPHY

L-COMFUTING MACHINERY AND
INTELLIGENCE

Br A.M. Tuvzisa

1980 1990 2000

1960 1970

Turing Test

Computing Machinery and Intelligence (A. Turing, 1950)
@ famous for introducing Turing test
@ (still) relevant discussion of Al potential and requirements

@ suggests core Al aspects: knowledge representation,
reasoning, language understanding, learning




A Short History of Al
[e]e] lelelele]e]

Gestation (1943-1956)

Artificial
Neurons

Dartmouth

1950 1960 1970 1980 1990 2000

Dartmouth workshop (1956)

Turing Test @ ambitious proposal: “An attempt will be made to find how

to make machines use language, [...] solve kinds of problems
now reserved for humans, and improve themselves.”

@ J. McCarthy coins term artificial intelligence
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Early Enthusiasm (1952-1969)

Artificial
Neurons

Dartmouth

1950 1960 1970 1980 1990 2000

early enthusiasm (H. Simon, 1957):

Turing Test | “[...] there are now in the world machines that think, that learn and
that create. Moreover, their ability to do these things is going to
increase rapidly until — in the visible future — the range of problems
they can handle will be coextensive with the range to which the
human mind has been applied.”




A Short History of Al
[e]e]e] lelele]e]

Early Enthusiasm (1952-1969)

Artificial
Neurons

Dartmouth

1950

1960 1970 1980 1990 2000

GPS

Turing Test

General Problem Solver (H. Simon & A. Newell, 1957)
@ universal problem solving machine
@ imitates human problem solving strategies
@ in principle able to solve every formalized symbolic problem
)

in practice, GPS solves simple tasks like towers of Hanoi
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Early Enthusiasm (1952-1969)

Artificial
Neurons RL for
Checkers

Dartmouth

1950 1960 1970 1980 1990 2000

GPS

Checkers Al (A. Samuel, 1959)
Turing Test @ popularized term machine learning
@ learned to play at strong amateur level

@ uses ideas of reinforcement learning
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Early Enthusiasm (1952-1969)

Artificial
Neurons RL for P10K WP & SIG RED BLOCK.
Checkers

Dartmouth

1950 1960 1970 1980 1990 2000

GPS

Microworlds
intelligence in microworlds, e.g. SHRDLU (T. Winograd, 1968)

Turing Test @ understands natural language

@ communicates with user via teletype on blocks world
@ graphical representation

~» https://hci.stanford.edu/winograd/shrdlu/



https://hci.stanford.edu/winograd/shrdlu/

A Short History of Al
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Early Enthusiasm (1952-1969)

Artificial
Neurons RL for
Checkers

Dartmouth

1950 1960 1970 1980 1990 2000

Turing Test



A Short History of Al
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A Dose of Reality (1966-1973)

Artificial
Neurons RL for
Checkers

Limitations

Dartmouth

1950 1960 1970 1980 1990 2000

GPS

Microworlds

I @ realization that unlimited computational power is illusion
Turing Test (birth of complexity theory, NP-completeness)

@ Al systems (e.g., GPS, systems for micro worlds) fail to scale

@ fundamental limitations on basic structures
e.g., XOR problem of perceptrons




A Short History of Al

Expert Systems (1969-1986)
Artificial
Neurons RL for

DISTRIBUTE-MB-DEVICES-3

Checkers IF:  the most current active context is distributing massbus devices

& there s a single port disk drive that has not been assigned to a massbus

& there are no unassigned dual port disk drives

& the number of devices that each massbus should support is known

& there is a massbus that has been assigned at least one disk drive and that should support additional
disk drives

& the type of cable needed to connect the disk drive to the previous device on the disk drive is known

Limitations
Dartmouth

THEN: assign the disk drive to the massbus

1950 1960 1970 1980 1990 2000

Expert
Systems

GPS
Microworlds

1980s: Al gold rush

@ rule-based expert systems commercially successful

Turing Test

@ (human) expert knowledge as input

@ allows automatic reasoning on larger problems
in narrower applications

@ also: second heyday of neural networks




A Short History of Al

Expert Systems (1969-1986)
Artificial
Neurons RL for

DISTRIBUTE-MB-DEVICES-3

C heC ke rs IF: the most current active context is distributing massbus devices
& there s a single port disk drive that has not been assigned to a massbus

imitati & th igned dual port disk dri
L|m|tat|0ns s ere are no unassigned dual port disk drives
&

the number of devices that each massbus should support is known
there is a massbus that has been assigned at least one disk drive and that should support additional
disk drives

& the type of cable needed to connect the disk drive to the previous device on the disk drive is known

Dartmouth

THEN: assign the disk drive to the massbus

1950 1960 1970 1980 1990 2000

Expert
Systems

GPS

Microworlds
example: R1/XCON (J. McDermott, 1978)

@ input: desired properties of a VAX computer system
according to customer specifications

Turing Test

output: specification of the computer system

inference engine: simple forward chaining of rules




A Short History of Al

Expert Systems (1969-1986)
Artificial
Neurons RL for

DISTRIBUTE-MB-DEVICES-3

Checkers IF:  the most current active context is distributing massbus devices

& there s a single port disk drive that has not been assigned to a massbus

& there are no unassigned dual port disk drives

& the number of devices that each massbus should support is known

& there is a massbus that has been assigned at least one disk drive and that should support additional
disk drives

& the type of cable needed to connect the disk drive to the previous device on the disk drive is known

Limitations
Dartmouth

THEN: assign the disk drive to the massbus

1950 1960 1970 1980 1990 2000

Expert
Systems

GPS
Microworlds Al Winter
end of 1980s: Al Winter

@ companies failed to deliver promises

Turing Test

@ expert systems difficult to maintain

@ expert systems susceptible to uncertainty
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Coming of Age (1990s and 2000s)

Artificial
Neurons RL for
Checkers

Limitations
Dartmouth

1950 1960 1970 1980 1990

Expert
Systems

GPS

Microworlds Al Winter

advent of probabilistic methods
Turing Test L .
E formalization of Al techniques

better understanding of theoretical complexity

increased use of mathematical methods

exploitation of large data sets (big data)




A Short History of Al

Broad Visibility in Society (Since 2010s)
Artificial
Neurons RL for

Checkers

Limitations ‘5 o

Dartmouth O O

1950 1960 1970 1980 1990 2000

Expert
Systems

GPS
Al Winter

well known systems and famous breakthroughs, e.g.,

Microworlds

Turing Test @ broadly used systems (e.g., virtual assistants)

@ Al systems act in real-world (e.g., self-driving cars)
@ systems outperform humans in hard tasks (e.g., AlphaGo)
@ Al and human-written text hard to distinguish (ChatGPT)
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Where are We Today?
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Al Approaching Maturity

Russell & Norvig (1995)

Gentle revolutions have occurred in robotics, computer vision,
machine learning, and knowledge representation.

A better understanding of the problems and their complexity
properties, combined with increased mathematical sophistication,
has led to workable research agendas and robust methods.
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Where are We Today?

@ many coexisting paradigms
e reactive vs. deliberative
e data-driven vs. model-driven
e often hybrid approaches
@ many methods, often borrowing from other research areas
e logic, decision theory, statistics, ...
o different approaches

o theoretical
e algorithmic/experimental
e application-oriented



Where are We Today?
[e]e]e] Jeele]

Focus on Algorithms and Experiments

Many Al problems are inherently difficult (NP-hard),
but strong search techniques and heuristics often solve
large problem instances regardless:
@ satisfiability in propositional logic
e 10,000 propositional variables or more
via conflict-directed clause learning
@ constraint solvers

e good scalability via constraint propagation
and automatic exploitation of problem structure

@ action planning

o 10%0 search states and more by search
using automatically inferred heuristics
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What Can Al Do Today?

https://kahoot.it/


https://kahoot.it/

Where are We Today?
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What Can Al Do Today? — Videos, Articles and Als

@IS, GitHub
&GP Copilot



https://www.youtube.com./watch?v=TDqzyd7fDRc
https://www.youtube.com./watch?v=kZzL2rDNSJk&t=22s
https://www.youtube.com./watch?v=bAdqazixuRY&t=86
https://www.youtube.com./watch?v=8zTCM6BV03Q
https://www.youtube.com./watch?v=sRxaMDDMWQQ
https://www.youtube.com./channel/UCu0u7DbHJlvATLHjoANa3wQ
https://www.youtube.com./watch?v=FoyR1U7Y7Po&t=46s
https://github.com/features/copilot
https://www.cs.cmu.edu/~noamb/papers/19-Science-Superhuman.pdf
https://www.nature.com/articles/nature24270/
https://inspirobot.me/
https://youtu.be/OeVzbGEFEyU
https://openai.com/blog/chatgpt/

Where are We Today?
000000e

What Can Al Do Today?

results of our classroom poll:
v successfully complete an off-road car race
X beat a world champion table tennis player
v play guitar in a robot band
v do and fold the laundry
v drive safely in downtown Basel
X win a football match against a human team
v/ dance synchronously in a group of robots
v write code on the level of a CS student
v beat a world champion Chess, Go or Poker player
v/ create inspiring quotes
v/ compose music

v/ engage in a scientific conversation



Summary
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Summary

1950s/1960s: beginnings of Al; early enthusiasm
1970s: micro worlds and knowledge-based systems
1980s: gold rush of expert systems followed by “Al winter”

1990s/2000s: Al comes of age; research becomes
more rigorous and mathematical; mature methods

2010s: Al systems enter mainstream
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Chapter overview: introduction
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A4,
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Organizational Matters

What is Artificial Intelligence?
Al Past and Present

Rational Agents

Environments and Problem Solving Methods
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so far we have seen that: @ Al systems applied to
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Systematic Al Framework

so far we have seen that: @ Al systems applied to
o Al systems act rationally wide variety of challenges
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now: describe a systematic framework that
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Systematic Al Framework

so far we have seen that:
@ Al systems act rationally

sensors

@ Al systems applied to

observations

wide variety of challenges

agent program

agent |—> actuators

actions

now: describe a systematic framework that

@ captures this diversity of challenges

environment

@ includes an entity that acts in the environment
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Systematic Al Framework

@ Al systems applied to

so far we have seen that:
wide variety of challenges

@ Al systems act rationally

observations

/\
P
—
agent function

sensors

performance measure

agent program
agent function
~

L —
actuators

actions

environment

agent

now: describe a systematic framework that
@ captures this diversity of challenges
@ includes an entity that acts in the environment
@ determines if the agent acts rationally in the environment



Systematic Al Framework
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Agent-Environment Interaction

observations

sensors

agent function

performance measure

agent program

agent function
~—

| S
agent actuators environment

actions

@ sensors: physical entities that allow the agent to observe
@ observation: data perceived by the agent’s sensors
@ actuators: physical entities that allow the agent to act

@ action: abstract concept that affects the state of the environment



Systematic Al Framework
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Agent-Environment Interaction

observations

sensors

agent function

performance measure
agent program

agent function
~—

| S
agent actuators environment

actions

@ sensors and actuators are not relevant for the course
(~ typically covered in courses on robotics)

@ observations and actions describe the agent's capabilities
(the agent model)
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Formalizing an Agent’s Behavior

observations
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agent program

agent function
~
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agent actuators environment

actions

© as agent program: @ as agent function:

@ internal representation @ external characterization

@ specifics possibly unknown to outside
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agent function
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agent actuators environment
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© as agent program: @ as agent function:

@ internal representation @ external characterization
@ specifics possibly unknown to outside @ maps sequence of observations to
@ takes observation as input (probability distribution over) actions

@ outputs an action
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Formalizing an Agent’s Behavior

observations

sensors

agent function

performance measure

agent program

agent function
~

L -
agent actuators environment

actions

© as agent program: @ as agent function:

internal representation @ external characterization

specifics possibly unknown to outside @ maps sequence of observations to

takes observation as input (probability distribution over) actions

outputs an action @ abstract mathematical formalization

computed on physical machine (the agent architecture)
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Vacuum Domain




Example
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Vacuum Agent: Sensors and Actuators

@ sensors: cliff sensors, bump sensors, wall sensors,
state of charge sensor, WiFi module

@ actuators: wheels, cleaning system



Example
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Vacuum Agent: Observations and Actions

@ observations: current location, dirt level of current room,
presence of humans, battery charge

@ actions: move-to-next-room, move-to-base, vacuum, wait



Example
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Vacuum Agent: Agent Program

1 def vacuum-agent([location, dirt-level, owner-present, battery]):
2 if battery < 10%: return move-to-base

3 else if owner-present = True: return move-to-next-room
4 else if dirt-level = dirty: return vacuum

5 else: return move-to-next-room




Example
O0000e0

Vacuum Domain: Agent Function

observation sequence

action

([blue, clean, False, 100%])
([blue, dirty, False, 100%])
([blue, clean, True, 100%])

([blue, clean, False, 100%], [blue, clean, False, 90%)])
([blue, clean, False, 100%)], [blue, dirty, False, 90%])

move-to-next-room
vacuum
move-to-next-room

move-to-next-room
vacuum




Example
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Vacuum Domain: Performance Measure

potential influences on performance measure:

o dirt levels @ energy consumption

@ noise levels o safety
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Rationality
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What is the right agent function?



Rationality
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Rationality

rationality of an agent depends on performance measure
(often: utility, reward, cost) and environment

Perfect Rationality

@ for each possible observation sequence

select an action which maximizes

°
@ expected value of future performance

@ given available information on observation history
°

and environment




Rationality
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Perfect Rationality of Our Vacuum Agent




natic Al Framework a Rationality
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Perfect Rationality of Our Vacuum Agent

depends on performance measure and environment, e.g.:
@ Do actions reliably have the desired effect?
@ Do we know the initial situation?

e Can new dirt be produced while the agent is acting?



Rationality
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Performance Measure

@ specified by designer

@ sometimes clear,
sometimes not so clear

@ significant impact on

o desired behavior
o difficulty of problem
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Performance Measure

@ specified by designer

@ sometimes clear,
sometimes not so clear

@ significant impact on

o desired behavior
o difficulty of problem



https://youtu.be/tlOIHko8ySg

Rationality
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Perfect Rationality of Our Vacuum Agent

consider performance measure:

o +1 utility for cleaning a dirty room

consider environment:
@ actions and observations reliable

@ world only changes through actions of the agent

our vacuum agent is perfectly rational
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Perfect Rationality of Our Vacuum Agent

consider performance measure:

o —1 utility for each dirty room in each step

consider environment:
@ actions and observations reliable

@ world only changes through actions of the agent

our vacuum agent is not perfectly rational
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Perfect Rationality of Our Vacuum Agent

consider performance measure:

o —1 utility for each dirty room in each step

consider environment:
@ actions and observations reliable

@ yellow room may spontaneously become dirty

our vacuum agent is not perfectly rational



Rationality
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Rationality: Discussion

@ perfect rationality # omniscience

e incomplete information (due to limited observations)
reduces achievable utility

@ perfect rationality # perfect prediction of future

e uncertain behavior of environment (e.g., stochastic
action effects) reduces achievable utility

@ perfect rationality is rarely achievable
o limited computational power ~» bounded rationality
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Summary (1)

common metaphor for Al systems: rational agents

agent interacts with environment:
@ sensors perceive observations about state of the environment
@ actuators perform actions modifying the environment

o formally: agent function maps observation sequences
to actions



Summary
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Summary (2)

rational agents:
@ try to maximize performance measure (utility)

@ perfect rationality: achieve maximal utility in expectation
given available information

o for “interesting” problems rarely achievable
~» bounded rationality



Foundations of Artificial Intelligence

A5. Introduction: Environments and Problem Solving Methods

Malte Helmert

University of Basel

February 24, 2025



Introduction: Overview

Chapter overview: introduction
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Environments of Rational Agents

observations

//Q

—
agent function

sensors

performance measure

agent program

agent function
~—

L -
agent actuators environment

actions

@ Which environment aspects are relevant for the agent?
@ How do the agent's actions change the environment?
@ What does the agent observe?



Environments
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Properties of Environments

Environment properties determine character of Al problem.

fully observable vs. partially observable

single-agent vs. multi-agent

°
@ deterministic vs. nondeterministic vs. stochastic
@ static vs. dynamic

°

discrete vs. continuous



Environments
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Properties of Environments

@He), GitHub

P Copilot



https://www.youtube.com./watch?v=TDqzyd7fDRc
https://www.youtube.com./watch?v=kZzL2rDNSJk&t=22s
https://www.youtube.com./watch?v=bAdqazixuRY&t=86
https://www.youtube.com./watch?v=8zTCM6BV03Q
https://github.com/features/copilot
https://www.cs.cmu.edu/~noamb/papers/19-Science-Superhuman.pdf
https://www.nature.com/articles/nature24270/
https://inspirobot.me/
https://youtu.be/OeVzbGEFEyU
https://openai.com/blog/chatgpt/
https://www.youtube.com./watch?v=sRxaMDDMWQQ
https://www.youtube.com./channel/UCu0u7DbHJlvATLHjoANa3wQ
https://www.youtube.com./watch?v=FoyR1U7Y7Po&t=46s

Environments
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Properties of Environments

GitHub
y Copilot

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable




Environments
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Properties of Environments

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?




Environments
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Properties of Environments

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?




Environments
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Properties of Environments

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?




Environments
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Properties of Environments

Copilot

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?




Environments
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Properties of Environments

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.




Problem Solving Methods
e0

Problem Solving Methods



Problem Solving Methods
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Three Approaches to Solving Al Problems

We can solve a concrete Al problem (e.g., backgammon)
in several ways:

Problem Solving Methods

@ problem-specific: implement algorithm tailored to problem

problem-specific algorithms:
@ designed to solve a specific problem
@ allow exploiting problem-specific knowledge

@ solve just one (type of) problem
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Three Approaches to Solving Al Problems

We can solve a concrete Al problem (e.g., backgammon)
in several ways:

Problem Solving Methods

@ problem-specific: implement algorithm tailored to problem

@ general: create problem description as input for general solver

general problem solvers:
@ user creates model of problem instance in formalism (“language”)
@ solver takes modeled instance as input

@ solver implements general algorithm to compute solution
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Three Approaches to Solving Al Problems

We can solve a concrete Al problem (e.g., backgammon)
in several ways:

Problem Solving Methods

@ problem-specific: implement algorithm tailored to problem
@ general: create problem description as input for general solver

@ learning: learn (aspects of) algorithm from data

learners:
@ general approach that learns to solve specific problem
@ adapts via experience instead of via reasoning

@ requires data and feedback instead of model of the Al problems



Problem Solving Methods
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Three Approaches to Solving Al Problems

We can solve a concrete Al problem (e.g., backgammon)
in several ways:

Problem Solving Methods

@ problem-specific: implement algorithm tailored to problem
@ general: create problem description as input for general solver

@ learning: learn (aspects of) algorithm from data

o all three approaches have strengths and weaknesses
@ combinations are possible (and common in practice)

o we will mostly focus on general algorithms,
but also consider other approaches



Classification of Al Topics
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Classification of Al Topics

Many areas of Al are essentially characterized by
@ the properties of environments they consider and

@ which of the three problem solving approaches they use.

We conclude the introduction by giving some examples
@ within this course and

@ beyond the course (“advanced topics”).



Classification of Al Topics
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Examples: Classification of Al Topics

Course Topic: Informed Search Algorithms

environment:

@ static vs.

@ deterministic vs. VS.
o fully observable vs.

@ discrete vs.

@ single-agent vs.

problem solving method:

@ problem-specific vs. VS.
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Examples: Classification of Al Topics

Course Topic: Constraint Satisfaction Problems

environment:

@ static vs.

@ deterministic vs. VS.
o fully observable vs.

@ discrete vs.

@ single-agent vs.

problem solving method:

° vs. general vs.
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Examples: Classification of Al Topics

Course Topic: Board Games

environment:

@ static vs.

@ deterministic vs. VS.

o fully observable vs.

@ discrete vs.

° vs. multi-agent (adversarial)

problem solving method:

@ problem-specific vs. VS.
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Examples: Classification of Al Topics

Advanced Topic: General Game Playing

environment:

@ static vs.

@ deterministic vs. vs. (stochastic)
o fully observable vs.

@ discrete vs.

° vs. multi-agent (adversarial)

problem solving method:

° vs. general vs.




Classification of Al Topics
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Examples: Classification of Al Topics

Course Topic: Classical Planning

environment:

@ static vs.

@ deterministic vs. VS.
o fully observable vs.

@ discrete vs.

@ single-agent vs.

problem solving method:

° vs. general vs.




Classification of Al Topics
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Examples: Classification of Al Topics

Course Topic: Acting under Uncertainty

environment:

@ static vs.

° Vs, vs. stochastic
o fully observable vs.

@ discrete vs.

@ single-agent vs.

problem solving method:

@ problem-specific vs. VS.




Classification of Al Topics
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Examples: Classification of Al Topics

Advanced Topic: Reinforcement Learning
environment:
@ static vs.
° Vs, vs. stochastic
o fully observable vs.
@ discrete vs.
@ single-agent vs.

problem solving method:

° Vs. vs. learning




Summary
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Summary (1)

Al problem: performance measure + agent model + environment

Properties of environment critical for choice of suitable algorithm:
@ static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent



Summary
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Summary (2)

Three problem solving methods:
@ problem-specific
@ general

@ learning

general problem solvers:
@ models characterize problem instances mathematically
e formalisms/languages describe models compactly

@ algorithms use languages as problem description
and to exploit problem structure
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations
e B1. State Spaces

o B2. Representation of State Spaces
o B3. Examples of State Spaces

e B4-B8. Basic Algorithms
e B9-B15. Heuristic Algorithms
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State-Space Search Problems



State-Space Search Problems
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State-Space Search Applications

Mario Al competition route planning multi-agent path finding

scheduling software/hardware verification NPC behaviour


https://www.youtube.com./watch?v=0s3d1LfjWCI
https://youtu.be/H3wRCZf_Mrs
https://dl.acm.org/doi/10.1145/1592761.1592781
https://www.gamedevs.org/uploads/three-states-plan-ai-of-fear.pdf

State-Space Search Problems
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Classical Assumptions

“classical” assumptions considered in this part of the course:
@ no other agents in the environment (single-agent)
@ always knows state of the world (fully observable)
@ state only changed by the agent (static)
e finite number of states/actions (in particular discrete)
@ actions have deterministic effect on the state

~- can all be generalized (but not in this part of the course)



State-Space Search Problems
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Classification

classification:

State-Space Search

environment:
@ static vs.
@ deterministic vs. Vs.
o fully observable vs.
@ discrete vs.
@ single-agent vs.
problem solving method:

@ problem-specific vs. Vs.




State-Space Search Problems
0000e0

Informal Description

State-space search problems are among the
“simplest” and most important classes of Al problems.

objective of the agent:
@ apply a sequence of actions
@ that reaches a goal state

o from a given initial state

performance measure: minimize total action cost



State-Space Search Problems
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Motivating Example: 15-Puzzle

15 4 10 8 13 | 14 | 15 .
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State Spaces

Definition (state space)

A state space or transition system is a
6-tuple S = (S, A, cost, T, s, Sg) with

o finite set of states S
@ finite set of actions A
@ action costs cost : A — ]R.(J,r

@ transition relation T € S x A x S that is
deterministic in (s, a) (see next slide)

@ initial state 55 € S

@ set of goal states 5S¢ C S

German: Zustandsraum, Transitionssystem, Zustande, Aktionen,
Aktionskosten, Transitions-/Ubergangsrelation, deterministisch,
Anfangszustand, Zielzustande
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State Spaces: Terminology & Notation

Definition (transition, deterministic)

Let S = (S, A, cost, T, s, Sg) be a state space.

The triples (s,a,s’) € T are called (state) transitions.

We say S has the transition (s, a,s’) if (s,a,s’) € T.

We write this as s = s/, or s — s’ when a does not matter.
Transitions are deterministic in (s, a): it is forbidden to have
both s 2 s; and s = s, with s; % 5.
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State Space: Running Example

Consider the bounded inc-and-square search problem.

informal description:
e find a sequence of

e increment-mod10 (inc) and
o square-mod10 (sqr) actions

@ on the natural numbers from 0 to 9
@ that reaches the number 6 or 7
@ starting from the number 1

@ assuming each action costs 1.
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State Space: Running Example

Consider the bounded inc-and-square search problem.

informal description: formal model:
e find a sequence of 0 S=10,1,...,9}
e increment-mod10 (inc) and A1
o square-mod10 (sqr) actions o A= {inc,sqr}
o on the natural numbers from 0 to 9 @ €ost(inc) = cost(sqr) =1
o Tst fori=0,...,9:

@ that reaches the number 6 or 7 .

' o (i,inc,(i4+1) mod 10) € T
@ starting from the number 1 o (i,sqr,i? mod 10) € T
S| = 1

@ assuming each action costs 1. °

Se =1{6,7}
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Graph Interpretation

state spaces are often depicted as directed, labeled graphs

@ states: graph vertices

@ transitions: labeled arcs

@ initial state: incoming arrow
@ goal states: double circles
@ actions: the arc labels

@ action costs: described separately
(or implicitly = 1)



Formalization
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Graph Interpretation

state spaces are often depicted as directed, labeled graphs

@ states: graph vertices

@ transitions: labeled arcs
(here: colors instead of labels)

@ initial state: incoming arrow
@ goal states: double circles

@ actions: the arc labels

@ action costs: described separately
(or implicitly = 1)



Formalization

[e]e]e]e]e] lele)

State Spaces: More Terminology (1)

We use common terminology from graph theory.

Definition (predecessor, successor, applicable action)

Let S = (S, A, cost, T, s|, Sg) be a state space.
Let s,s' € S be states with s — s’
@ s is a predecessor of s’

@ s’ is a successor of s

If s 2 s, then action a is applicable in s.

German: Vorganger, Nachfolger, anwendbar



Formalization
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State Spaces: More Terminology (2)

Definition (path)
Let S = (S, A, cost, T, s|, Sg) be a state space.

Let sp,...,s, € S be states and ay,...,a, € A be actions
such that sp -5 s1, ..., S(n—1) 2y s,
@ m=(ai,...,ap) is a path from sp to s,

@ length of 7: |w| =n

@ cost of m: cost(m) =Y i, cost(a;)

German: Pfad, Lange, Kosten
@ paths may have length 0

@ sometimes “path” is used for state sequence (sp, ..., sp)
or sequence (So, a1, S1, - - - » S(n—1)> @n, Sn)



Formalization
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State Spaces: More Terminology (3)

More terminology:

Definition (reachable, solution, optimal)

Let S = (S, A, cost, T, s|, Sg) be a state space.

@ state s is reachable if a path from s to s exists

@ paths from s € S to some state sg € Sg
are solutions for/from s

@ solutions for s; are called solutions for S

@ optimal solutions (for s) have minimal costs
among all solutions (for s)

German: erreichbar, Losung fiir/von s, optimale Losung



State-Space Search
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Solving Search Problems

Consider again the running example. How do you solve this?

informal description:

o find a sequence of

e increment-mod10 (inc) and
e square-mod10 (sgr) actions

@ on the natural numbers from 0 to 9
@ that reaches the number 6 or 7
@ starting from the number 1

@ assuming each action costs 1.




State-Space Search
[o] le]e}

Solving Search Problems

Consider again the running example. How do you solve this?

...and then square...?

What if | increment...?

informal description:

...or alternatively...?

o find a sequence of

e increment-mod10 (inc) and
e square-mod10 (sgr) actions

@ on the natural numbers from 0 to 9
@ that reaches the number 6 or 7
@ starting from the number 1

@ assuming each action costs 1.
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State-Space Search

State-Space Search

State-space search is the algorithmic problem
of finding solutions in state spaces
or proving that no solution exists.

In optimal state-space search, only optimal solutions
may be returned.

German: Zustandsraumsuche, optimale Zustandsraumsuche



State-Space Search Summar
o0ooe 00

Learning Objectives for State-Space Search

@ understanding state-space search:
What is the problem and how can we formalize it?

@ evaluate search algorithms:
completeness, optimality, time/space complexity

@ get to know search algorithms:
uninformed vs. informed; tree and graph search

@ evaluate heuristics for search algorithms:
goal-awareness, safety, admissibility, consistency

o efficient implementation of search algorithms

@ experimental evaluation of search algorithms

@ design and comparison of heuristics for search algorithms




Summary
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Summary

state-space search problems:
find action sequence leading from initial state to a goal state

performance measure: sum of action costs

formalization via state spaces:

e states, actions, action costs, transitions,
initial state, goal states

terminology for transitions, paths, solutions

definition of (optimal) state-space search
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations
e B1. State Spaces

e B2. Representation of State Spaces
o B3. Examples of State Spaces

e B4-B8. Basic Algorithms
e B9-B15. Heuristic Algorithms



Representation of State Spaces



Representation

Representation of State Spaces

@ practically interesting state spaces are often huge
(1019, 1020, 1019 states)

@ How do we represent them, so that we can
efficiently deal with them algorithmically?

three main options:
@ as explicit (directed) graphs
@ with declarative representations
© as a black box

German: explizit, deklarativ, Black Box



Representation
Example: 8-Puzzle
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State Spaces as Explicit Graphs

State Spaces as Explicit Graphs

represent state spaces as explicit directed graphs:
@ vertices = states
o directed arcs = transitions

~> represented as adjacency list or adjacency matrix

German: Adjazenzliste, Adjazenzmatrix

Example (explicit graph for bounded inc-and-square)

ai-b02-bounded-inc-and-square.graph




Explicit Graphs
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State Spaces as Explicit Graphs

State Spaces as Explicit Graphs

represent state spaces as explicit directed graphs:
@ vertices = states
o directed arcs = transitions

~> represented as adjacency list or adjacency matrix

German: Adjazenzliste, Adjazenzmatrix

Example (explicit graph for 8-puzzle)

ai-b02-puzzle8.graph




Explicit Graphs
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State Spaces as Explicit Graphs: Discussion

discussion:
@ impossible for large state spaces (too much space required)

o if spaces small enough for explicit representations,
solutions easy to compute: Dijkstra’s algorithm
O(|S]log[S]+T])

@ interesting for time-critical all-pairs-shortest-path queries
(examples: route planning, path planning in video games)



Declarative Representations



sentation Explicit Graphs Declarative Representations 30! Summar

State Spaces with Declarative Representations

State Spaces with Declarative Representations
represent state spaces declaratively:

@ compact description of state space as input to algorithms
~> state spaces exponentially larger than the input

@ algorithms directly operate on compact description

~> allows automatic reasoning about problem:
reformulation, simplification, abstraction, etc.

.

Example (declarative representation for 8-puzzle)

puzzle8-domain.pddl + puzzle8-problem.pddl
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State Spaces as Black Boxes

State Spaces as Black Boxes

Define an abstract interface for state spaces.

For state space S = (S, A, cost, T, s, Sg)
we need these methods:

@ init(): generate initial state
result: state s

@ is_goal(s): test if s is a goal state
result: true if s € Sg; false otherwise

@ succ(s): generate applicable actions and successors of s
result: sequence of pairs (a,s’) with s 3 s

@ cost(a): gives cost of action a
result: cost(a) (€ No)

Remark: we will extend the interface later
in a small but important way
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State Spaces as Black Boxes: Example and Discussion

Example (Black Box Representation for 8-Puzzle)

demo: puzzle8.py

@ in the following: focus on black box model
@ explicit graphs only as illustrating examples

@ near end of semester: declarative state spaces
(classical planning)
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Summary

o state spaces often huge (> 100 states)
~> how to represent?

@ explicit graphs: adjacency lists or matrices;
only suitable for small problems

@ declaratively: compact description as input
to search algorithms

@ black box: implement an abstract interface
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations
e B1. State Spaces

o B2. Representation of State Spaces
e B3. Examples of State Spaces

e B4-B8. Basic Algorithms
e B9-B15. Heuristic Algorithms



Three Examples

In this chapter we introduce three state spaces
that we will use as illustrating examples:

© route planning in Romania
@ blocks world

© missionaries and cannibals



Route Planning in Romania
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Route Planning in Romania

Setting: Route Planning in Romania

We are on holiday in Romania and are currently located in Arad.
Our flight home leaves from Bucharest. How to get there?

[]Oradea

Dobreta []
Eforie



Route Planning in Romania
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Romania Formally

State Space Route Planning in Romania

@ states S: {arad, bucharest, craiova, . .., zerind}

@ actions A: move. -+ for any two cities ¢ and ¢’
connected by a single road segment

@ action costs cost: see figure,
e.g., cost(moveiasivasiui) = 92
oo a o
e transitions T: s = s’ iff a = move;, &

@ initial state: s = arad

@ goal states: Sg = {bucharest}
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Blocks World

Blocks world is a traditional example problem in Al.

Setting: Blocks World

@ Colored blocks lie on a table.
@ They can be stacked into towers, moving one block at a time.

@ Our task is to create a given goal configuration.




Blocks World
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Example: Blocks World with Three Blocks

Action names omitted for readability. All actions cost 1.

Initial state and goal can be arbitrary.

"

l‘_'d“ “.‘_'
j ﬂ

<




Blocks World
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Blocks World: Formal Definition

state space (S, A, cost, T, s, Sg) for blocks world with n blocks

State Space Blocks World

states S:
partitions of {1,2,..., n} into nonempty ordered lists

example n = 3:

o {(1,2,3)}, {(1,3,2)}, {(2,1,3)},
{23, D)} {3,1,2)}, {3,2,1)}

° {(1,2),(3)}, {(2,1), 3} {(1,3),(2)},
{31, @2}, {(2,3), (1)} {B,2), (1)}

o {(1),(2),(3)}
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[e]e]e] e}

Blocks World: Formal Definition

state space (S, A, cost, T, s, Sg) for blocks world with n blocks

State Space Blocks World

actions A:

o {move,, | u,ve{l,...,n} with u# v}
e move block u onto block v.
o both must be uppermost blocks in their towers
o {to-table, | ue {1,...,n}}
e move block u onto the table (~ forming a new tower)
e must be uppermost block in its tower
action costs cost:
cost(a) = 1 for all actions a € A
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Blocks World: Formal Definition

state space (S, A, cost, T, s, Sg) for blocks world with n blocks

State Space Blocks World

transitions:

e transition s = s’ with a = move, , exists iff
o s={(b1,...,bx,u),{c1,...,Cm,v)}UX and
o if k>0:s ={(b1,...,bk),{c1y...,Cmy v, )} UX
o if k=0:s={(c1,.-.,Cm, v, )} UX

e transition s = s’ with a = to-table, exists iff

o s={(b,..., bk, u)} UX with k >0 and
o ' ={(b1,...,bx), (1)} UX




Blocks World
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Blocks World: Formal Definition

state space (S, A, cost, T, s, Sg) for blocks world with n blocks

State Space Blocks World

initial state s; and goal states Sg:

one possible scenario for n = 3:
o 5 ={(1,3),(2)}
° 5c = {{<3727 1>}}

(in general can have arbitrary scenarios)




Blocks World
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Blocks World: Properties

blocks states blocks states
1 1 10 58941091
2 3 11 824073141
3 13 12 12470162233
4 73 13 202976401213
5 501 14 3535017524403
6 4051 15 65573803186921
7 37633 16 1290434218669921
8 394353 17 26846616451246353
9 4596553 18 588633468315403843

o For every given initial and goal state with n blocks,
simple algorithms find a solution in time O(n). (How?)
@ Finding optimal solutions is NP-complete
(with a compact problem description).
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Missionaries and Cannibals

Setting: Missionaries and Cannibals

@ Six people must cross a river.

@ Their rowing boat can carry one or two
people across the river at a time.
(It is too small for three.)

@ Three people are missionaries,
three are cannibals.

@ Missionaries may never stay
with a majority of cannibals.




Planning in R a oc d Missionaries and Cannibals

ooe

Missionaries and Cannibals Formally

State Space Missionaries and Cannibals

states S:

triples of numbers (m, c, b) € {0,1,2,3} x {0,1,2,3} x {0,1}:
@ number of missionaries m,
@ cannibals ¢ and
@ boats b

on the left river bank

initial state: sy = (3,3,1)

goal: S¢ = {(0,0,0),(0,0,1)}

actions, action costs, transitions: ?
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Summary

illustrating examples for state spaces:

@ route planning in Romania:
e small example of explicitly representable state space

@ blocks world:
o family of tasks where n blocks on a table must be rearranged
o traditional example problem in Al
e number of states explodes quickly as n grows

@ missionaries and cannibals:

o traditional brain teaser with small state space
(32 states, of which many unreachable)
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations

e B4-B8. Basic Algorithms

B4. Data Structures for Search Algorithms

B5. Tree Search and Graph Search

B6. Breadth-first Search

B7. Uniform Cost Search

B8. Depth-first Search and lIterative Deepening

e B9-B15. Heuristic Algorithms
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Finding Solutions in State Spaces

How can we systematically find a solution?
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Search Algorithms

@ We now move to search algorithms.

@ As everywhere in computer science, suitable data structures
are a key to good performance.

~» common operations must be fast

@ Well-implemented search algorithms process
up to ~30,000,000 states/second on a single CPU core.

~~ bonus materials (Burns et al. paper)

this chapter: some fundamental data structures for search



Introduction
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Preview: Search Algorithms

@ next chapter: we introduce search algorithms

@ now: short preview to motivate data structures for search
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Running Example: Reminder

bounded inc-and-square:

o S=1{0,1,...,9}
A = {inc, sqr}

cost(inc) = cost(sqr) = 1

@ Tst fori=0,...,9

o (i,inc,(i+1)mod10) € T
o (i,sqr,i> mod 10) € T
1

@ 5

Se ={6,7}
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Search Algorithms: Idea

iteratively create a search tree:

@ starting with the initial state,
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Search Algorithms: Idea

iteratively create a search tree:
@ starting with the initial state,

@ repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

German: expandieren, erzeugen

ne Sor



Introduction
00000e0

Search Algorithms: Idea

iteratively create a search tree:
@ starting with the initial state,

@ repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

German: expandieren, erzeugen

Sor
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Search Algorithms: Idea

iteratively create a search tree:
@ starting with the initial state,

@ repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

German: expandieren, erzeugen

Sor
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Search Algorithms: Idea

iteratively create a search tree:
@ starting with the initial state,

@ repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

@ stop when a goal state is expanded (sometimes: generated)
@ or all reachable states have been considered

German: expandieren, erzeugen

Sor
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Fundamental Data Structures for Search

We consider three abstract data structures for search:
@ search node: stores a state that has been reached,
how it was reached, and at which cost
~~ nodes of the example search tree
@ open list: efficiently organizes leaves of search tree
~~ set of leaves of example search tree
@ closed list: remembers expanded states
to avoid duplicated expansions of the same state
~~ inner nodes of a search tree

German: Suchknoten, Open-Liste, Closed-Liste

Not all algorithms use all three data structures,
and they are sometimes implicit (e.g., on the CPU stack)



Search Nodes
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Search Nodes



Search Nodes
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Search Nodes

Search Node

A search node (node for short) stores a state
that has been reached, how it was reached, and at which cost.

Collectively they form the so-called search tree (Suchbaum).




Search Nodes
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Data Structure: Search Nodes

attributes of search node n:

n.state state associated with n

n.parent search node that generated n
(none for the root node)

n.action action leading from n.parent to n
(none for the root node)

n.path_cost cost of path from s to n.state that

results from following parent references
(traditionally denoted by g(n))

. and sometimes additional attributes



Search Nodes
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Data Structure: Search Nodes

attributes of search node n:

n.state
n.parent

n.action

n.path_cost

state associated with n

search node that generated n

(none for the root node)

action leading from n.parent to n
(none for the root node)

cost of path from s; to n.state that
results from following parent references
(traditionally denoted by g(n))

. and sometimes additional attributes

n.state: | 4

n.parent: ‘

n.action: | sqr

n.path_cost: | 2
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Search Nodes: Java

Search Nodes (Java Syntax)

public interface State {
}

public interface Action {

}

public class SearchNode {
State state;
SearchNode parent;
Action action;
int pathCost;




Search Nodes
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Implementing Search Nodes

@ reasonable implementation of search nodes is easy
@ advanced aspects:
e Do we need explicit nodes at all?
Can we use lazy evaluation?

]
e Should we manually manage memory?
e Can we compress information?



Search Nodes
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Operations on Search Nodes: make_root_node

Generate root node of a search tree:

function make_root_node()

node := new SearchNode
node.state := init()
node.parent := none
node.action := none
node.path_cost := 0
return node




Search Nodes
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Operations on Search Nodes: make_node

Generate child node of a search node:

function make_node(parent, action, state)

node := new SearchNode

node.state := state

node.parent := parent

node.action := action

node.path_cost := parent.path_cost + cost(action)
return node




Search Nodes
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Operations on Search Nodes: extract_path

Extract the path to a search node:

function extract_path(node)

path := ()

while node.parent # none:
path.append(node.action)
node := node.parent

path.reverse()

return path




Open Lists
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Open Lists

The open list (also: frontier) organizes the leaves of a search tree.
It must support two operations efficiently:
@ determine and remove the next node to expand

@ insert a new node that is a candidate node for expansion

Remark: despite the name, it is usually a very bad idea
to implement open lists as simple lists.



Open Lists
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Open Lists: Modify Entries

@ Some implementations support modifying an open list entry
when a shorter path to the corresponding state is found.

@ This complicates the implementation.

~~ We do not consider such modifications
and instead use delayed duplicate elimination (~ later).



Open Lists
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Interface of Open Lists

@ open list open organizes leaves of search tree with the methods:

open.is_.empty() test if the open list is empty
open.pop() remove and return the next node to expand
open.insert(n) insert node n into the open list

@ open determines strategy which node to expand next
(depends on algorithm)

@ underlying data structure choice depends on this strategy



Open Lists
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Interface of Open Lists

examples: deque, min-heap

next

@ open list open organizes leaves of search tree with the methods:

open.is_.empty() test if the open list is empty
open.pop() remove and return the next node to expand
open.insert(n) insert node n into the open list

@ open determines strategy which node to expand next
(depends on algorithm)

@ underlying data structure choice depends on this strategy



Closed Lists
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Closed Lists

The closed list remembers expanded states
to avoid duplicated expansions of the same state.
It must support two operations efficiently:
@ insert a node whose state is not yet in the closed list
@ test if a node with a given state is in the closed list;
if yes, return it |

Remark: despite the name, it is usually a very bad idea
to implement closed lists as simple lists. (Why?)



Closed Lists
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Interface and Implementation of Closed Lists

@ closed list closed keeps track of expanded states with the methods:
closed.insert(n) insert node n into closed;
if a node with this state already exists in closed, replace it
closed.lookup(s) test if a node with state s exists in the closed list;
if yes, return it; otherwise, return none

@ efficient implementation often as hash table with states as keys



Summary
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Summary

@ search node:
represents states reached during search
and associated information

@ node expansion:
generate successor nodes of a node by applying all actions
applicable in the state belonging to the node

@ open list or frontier:

set of nodes that are currently candidates for expansion
@ closed list:

set of already expanded nodes (and their states)
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Chapter overview: state-space search
e B1-B3. Foundations

e B4-B8. Basic Algorithms

B4. Data Structures for Search Algorithms

B5. Tree Search and Graph Search

B6. Breadth-first Search

B7. Uniform Cost Search

B8. Depth-first Search and lIterative Deepening

e B9-B15. Heuristic Algorithms
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Search Algorithms

General Search Algorithm

iteratively create a search tree:

@ starting with the initial state,

@ repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

@ stop when a goal state is expanded (sometimes: generated)
@ or all reachable states have been considered
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Search Algorithms

General Search Algorithm

iteratively create a search tree:
@ starting with the initial state,

@ repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

@ stop when a goal state is expanded (sometimes: generated)
@ or all reachable states have been considered

V.

In this chapter, we study two essential classes of search algorithms:
@ tree search
@ graph search

Each class consists of a large number of concrete algorithms.

German: expandieren, erzeugen, Baumsuche, Graphensuche
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Tree Search: General ldea

@ possible paths to be explored
organized in a tree (search tree)

@ search nodes correspond 1:1 to paths
from initial state

@ duplicates a.k.a. transpositions (i.e.,
multiple nodes with identical state)
possible

@ search tree can have unbounded depth

German: Suchbaum, Duplikate,
Transpositionen
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Tree Search: General ldea

@ possible paths to be explored
organized in a tree (search tree)

@ search nodes correspond 1:1 to paths
from initial state

@ duplicates a.k.a. transpositions (i.e.,
multiple nodes with identical state)
possible

@ search tree can have unbounded depth

German: Suchbaum, Duplikate,
Transpositionen
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Tree Search: General ldea

@ possible paths to be explored
organized in a tree (search tree)

@ search nodes correspond 1:1 to paths
from initial state

@ duplicates a.k.a. transpositions (i.e.,
multiple nodes with identical state)

& | sar possible

@ search tree can have unbounded depth
& German: Suchbaum, Duplikate,
S sqr

Transpositionen
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Generic Tree Search Algorithm

Generic Tree Search Algorithm

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
open.insert(n")
return unsolvable
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Generic Tree Search Algorithm: Discussion

discussion:
@ generic template for tree search algorithms

~~ for concrete algorithm, we must (at least) decide
how to implement the open list

@ concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons
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Graph Search



Graph Search
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Graph Search

differences to tree search:

@ recognize duplicates: when a state is reached
on multiple paths, only keep one search node

@ search nodes correspond 1:1 to reachable states

@ depth of search tree bounded

remarks:
@ some graph search algorithms do
not immediately eliminate all
duplicates (~ later)

@ one possible reason: find optimal
solutions when a path to state s
found later is cheaper than one
found earlier
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Generic Graph Search Algorithm

Generic Graph Search Algorithm

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable




Graph Search
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Generic Graph Search Algorithm: Discussion

discussion:
@ same comments as for generic tree search apply
@ in “pure” algorithm, closed list does not actually
need to store the search nodes
e sufficient to implement closed as set of states
e advanced algorithms often need access to the nodes,
hence we show this more general version here
@ some variants perform goal and duplicate tests elsewhere
(earlier) ~ following chapters
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Evaluating Search Algorithms
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Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete

German: Vollstandigkeit, semi-vollstandig, vollstandig



Evaluating Search Algorithms
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Criteria: Optimality

four criteria for evaluating search algorithms:

Are the solutions returned by the algorithm always optimal? I

German: Optimalitat
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Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?
@ usually worst case analysis

@ usually measured in generated nodes

often a function of the following quantities:

@ b: (branching factor) of state space
(max. number of successors of a state)

@ d: search depth
(length of longest path in generated search tree)

German: Zeitaufwand, Verzweigungsgrad, Suchtiefe
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Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?
@ usually worst case analysis

@ usually measured in (concurrently) stored nodes

often a function of the following quantities:

@ b: (branching factor) of state space
(max. number of successors of a state)

@ d: search depth
(length of longest path in generated search tree)

German: Speicheraufwand
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Analyzing the Generic Search Algorithms

Generic Tree Search Algorithm
@ Is it complete? Is it semi-complete?
@ Is it optimal?
@ What is its worst-case time complexity?

@ What is its worst-case space complexity?

Generic Graph Search Algorithm
@ Is it complete? Is it semi-complete?
o Is it optimal?
@ What is its worst-case time complexity?

@ What is its worst-case space complexity?
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Summary (1)

tree search:

@ search nodes correspond 1:1 to paths from initial state

graph search:
@ search nodes correspond 1:1 to reachable states

~> duplicate elimination

generic methods with many possible variants
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Summary (2)

evaluating search algorithms:
@ completeness and semi-completeness
@ optimality

@ time complexity and space complexity
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Chapter overview: state-space search
e B1-B3. Foundations
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B7. Uniform Cost Search

B8. Depth-first Search and lIterative Deepening

e B9-B15. Heuristic Algorithms



Blind Search



Blind Search

oeo

Blind Search

In Chapters B6-B8 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (Chapters B9-B15)
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Blind Search Algorithms: Examples

examples of blind search algorithms:
@ breadth-first search
@ uniform cost search
@ depth-first search
@ depth-limited search

@ iterative deepening search
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Blind Search Algorithms: Examples

examples of blind search algorithms:
@ breadth-first search (~~ this chapter)
@ uniform cost search
@ depth-first search
@ depth-limited search

@ iterative deepening search
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Blind Search Algorithms: Examples

examples of blind search algorithms:
@ breadth-first search (~~ this chapter)
@ uniform cost search (~~ Chapter B7)
o depth-first search (~~ Chapter B8)
@ depth-limited search (~ Chapter B8)
o iterative deepening search (~~ Chapter B8)
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Breadth-first Search: Introduction
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Running Example: Reminder

bounded inc-and-square:

e $=1{0,1,...,9}

A = {inc, sqr}

cost(inc) = cost(sqr) = 1

@ Tst fori=0,...,9

o (iyinc,(i+1)mod10) € T
o (i,sqr,i> mod 10) € T

@ 5 = 1

("] SG = {6,7}
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breadth-first search:
@ expand nodes in order of generation (FIFO)
~~ open list is linked list or deque

@ we start with an example using graph search

German: Breitensuche
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Example: Generic Graph Search with FIFO Expansion

next
open: [.]

closed: { }
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Example: Generic Graph Search with FIFO Expansion

neixt
open: [. .]
closed: {1}
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Example: Generic Graph Search with FIFO Expansion

neixt
open: [@ @ @]
closed: {1, 2}
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Example: Generic Graph Search with FIFO Expansion

neixt
open: [. .]
closed: {1, 2}
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Example: Generic Graph Search with FIFO Expansion

neixt
open: [@ @ @]
closed: {1, 2, 3}
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Example: Generic Graph Search with FIFO Expansion

next

v
open: [ @ @ @]
closed: {1, 2,3, 4}
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Example: Generic Graph Search with FIFO Expansion

next

e [G08]
closed: {1, 2,3, 4}
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Example: Generic Graph Search with FIFO Expansion

next
v
open: [0 OO @]
closed: {1, 2,3, 4, 9}
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Example: Generic Graph Search with FIFO Expansion

next

¥
open: (0O @@ O |
closed: {1, 2,3,4,5, 9}
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Example: Generic Graph Search with FIFO Expansion

next

y
open: [0 @© @]
closed: {1,2,3,4,5,6, 9}
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Observations from Example

breadth-first search behaviour:
@ state space is searched layer by layer
~ shallowest goal node is always found first
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Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

e without duplicate elimination (as a tree search)
~» BFS-Tree

@ or with duplicate elimination (as a graph search)
~» BFS-Graph

(BFS = breadth-first search).

~~ We consider both variants.
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BFS-Tree
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Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable
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BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
open.push_back(n’)
return unsolvable )
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BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS- = (1st Attempt)

open.push_back(m3
while not open.is_empty
n := open.pop_front()
if is_goal(n.state):
return extract_p#
for each (a,s’)




BFS-Tree
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Running Example: BFS-Tree (1st Attempt)




BFS-Tree
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Opportunities for Improvement

@ In a BFS, the first generated goal node
is always the first expanded goal node. (Why?)

~~ It is more efficient to perform the goal test
upon generating a node (rather than upon expanding it).

~ How much effort does this save?



BFS-Tree
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BFS-Tree without Early Goal Tests




BFS-Tree
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BFS-Tree with Early Goal Tests
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BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():

n := open.pop_front()

for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable )
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BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BF. T-ee (2nd Attempt)

for each (a,s’)
n' := make_ng
if is_goa

fhsolvable
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BFS-Tree (2nd Attempt): Discussion

Where is the bug?
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BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable
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BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable




BFS-Graph
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Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable
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Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

@ similar adaptations to BFS-Tree
(deque as open list, early goal tests)

@ as closed list does not need to manage node information,
a set data structure suffices

@ for the same reasons why early goal tests are a good idea,
we should perform duplicate tests against the closed list
and updates of the closed lists as early as possible
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BFS-Graph (Breadth-First Search with Duplicate Elim.)

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
closed := new HashSet
closed.insert(init())
while not open.is_empty():
n := open.pop_front()
for each (a, s’) € succ(n.state):
n’ := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
if s’ ¢ closed:
closed.insert(s’)
open.push_back(n’)
return unsolvable




BFS-Graph: Example

n(ixt
open: [.]
closed: {1}
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BFS-Graph: Example

n(ixt
open: [.]
closed: {1,2}
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BFS-Graph: Example

n(ixt
open: [. .]
closed: {1, 2,3, 4}



BFS-Graph:

BFS-Graph
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Example

n(ixt
open: [. .]
closed: {1, 2,3, 4, 9}



BFS-Graph:

BFS-Graph
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Example

n(ixt
open: [. .]
closed: {1,2,3,4,5, 9}



Properties of Breadth-first Search
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Properties of Breadth-first Search

Properties of Breadth-first Search:
@ BFS-Tree is semi-complete, but not complete. (\Why?)
e BFS-Graph is complete. (Why?)

e BFS (both variants) is optimal
if all actions have the same cost (Why?),
but not in general (Why not?).

@ complexity: next slides
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Breadth-first Search: Complexity

The following result applies to both BFS variants:

Theorem (time complexity of breadth-first search)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b > 2.

Then the time complexity of breadth-first search is

1+b+ b+ b+ + b= 0(b7)

Reminder: we measure time complexity in generated nodes.

It follows that the space complexity of both BFS variants
also is O(b9) (if b >2). (Why?)
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Breadth-first Search: Example of Complexity

example: b = 13; 100000 nodes/second; 32 bytes/node

6 5.2-10° 52s 159 MiB

10 10™ 17days 4.3TiB

14 10%° 1352years 121 PiB

18 10° 38-10°years 3.3ZiB
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Breadth-first Search: Example of Complexity

example: b = 13; 100000 nodes/second; 32 bytes/node

Realistic numbers?

6 5.2-10° 52s 159 MiB

10 10™ 17days 4.3TiB

14 10%° 1352years 121 PiB

18 10° 38-10°years 3.3ZiB



BFS Properties
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Breadth-first Search: Example of Complexity

example: b = 13; 100000 nodes/second; 32 bytes/node

6 5.2-10° 52s 159 MiB

10 10™ 17days 4.3TiB
Rubik's cube:

14 10%° 1352 121 PiB
@ branching factor: ~ 13 year ;

@ typical solution length: 18 .
18 10® 38-10°years 3.3ZiB



BFS Properties
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BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?
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BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates
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BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
@ simpler

o less overhead (time/space) if there are few duplicates
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BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
@ simpler

o less overhead (time/space) if there are few duplicates

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.




Summary
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Summary

@ blind search algorithm: use no information
except black box interface of state space

@ breadth-first search: expand nodes in order of generation
e search state space layer by layer
@ can be tree search or graph search
o complexity O(b9) with branching factor b,

minimal solution length d (if b > 2)

e complete as a graph search; semi-complete as a tree search
e optimal with uniform action costs
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations

e B4-B8. Basic Algorithms

B4. Data Structures for Search Algorithms

B5. Tree Search and Graph Search

B6. Breadth-first Search

B7. Uniform Cost Search

B8. Depth-first Search and lIterative Deepening

e B9-B15. Heuristic Algorithms



Introduction
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Uniform Cost Search

@ breadth-first search optimal if all action costs equal

@ otherwise no optimality guarantee ~~ example:

@ consider bounded inc-and-square problem
— with cost(inc) = 1, cost(sqr) = 3

(> @ solution of breadth-first search still
(inc, sqr, sqr) (cost: 7)

e but: (inc, inc, inc, inc, inc) (cost: b) is cheaper!
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Uniform Cost Search

@ breadth-first search optimal if all action costs equal

@ otherwise no optimality guarantee ~~ example:

@ consider bounded inc-and-square problem
— with cost(inc) = 1, cost(sqr) = 3

(> @ solution of breadth-first search still
(inc, sqr, sqr) (cost: 7)

e but: (inc, inc, inc, inc, inc) (cost: b) is cheaper!

remedy: uniform cost search

@ always expand a node with minimal path cost
(n.path_cost a.k.a. g(n))

e implementation: priority queue (min-heap) for open list



Algorithm
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Algorithm
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Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable
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Uniform Cost Search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable )
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Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

@ here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

@ as in BFS-Graph, a set is sufficient for the closed list

@ a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (\Why not?)

Remarks:
@ identical to Dijkstra’s algorithm for shortest paths
e for both: variants with/without delayed duplicate elimination
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Example

next bounded inc-and-square variant: cost(sqr) = 3

open: [ @]
closed: {} ‘
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Example

next bounded inc-and-square variant: cost(sqr) = 3
|
open: [.:1 .;3]

closed: {1}
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Example

next bounded inc-and-square variant: cost(sqr) = 3
|
open: [ @2 @3 @:4]
closed: {1, 2}
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Example

next bounded inc-and-square variant: cost(sqr) = 3
|
open: [ @33@3@:+ .:5]
closed: {1, 2, 3}
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Example

next bounded inc-and-square variant: cost(sqr) = 3
{
open: [ @3 @4 .:5]
closed: {1, 2, 3}
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Example

next bounded inc-and-square variant: cost(sqr) = 3

|
open: [ ®:0:0-> @:6]
closed: {1, 2,3, 4}
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Example

next bounded inc-and-square variant: cost(sqr) = 3

|
open: [ ®:0-> @:6]
closed: {1, 2,3, 4}
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Example

next bounded inc-and-square variant: cost(sqr) = 3
|
open: [ @5 @5 @6 @7]
closed: {1, 2,34, 5}
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Example

next bounded inc-and-square variant: cost(sqr) = 3
{
open: [ @5 @6 @6 @7 @3]
closed: {1, 2,34, 5}
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Example

next bounded inc-and-square variant: cost(sqr) = 3
{
open: [ @6 @6 @7 @:3]
closed: {1, 2,3, 4, 5}
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Uniform Cost Search: Improvements

possible improvements:

@ if action costs are small integers,
bucket heaps often more efficient

@ additional early duplicate tests for generated nodes
can reduce memory requirements

e can be beneficial or detrimental for runtime
e must be careful to keep shorter path to duplicate state



Properties
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Completeness and Optimality

properties of uniform cost search:
@ uniform cost search is complete (Why?)

@ uniform cost search is optimal (Why?)
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Time and Space Complexity

properties of uniform cost search:

@ Time complexity depends on distribution of action costs
(no simple and accurate bounds).
o Let € := minyea cost(a) and consider the case € > 0.
Let c* be the optimal solution cost.
Let b be the branching factor and consider the case b > 2.
Then the time complexity is at most O(bl</¢1+1). (Why?)
often a very weak upper bound

@ space complexity = time complexity



Summary
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Summary

uniform cost search: expand nodes in order of ascending path costs
@ usually as a graph search
@ then corresponds to Dijkstra’s algorithm

@ complete and optimal
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations

e B4-B8. Basic Algorithms

B4. Data Structures for Search Algorithms

B5. Tree Search and Graph Search

B6. Breadth-first Search

B7. Uniform Cost Search

B8. Depth-first Search and lIterative Deepening

e B9-B15. Heuristic Algorithms



Depth-first Search

900000000

Depth-first Search



Depth-first Search
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Idea of Depth-first Search

depth-first search:
@ expands nodes in opposite order of generation (LIFO)
@ open list implemented as stack

~ deepest node expanded first

German: Tiefensuche
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Depth-first Search Example

next

open: [@]
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Depth-first Search Example

next

open: [.é]
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Depth-first Search Example
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Depth-first Search Example
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Depth-first Search Example

next

¥
open: [0 OO@O |



Depth-first Search
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Depth-first Search Example

next

open: [ooo@o]
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Depth-first Search Example

open: [0 OO@O |



Depth-first Search
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Depth-first Search Example

open: [0 OO@O |
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Depth-first Search: Some Properties

@ almost always implemented as a tree search (we will see why)
@ not complete, not semi-complete, not optimal (Why?)

@ complete for acyclic state spaces,
e.g., if state space directed tree
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Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable
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Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_back()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.push_back(n")
return unsolvable
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Non-recursive Depth-first Search: Discussion

discussion:

§

$

there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

however, depth-first search as a recursive algorithm
is simpler and more efficient

CPU stack as implicit open list

no search node data structure needed



Depth-first Search
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Depth-first Search (Recursive Version)

function depth first_search(s)

if is_goal(s):
return ()
for each (a,s’) € succ(s):
solution := depth_first_search(s’)
if solution # none:
solution.push_front(a)
return solution
return none

main function:

Depth-first Search (Recursive Version)

return depth_first_search(init())
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Depth-first Search: Complexity

time complexity:
o If the state space includes paths of length m,
depth-first search can generate O(b™) nodes,
even if much shorter solutions (e.g., of length 1) exist.

@ On the other hand: in the best case, solutions of length £
can be found with O(b() generated nodes. (Why?)

@ improvable to O(¢) with incremental successor generation
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Depth-first Search: Complexity

time complexity:
o If the state space includes paths of length m,
depth-first search can generate O(b™) nodes,
even if much shorter solutions (e.g., of length 1) exist.

@ On the other hand: in the best case, solutions of length £
can be found with O(b() generated nodes. (Why?)

@ improvable to O(¢) with incremental successor generation

space complexity:

@ only need to store nodes along currently explored path
(“along”: nodes on path and their children)

~ space complexity O(bm) if m maximal search depth reached

@ low memory complexity main reason why depth-first search
interesting despite its disadvantages
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lterative Deepening



Iterative Deepening
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Idea of Depth-limited Search

depth-limited search:
@ parameterized with depth limit 7 € Ny

@ behaves like depth-first search, but prunes (does not expand)
search nodes at depth /¢

@ not very useful on its own, but important ingredient
of more useful algorithms

German: tiefenbeschrankte Suche



Iterative Deepening
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Depth-limited Search Example

Consider depth limit ¢ = 2.
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Depth-limited Search Example

Consider depth limit ¢ = 2.

in¢ Sor



Iterative Deepening
00@0000000

Depth-limited Search Example

Consider depth limit ¢ = 2.

in¢ Sor

'\(\c &9/“
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Depth-limited Search Example

Consider depth limit ¢ = 2.
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Depth-limited Search Example

Consider depth limit ¢ = 2.
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Depth-limited Search Example

Consider depth limit ¢ = 2.
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Depth-limited Search Example

Consider depth limit ¢ = 2.
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Depth-limited Search Example

Consider depth limit ¢ = 2.




Iterative Deepening
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Depth-limited Search Example

Consider depth limit ¢ = 2.
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Depth-limited Search: Pseudo-Code

function depth_limited_search(s, depth_limit):

if is_goal(s):
return ()
if depth_limit > 0:
for each (a,s’) € succ(s):
solution := depth_limited_search(s’, depth_limit — 1)
if solution # none:
solution.push_front(a)
return solution
return none
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Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):
@ idea: perform a sequence of depth-limited searches
with increasing depth limit
@ sounds wasteful (each iteration repeats all the useful work
of all previous iterations)
@ in fact overhead acceptable (~ analysis follows)

Iterative Deepening DFS

for depth_limit € {0,1,2,... }:
solution := depth_limited_search(init(), depth_limit)
if solution # none:
return solution

German: iterative Tiefensuche
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Example

depth limit: 0 generated nodes: 1
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Example

depth limit: 1 generated nodes: 143

inC Sgr
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Example

depth limit: 2 generated nodes: 14347
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Example

depth limit: 3 generated nodes: 143+7+9=20
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Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:
o (almost) like BFS: semi-complete (however, not complete)
@ like BFS: optimal if all actions have same cost

@ like DFS: only need to store nodes along one path
~~ space complexity O(bd), where d minimal solution length

@ time complexity only slightly higher than BFS
(~ analysis soon)
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Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search L+b+b>+ -+ b9 4 b
iterative deepening DFS | (d + 1) +db+ (d — 1)b? + - +2b9~1 4+ 1p?

example: b=10,d =5

breadth-first search 14104 100 + 1000 + 10000 + 100000
= 111111

iterative deepening DFS | 6 4 50 4 400 4 3000 + 20000 + 100000
= 123456

for b = 10, only 11% more nodes than breadth-first search



Iterative Deepening
0000000080

Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b > 2.

Then the time complexity of iterative deepening DFS is
(d+1)+db+ (d —1)b? + (d —2)b> + - -- + 1b9 = O(b%)

and the memory complexity is

O(bd).
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Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if
@ tree search is adequate (no duplicate elimination necessary),
@ all action costs are identical, and

@ the solution depth is unknown.
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Summary

depth-first search: expand nodes in LIFO order

usually as a tree search
easy to implement recursively
very memory-efficient

can be combined with iterative deepening
to combine many of the good aspects
of breadth-first and depth-first search

Summary
oeo
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Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity )
search algorithm
criterion breadth- uniform depth-  depth- iterative
first cost first limited deepening
complete? yes”* yes no no semi
optimal? yes*™* yes no no yes*™
time o(b?)  O(ble™/el+ly o™y  O(bY) o(b9)
space o(b?)  O(ble™/el+ly  O(bm)  O(be) O(bd)
b>2  branching factor iemarks:
d  minimal solution depth Mfor BFS-Tree: semi-complete
m  maximal search depth only with uniform action costs
¢ depth limit
c*  optimal solution cost
€ >0 minimal action cost
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations
e B4-B8. Basic Algorithms

e B9-B15. Heuristic Algorithms
B9. Heuristics

B10.
B11.
B12.
B13.
B14.
B15.

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A*, Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part Il
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Informed Search Algorithms

search algorithms considered so far:

@ uninformed (“blind"): use no information
besides formal definition to solve a problem

@ scale poorly: prohibitive time (and space)
requirements for seemingly simple problems
(time complexity usually O(b?))
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Informed Search Algorithms

search algorithms considered so far: example: b = 13; 10° nodes/second

@ uninformed (“blind"): use no information
besides formal definition to solve a problem

. 6
@ scale poorly: prohibitive time (and space) 6 5.2-10 52s

requirements for seemingly simple problems
. . d
(time complexity usually O(b?)) 10 101 s

14 10 1352 years

18 10%®  38-10° years
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Informed Search Algorithms

Rubik's cube: example: b = 13; 105 nodes/second

6 5.2-10° 52s

10 10! 17 days

14 10 1352 years

@ branching factor: ~ 13

@ typical solution length: 18
18 10%®  38.10° years

Richard Korf, Finding Optimal Solutions to Rubik's Cube Using Pattern Databases (AAAI, 1997)
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Informed Search Algorithms

Rubik's cube: search algorithms considered now:

@ idea: try to find (problem-specific) criteria
to distinguish good and bad states

@ heuristic (“informed”) search algorithms
prefer good states

@ branching factor: ~ 13

@ typical solution length: 18

Richard Korf, Finding Optimal Solutions to Rubik's Cube Using Pattern Databases (AAAI, 1997)
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Heuristics

Definition (heuristic)

Let S be a state space with states S.
A heuristic function or heuristic for S is a function

h:S— RJ U {oc},

mapping each state to a nonnegative number (or c0).




Heuristics
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Heuristics: Intuition

idea: h(s) estimates distance (= cost of cheapest path)
from s to closest goal state
@ heuristics can be arbitrary functions
@ intuition:
@ the closer h is to true goal distance,
the more efficient the search using h

@ the better h separates states that are close to the goal from
states that are far, the more efficient the search using h
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Why “Heuristic”?

What does “heuristic” mean?
e from ancient Greek éupiokw (= | find)

@ same origin as guprnka!



https://youtu.be/ijj58xD5fDI?t=27

Heuristics
00080

Why “Heuristic”?

What does “heuristic” mean?
e from ancient Greek éupiokw (= | find) mmﬁ
@ same origin as guprnka!

@ popularized by George Pdlya:

How to Solve It (1945)

@ in computer science often used for:
rule of thumb, inexact algorithm

@ in state-space search technical term

for goal distance estimator



Heuristics
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Representation of Heuristics

In our black box model, heuristics are an additional element
of the state space interface:
State Spaces as Black Boxes (Extended)
e init()
is_goal(s)

succ(s)

cost(a)

h(s): heuristic value for state s
result: nonnegative integer or co
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Bounded Inc-and-Square

bounded inc-and-square: possible heuristics:
P
hy(s) = 0 if s 7
(16 — s) mod 10 otherwise

~~ number of inc actions to goal

How accurate is this heuristic?



Examples
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Bounded Inc-and-Square

bounded inc-and-square: possible heuristics:

hl(s):{o ifs=7

(16 — s) mod 10 otherwise

~~ number of inc actions to goal

. 0 ifsisa “goal”
g 1 sis “close”
S ome)={l S5O
g\ 2 sis “medium
S 3 sis “far”

~» categorize states

How accurate is this heuristic?
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Example: Blocks World

possible heuristic: i\ j

count blocks x that currently lie on y

and must lie on z # y in the goal li 7[
(including case where y or z is the table)



Examples
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Example: Blocks World

possible heuristic: i\ j

count blocks x that currently lie on y

and must lie on z # y in the goal li 7[
(including case where y or z is the table)

How accurate is this heuristic? '/ \I
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Example: Route Planning in Romania

possible heuristic: straight-line distance to Bucharest

[]Oradea

Dobreta 3

Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374
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Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

@ Six people must cross a river.

@ Their rowing boat can carry one or two people
across the river at a time (it is too small for three).

@ Three people are missionaries, three are cannibals.

@ Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank
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Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

@ Six people must cross a river.

@ Their rowing boat can carry one or two people
across the river at a time (it is too small for three).

@ Three people are missionaries, three are cannibals.

@ Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

~ with our formulation of states as triples (m, c, b):
h({m,c,b)) =m+c



Summary
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Summary

@ heuristics estimate distance of a state to the goal
@ can be used to focus search on promising states

~~ soon: search algorithms that use heuristics
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations
e B4-B8. Basic Algorithms

e B9-B15. Heuristic Algorithms
B9. Heuristics

B10.
B11.
B12.
B13.
B14.
B15.

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A*, Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part Il



Reminder: Heuristics

Definition (heuristic)

Let S be a state space with states S.
A heuristic function or heuristic for S is a function

h:S— RJ U {oc},

mapping each state to a nonnegative number (or c0).
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Properties of Heuristics

Perfect Heuristic

Definition (perfect heuristic)

Let S be a state space with states S.
The perfect heuristic for S, written h*, maps each state s € S
@ to the cost of an optimal solution for s, or

@ to oo if no solution for s exists.

German: perfekte Heuristik



Properties of Heuristics

Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for § is called
e safe if h*(s) = oo for all s € S with h(s) = oo
@ goal-aware if h(s) = 0 for all goal states s
e admissible if h(s) < h*(s) for all states s € S

e consistent if h(s) < cost(a) 4 h(s') for all transitions s = s’

V.

German: sicher, zielerkennend, zulassig, konsistent



Properties of Heuristics

Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for § is called
e safe if h*(s) = oo for all s € S with h(s) = oo
@ goal-aware if h(s) = 0 for all goal states s
e admissible if h(s) < h*(s) for all states s € S

e consistent if h(s) < cost(a) 4 h(s') for all transitions s = s’

V.

German: sicher, zielerkennend, zulassig, konsistent




Examples



Examples
o]

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Route Planning in Romania

straight-line distance:
@ safe
@ goal-aware
@ admissible
@ consistent
Why?
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Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Blocks World

misplaced blocks:
e safe?
@ goal-aware?
@ admissible?

@ consistent?
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Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Missionaries and Cannibals

people on wrong river bank:
e safe?
@ goal-aware?
@ admissible?

@ consistent?
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Connections
[e] lele}

Properties of Heuristics: Connections (1)

Theorem (admissible = safe + goal-aware)
Let h be an admissible heuristic.

Then h is safe and goal-aware.

Why?



Connections
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Properties of Heuristics: Connections (2)

Theorem (goal-aware + consistent = admissible)

Let h be a goal-aware and consistent heuristic.
Then h is admissible.

Why?



Connections
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Showing All Four Properties

How can one show most easily that a heuristic
has all four properties?



Summary
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Summary

@ perfect heuristic h*: true cost to the goal
@ important properties: safe, goal-aware, admissible, consistent

@ connections between these properties

o admissible = safe and goal-aware
e goal-aware and consistent = admissible
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations
e B4-B8. Basic Algorithms

e B9-B15. Heuristic Algorithms
B9. Heuristics

B10.
B11.
B12.
B13.
B14.
B15.

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A*, Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part Il
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Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen
@ this chapter: short introduction

@ next chapters: more thorough analysis
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Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

@ decision which node is most promising uses heuristics. . .

@ ...but not necessarily exclusively.
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Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

@ decision which node is most promising uses heuristics. . .

@ ...but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f(n) value.

German: Bestensuche, Bewertungsfunktion
@ implementation essentially like uniform cost search

o different choices of f ~~ different search algorithms



Best-first Search
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:



Best-first Search
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~ only the heuristic counts



Best-first Search
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:
e f(n) = h(n.state): greedy best-first search
~ only the heuristic counts
e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~> only the heuristic counts

e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic

e f(n) = g(n)+ w - h(n.state): weighted A*
w € R} is a parameter
~ interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~> only the heuristic counts
e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic
e f(n) = g(n)+ w - h(n.state): weighted A*
w € R} is a parameter
~ interpolates between greedy best-first search and A*
German: gierige Bestensuche, A*, Weighted A*
~~ properties: next chapters
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~> only the heuristic counts

e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic

e f(n) = g(n)+ w - h(n.state): weighted A*
w € R} is a parameter
~ interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*
~ properties: next chapters

What do we obtain with 7(n) := g(n)?
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Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

e now: graph search (i.e., with duplicate elimination),
which is the more common case

o Chapter B13: a tree search variant
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Algorithm Details
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Reminder: Uniform Cost Search

reminder from Chapter B7:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable )
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Best-first Search without Reopening (1st Attempt)

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by f
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable )
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Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.
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Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

@ discard states considered unsolvable by the heuristic
~> saves memory in open

o if multiple search nodes have identical f values,
use h to break ties (preferring low h)

e not always a good idea, but often
o obviously unnecessary if f = h (greedy best-first search)
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Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a, s’) € succ(n.state):
if h(s') < oo
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable
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Best-first Search: Properties

properties:
e complete if h is safe (Why?)

@ optimality depends on f ~~ next chapters
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Reopening

@ reminder: uniform cost search expands nodes
in order of increasing g values
~> guarantees that cheapest path to state of a node
has been found when the node is expanded
@ with arbitrary evaluation functions f in best-first search
this does not hold in general
~ in order to find solutions of low cost,

we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening
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Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
distances := new HashMap
while not open.is_empty():
n := open.pop_min()
if distances.lookup(n.state) = none or g(n) < distances|n.state]:
distances|n.state] := g(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oo:
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable )

~> distances controls reopening and replaces closed
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Summary

@ best-first search: expand node with minimal value
of evaluation function f
o f = h: greedy best-first search
o f=g+h A"
o f =g+ w- h with parameter w € ]Rg: weighted A"
@ here: best-first search as a graph search

@ reopening: expand duplicates with lower path costs
to find cheaper solutions

Summary
oce
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State-Space Search: Overview

Chapter overview: state-space search
e B1-B3. Foundations
e B4-B8. Basic Algorithms

e B9-B15. Heuristic Algorithms
B9. Heuristics

B10.
B11.
B12.
B13.
B14.
B15.

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A", Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part Il
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What Is It About?

In this chapter we study last chapter’s algorithms in more detail:
@ greedy best-first search
o A*
o weighted A*



Greedy Best-first Search

[ Jelele]e}

Greedy Best-first Search
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Greedy Best-first Search

Greedy Best-first Search

only consider the heuristic: f(n) = h(n.state)

Note: usually without reopening (for reasons of efficiency)
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Example: Greedy Best-first Search for Route Planning

Sibiu

g9 Fagaras

Dobreta ]

Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374
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Example: Greedy Best-first Search for Route Planning

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example: Greedy Best-first Search for Route Planning

329

timisoara zerind

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example: Greedy Best-first Search for Route Planning

timisoara zerind

366 fagaras oradea rimnicu vilcea

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example: Greedy Best-first Search for Route Planning

timisoara zerind

366 fagaras oradea rimnicu vilcea

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example: Greedy Best-first Search for Route Planning

timisoara zerind

366 fagaras oradea rimnicu vilcea

sibiu

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Greedy Best-first Search: Properties

@ complete with safe heuristics
(like all variants of best-first graph search)

@ suboptimal: solutions can be arbitrarily bad
@ often very fast: one of the fastest search algorithms in practice

@ monotonic transformations of h (e.g. scaling, additive
constants) do not affect behaviour (Why is this interesting?)
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combine greedy best-first search with uniform cost search:
f(n) = g(n) + h(n.state)

@ trade-off between path cost and proximity to goal

e f(n) estimates overall cost of cheapest solution
from initial state via n to the goal
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A*: Citations

hart nilsson raphael

About 16.300 results (0,07 sec)

A formal basis for the heuristic determination of minimum cost paths

PE Hart, NJ Nilsson, B Raphael - IEEE transactions on Systems ..., 1968 - ieeexplore.ieee.org
Although the problem of determining the minimum cost path through a graph arises naturally

in a number of interesting applications, there has been no underlying theory to guide the ...

Yr Save U9 Cite Cited by 17117 Related articles All 4 versions $9

Correction to" a formal basis for the heuristic determination of minimum cost
paths"

PE Hart, NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Our paper on the use of heuristic information in graph searching defined a path-finding

algorithm, A*, and proved that it had two important properties. In the notation of the paper, we ...
Y¢ Save 99 Cite Cited by 592 Related articles All 11 versions

Research and applications: Artificial intelligence

B Raphael, RE Fikes, LJ Chaitin, PE Hart, RO Duda... - 1971 - nirs.nasa.gov

A program of research in the field of artificial intelligence is presented. The research areas
discussed include automatic theorem proving, representations of real-world environments, ...
Y¢ Save 99 Cite Cited by 20 Related articles All 5 versions $9



A*
00e0000

A*: Citations

hart nilsson raphael

About 16.300 results (0,07 sec)

A formal basis for the heuristic determination of minimum cost paths
PE Hart, NJ Nilsson, B Raphael - IEEE transactions on Systems ..., 1968 - ieeexplore.ieee.org
Although the problem of determining the minimum cost path through a graph arises naturally

in a number of interesting applicafjons, there has been no underlying theory to guide the ...
Yr Save 99U Cite Cited @ Related articles  All 4 versions  $9

Correction to" a formal basis for the heuristic determination of minimum cost
paths"

PE Hart, NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Our paper on the use of heuristic information in graph searching defined a path-finding

algorithm, A*, and proved that it had two important properties. In the notation of the paper, we ...
Y¢ Save 99 Cite Cited by 592 Related articles All 11 versions

Research and applications: Artificial intelligence

B Raphael, RE Fikes, LJ Chaitin, PE Hart, RO Duda... - 1971 - nirs.nasa.gov

A program of research in the field of artificial intelligence is presented. The research areas
discussed include automatic theorem proving, representations of real-world environments, ...
Y¢ Save 99 Cite Cited by 20 Related articles All 5 versions $9
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Example: A* for Route Planning

Fagaras

Dobreta ]
Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374
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Example A* for Route Planning

Arad
Bucharest
Craiova
Fagaras
Oradea

366

160
176
380

366

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Zerind

0 366

100
193
253
329
374

Eforie
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Example A* for Route Planning

0 366

447 @EIECELE]

Eforie

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example A* for Route Planning

0 366

447 @EIECELE]

Eforie

280 366

646 fagaras oradea rimnicu vilcea

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example A* for Route Planning

0 366

447

Eforie

280 366

646 fagaras oradea

craiova pitesti sibiu

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example A* for Route Planning

0 366

447

Eforie

280 366

646 oradea

craiova pitesti sibiu

Arad 366 Pitesti 100
Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374
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Example A* for Route Planning

0 366

447

Eforie

280 366
646 oradea

craiova pitesti sibiu

Arad Pitesti

Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374 craiova rimnicu vilcea



A*
0000e00

Example A* for Route Planning

0 366

447

Eforie

280 366
646 oradea

craiova pitesti sibiu

Arad Pitesti

Bucharest 0 Rimnicu Vilcea 193
Craiova 160 Sibiu 253
Fagaras 176 Timisoara 329

Oradea 380 Zerind 374 craiova rimnicu vilcea
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. Properties

@ complete with safe heuristics
(like all variants of best-first graph search)

@ with reopening: optimal with admissible heuristics

@ without reopening: optimal with heuristics
that are admissible and consistent

~> proofs: Chapters B14 and B15
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A*: Implementation Aspects

some practical remarks on implementing A*:

@ common bug: reopening not implemented
although heuristic is not consistent

@ common bug: duplicate test “too early”
(upon generation of search nodes)

@ common bug: goal test “too early”
(upon generation of search nodes)

@ all these bugs lead to loss of optimality
and can remain undetected for a long time
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Weighted A*

Weighted A*

A* with more heavily weighted heuristic:

f(n) = g(n) + w - h(n.state),

where weight w € RaL with w > 1 is a freely choosable parameter

Note: w < 1 is conceivable, but usually not a good idea
(Why not?)



Weighted A™*
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Weighted A*: Properties

weight parameter controls “greediness”’ of search:
o w = 0: like uniform cost search
o w=1: like A*
@ w — oo: like greedy best-first search

with w > 1 properties analogous to A*:

@ h admissible:
found solution guaranteed to be at most w times
as expensive as optimum when reopening is used
@ h admissible and consistent:
found solution guaranteed to be at most w times
as expensive as optimum; no reopening needed

(without proof)
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Summary

best-first graph search with evaluation function f:

@ f = h: greedy best-first search
suboptimal, often very fast
o f=g+h A"
optimal if h admissible and consistent
or if h admissible and reopening is used
o f =g+ w-h: weighted A*
for w > 1 suboptimality factor at most w
under same conditions as for optimality of A*

Summary
oce
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The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS
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IDA*

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

@ depth-limited search with increasing limits
@ instead of depth we limit f
(in this chapter f(n) := g(n) + h(n.state) as in A*)
~ IDA* (iterative-deepening A*)

@ tree search, unlike the previous best-first search algorithms
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IDA*: Algorithm
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Reminder: Iterative Deepening Depth-first Search

reminder from Chapter B8: iterative deepening depth-first search

Iterative Deepening DFS

for depth_limit € {0,1,2,...}:
solution := depth_limited_search(init(), depth_limit)
if solution # none:
return solution

function depth_limited_search(s, depth_limit):

if is_goal(s):
return ()
if depth_limit > 0:
for each (a,s’) € succ(s):
solution := depth_limited_search(s’, depth_limit — 1)
if solution # none:
solution.push _front(a)
return solution
return none
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First Attempt: IDA* Main Function

first attempt: iterative deepening A* (IDA™)

IDA* (First Attempt)

for f_limit € {0,1,2,... }:
solution := f_limited_search(init(), 0, f_limit)
if solution # none:
return solution
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First Attempt: f-Limited Search

function f_limited_search(s, g, f_limit):

if g + h(s) > flimit:
return none
if is_goal(s):
return ()
for each (a,s’) € succ(s):
solution := f_limited_search(s’, g + cost(a), f_limit)
if solution # none:
solution.push _front(a)
return solution
return none
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IDA* First Attempt: Discussion

@ The pseudo-code can be rewritten to be even more similar
to our IDDFS pseudo-code. However, this would make
our next modification more complicated.

@ The algorithm follows the same principles as IDDFS,
but takes path costs and heuristic information into account.

@ For unit-cost state spaces and the trivial heuristic h: s +— 0
for all states s, it behaves identically to IDDFS.

o For general state spaces, there is a problem
with this first attempt, however.
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Growing the f Limit

@ In IDDFS, we grow the limit from the smallest limit
that gives a non-empty search tree (0) by 1 at a time.

@ This usually leads to exponential growth of the tree
between rounds, so that re-exploration work can be amortized.

@ In our first attempt at IDA*, there is no guarantee that
increasing the f limit by 1 will lead to a larger search tree
than in the previous round.

@ This problem becomes worse if we also allow non-integer
(fractional) costs, where increasing the limit by 1 would be
very arbitrary.
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Setting the Next f Limit

idea: let the f-limited search compute the next sensible f limit

e Start with h(init()), the smallest f limit
that results in a non-empty search tree.

@ In every round, increase the f limit to the smallest value
that ensures that in the next round at least one
additional path will be considered by the search.

~ f_limited_search now returns two values:
e the next f limit that would include at least one new node
in the search tree (oo if no such limit exists;

none if a solution was found), and
o the solution that was found (or none).
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Final Algorithm: IDA* Main Function

final algorithm: iterative deepening A* (IDA™)

f_limit = h(init())
while f/imit # oco:
(f_limit, solution) := f_limited_search(init(), 0, f-limit)
if solution # none:
return solution
return unsolvable
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Final Algorithm: f-Limited Search

function f_limited_search(s, g, f-limit):

if g+ h(s) > flimit:
return (g + h(s), none)
if is_goal(s):
return (none, ())
new_limit := oo
for each (a,s’) € succ(s):
(child_limit, solution) := f_limited_search(s’, g + cost(a), f_limit)
if solution # none:
solution.push_front(a)
return (none, solution)
new_limit :== min(new_limit, child_limit)
return (new_limit, none)




IDA™: Idea IDA*: Algorithm
0o 00000000@

Final Algorithm: f-Limited Search

function f_limited_search(s, g, f-limit):

if g+ h(s) > flimit:
return (g + h(s), none)
if is_goal(s):
return (none, ())
new_limit := oo
for each (a,s’) € succ(s):
(child_limit, solution) := f_limited_search(s’, g + cost(a), f_limit)
if solution # none:
solution.push_front(a)
return (none, solution)
new_limit :== min(new_limit, child_limit)
return (new_limit, none)
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IDA*: Properties

Inherits important properties of A* and depth-first search:
e semi-complete if h safe and cost(a) > 0 for all actions a
@ optimal if h admissible

@ space complexity O(¢b), where

e /: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
e b: branching factor

We state these without proof.
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IDA*: Discussion

@ compared to A* potentially considerable overhead
because no duplicates are detected
~~ exponentially slower in many state spaces
~~ often combined with partial duplicate elimination
(cycle detection, transposition tables)

@ overhead due to iterative increases of f limit
often negligible, but not always
e especially problematic if action costs vary a lot:
then it can easily happen that each new f limit
only considers a small number of new paths
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Summary

o IDA”" is a tree search variant of A*
based on iterative deepening depth-first search

main advantage: low space complexity

disadvantage: repeated work can be significant

most useful when there are few duplicates
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Optimality of A*

e advantage of A* over greedy search:
optimal for heuristics with suitable properties

@ very important result!

~» next chapters: a closer look at A*
@ A* with reopening ~~ this chapter

e A* without reopening ~~ next chapter
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Optimality of A* with Reopening

In this chapter, we prove that A* with reopening is optimal
when using admissible heuristics.

For this purpose, we
@ give some basic definitions
@ prove two lemmas regarding the behaviour of A*

@ use these to prove the main result
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Reminder: A* with Reopening

reminder from Chapter B11/B12: A* with reopening
A* with Reopening

Summar

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
distances := new HashMap
while not open.is_empty():
n := open.pop_min()
if distances.lookup(n.state) = none or g(n) < distances|n.state]:
distances|n.state] := g(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oo:
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable
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Solvable States

Definition (solvable)

A state s of a state space is called solvable if h*(s) < oco.

German: losbar
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Optimal Paths to States

Definition (g*)
Let s be a state of a state space with initial state s.

We write g*(s) for the cost of an optimal (cheapest) path
from s to s (oo if s is unreachable).

Remarks:
@ g is defined for nodes, g* for states (\Why?)

o g*(n.state) < g(n) for all nodes n
generated by a search algorithm (Why?)
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Settled States in A*

Definition (settled)

A state s is called settled at a given point
during the execution of A* (with or without reopening)
if s is included in distances and distances[s] = g*(s).

German: erledigt
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Optimal Continuation Lemma

We now show the first important result for A* with reopening:

Lemma (optimal continuation lemma)

Consider A* with reopening using a safe heuristic
at the beginning of any iteration of the while loop.

If

@ state s is settled,

e state s’ is a solvable successor of s, and

@ an optimal path from s to s’ of the form (s),...,s,s’) exists,
then

o s’ is settled or

@ open contains a node n' with n'.state = s’ and g(n’) = g*(s').
V.

German: Optimale-Fortsetzungs-Lemma
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Optimal Continuation Lemma: Intuition

(Proof follows on the next slides.)

Intuitively, the lemma states:
If no optimal path to a given state has been found yet,
open must contain a ‘good” node that contributes
to finding an optimal path to that state.

(This potentially requires multiple applications of the lemma
along an optimal path to the state.)
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Optimal Continuation Lemma: Proof (1)

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.
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Optimal Continuation Lemma: Proof (1)

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.

Because s is settled, an earlier iteration (“iteration B")
set distances[s] := g*(s).
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Optimal Continuation Lemma: Proof (1)

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.

Because s is settled, an earlier iteration (“iteration B")
set distances[s] := g*(s).

Thus iteration B removed a node n
with n.state = s and g(n) = g*(s) from open.
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Optimal Continuation Lemma: Proof (1)

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.

Because s is settled, an earlier iteration (“iteration B")
set distances[s] := g*(s).
Thus iteration B removed a node n

with n.state = s and g(n) = g*(s) from open.

A* did not terminate in iteration B.
(Otherwise iteration A would not exist.)
Hence n was expanded in iteration B.
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Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s’ of s.
Because s’ is solvable, we have h*(s") < oc.
Because h is safe, this implies h(s') < c.
Hence a successor node n’ was generated for s'.
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Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s’ of s.
Because s’ is solvable, we have h*(s") < oc.
Because h is safe, this implies h(s') < c.
Hence a successor node n’ was generated for s'.

This node n’ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s’
after iteration B.
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Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s’ of s.
Because s’ is solvable, we have h*(s") < oc.
Because h is safe, this implies h(s') < c.
Hence a successor node n’ was generated for s'.

This node n’ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s’
after iteration B.

To complete the proof, we show: if the consequence
of the lemma is satisfied at the beginning of an iteration,
it is also satisfied at the beginning of the next iteration.
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Optimal Continuation Lemma: Proof (3)

Proof (continued).

o If s’ is settled at the beginning of an iteration,
it remains settled until termination.
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Optimal Continuation Lemma: Proof (3)

Proof (continued).

o If s’ is settled at the beginning of an iteration,
it remains settled until termination.

o If s’ is not yet settled and open contains a node n’
with n’.state = s’ and g(n') = g*(s')
at the beginning of an iteration, then either
the node remains in open during the iteration,
or n’ is removed during the iteration and s’ becomes settled.
L]

y
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f-Bound Lemma

We need a second lemma:

Lemma (f-bound lemma)

Consider A* with reopening and an admissible heuristic
applied to a solvable state space with optimal solution cost c*.

*

Then open contains a node n with f(n) < c*
at the beginning of each iteration of the while loop.

German: f-Schranken-Lemma
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f-Bound Lemma: Proof (1)

Consider the situation at the beginning of any iteration
of the while loop.

Let (sp,...,Sn) with sp := s, be an optimal solution.
(Here we use that the state space is solvable.)




f-Bound Lemma

[e]e] le]e}

f-Bound Lemma: Proof (1)

Consider the situation at the beginning of any iteration
of the while loop.

Let (sp,...,Sn) with sp := s, be an optimal solution.
(Here we use that the state space is solvable.)

Let s; be the first state in the sequence that is not settled.

(Not all states in the sequence can be settled:
Sp is a goal state, and when a goal state is inserted
into distances, A* terminates.)
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f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i =0

Because sy = s is not settled yet, we are at the first iteration
of the while loop.
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f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i =0

Because sy = s is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(sp) < oo.
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f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i =0

Because sy = s is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(sp) < oo.

Hence open contains the root ng.
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f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i =0

Because sy = s is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(sp) < oo.

Hence open contains the root ng.

We obtain: f(ng) = g(no) + h(so) = 0+ h(so) < h*(so) = c¢*,
where “<" uses the admissibility of h.

This concludes the proof for this case.
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f-Bound Lemma: Proof (3)

Proof (continued).

Case2: i >0
Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si—1,Si)

is an optimal path from sy to s;.
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f-Bound Lemma: Proof (3)

Proof (continued).

Case 2: i >0

Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si_1,5;)
is an optimal path from sy to s;.

We can hence apply the optimal continuation lemma
(with s = s;_1 and s’ = s;) and obtain:
(A) s; is settled, or

(B) open contains n’ with n'.state = s; and g(n’) = g*(s;).
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f-Bound Lemma: Proof (3)

Proof (continued).

Case 2: i >0

Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si_1,5;)
is an optimal path from sy to s;.

We can hence apply the optimal continuation lemma
(with s = s;_1 and s’ = s;) and obtain:

(A) s; is settled, or
(B) open contains n’ with n'.state = s; and g(n’) = g*(s;).

Because (A) is false, (B) must be true.
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f-Bound Lemma: Proof (3)

Proof (continued).
Case 2: i >0

Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si_1,5;)
is an optimal path from sy to s;.

We can hence apply the optimal continuation lemma

(with s = s;_1 and s’ = s;) and obtain:

(A) s; is settled, or

(B) open contains n’ with n'.state = s; and g(n’) = g*(s;).
Because (A) is false, (B) must be true.

We conclude: open contains n’ with
f(n') = g(n') + h(si) = g"(si) + h(si) < g"(si) + h*(si) = c*,
where “<" uses the admissibility of A. ]

v
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Optimality of A* with Reopening

We can now show the main result of this chapter:

Theorem (optimality of A* with reopening)

A" with reopening is optimal when using an admissible heuristic.
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Optimality of A* with Reopening: Proof

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.
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Optimality of A* with Reopening: Proof

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.
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Optimality of A* with Reopening: Proof

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:
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Optimality of A* with Reopening: Proof

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f(n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c*.
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Optimality of A* with Reopening: Proof

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:
f(n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c*.

A* always removes a node n with minimal f value from open.
With f(n) > c*, we get a contradiction to the f-bound lemma,
which completes the proof. [

V.
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Summary

@ A" with reopening using an admissible heuristic is optimal.

@ The proof is based on the following lemmas
that hold for solvable state spaces and admissible heuristics:

e optimal continuation lemma: The open list always contains
nodes that make progress towards an optimal solution.

e f-bound lemma: The minimum f value in the open list
at the beginning of each A" iteration is a lower bound
on the optimal solution cost.
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Optimality of A* without Reopening

We now study A* without reopening.

@ For A* without reopening, admissibility and consistency
together guarantee optimality.

@ We prove this on the following slides,
again beginning with a basic lemma.

o Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)
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Reminder: A* without Reopening

reminder from Chapter B11/B12: A* without reopening

A* without Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a, s’) € succ(n.state):
if h(s') < oo:
n' := make_node(n, a, s")
open.insert(n’)
return unsolvable
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A™: Monotonicity Lemma (1)

Lemma (monotonicity of A* with consistent heuristics)
Consider A* with a consistent heuristic.
Then:

@ Ifn’ is a child node of n, then f(n') > f(n).

@ On all paths generated by A*, f values are non-decreasing.

© The sequence of f values of the nodes expanded by A*
is non-decreasing.

German: Monotonielemma
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A*: Monotonicity Lemma (2)

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.
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A*: Monotonicity Lemma (2)

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
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A*: Monotonicity Lemma (2)

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)




Monotonicity Lemma

[e]e] le)

A*: Monotonicity Lemma (2)

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)
@ by consistency of h: h(s) < cost(a) + h(s’)
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A*: Monotonicity Lemma (2)

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)
@ by consistency of h: h(s) < cost(a) + h(s’)
~ f(n) = g(n) + h(s) < g(n) + cost(a) + h(s')
=g(n') + h(s") = £(n')
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A*: Monotonicity Lemma (2)

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)
@ by consistency of h: h(s) < cost(a) + h(s’)
~ f(n) = g(n) + h(s) < g(n) + cost(a) + h(s')
=g(n') + h(s") = £(n')

on 2.: follows directly from 1.
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A*: Monotonicity Lemma (3)

Proof (continued).
on 3:

@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.
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A*: Monotonicity Lemma (3)

Proof (continued).

on 3:
@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

@ to show: at the end of the iteration
the minimal f value in open is at least f,.
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A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

@ to show: at the end of the iteration
the minimal f value in open is at least f,.

@ We must consider the operations modifying open:
open.pop_min and open.insert.
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A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

@ to show: at the end of the iteration
the minimal f value in open is at least f,.

@ We must consider the operations modifying open:
open.pop_min and open.insert.

@ open.pop_min can never decrease the minimal f value
in open (only potentially increase it).
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onotonicity Lemma (3)

Proof (continued).

on 3:

Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

to show: at the end of the iteration
the minimal f value in open is at least f,.

We must consider the operations modifying open:
open.pop_min and open.insert.

open.pop_min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n’ added with open.insert are children of n
and hence satisfy f(n’) > f(n) = f,, according to part 1.

Summar
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Optimality of A* without Reopening

Theorem (optimality of A* without reopening)

A* without reopening is optimal when using
an admissible and consistent heuristic. )

From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

~ |f multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

~ If we allowed reopening, it would never happen.

~+ With consistent heuristics, A* without reopening
behaves the same way as A* with reopening.

The result follows because A* with reopening
and admissible heuristics is optimal. Ol
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Time Complexity of A* (1)

What is the time complexity of A*?

@ depends strongly on the quality of the heuristic
@ an extreme case: h = 0 for all states
~ A identical to uniform cost search
@ another extreme case: h = h* and cost(a) > 0
for all actions a

~+ A* only expands nodes along an optimal solution

~» O(£*) expanded nodes, O(£*b) generated nodes, where
o /*: length of the found optimal solution
@ b: branching factor
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Time Complexity of A* (2)

more precise analysis:
@ dependency of the runtime of A* on heuristic error

example:
@ unit cost problems with
@ constant branching factor and
@ constant absolute error: |h*(s) — h(s)| < c foralls€ S

time complexity:
o if state space is a tree: time complexity of A* grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

@ general search spaces: runtime of A* grows
exponentially in solution length (Helmert & Roger 2008)
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Overhead of Reopening

How does reopening affect runtime?

@ For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

@ exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A*.
(~ exponentially worse than uniform cost search)
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Practical Evaluation of A* (1)

Z. 1 11 9 10 | 11 | 12
15 4 10 8 13 | 14 | 15 .

hi: number of tiles in wrong cell (misplaced tiles)
ha: sum of distances of tiles to their goal cell (Manhattan distance)
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Practical Evaluation of A* (2)

@ experiments with random initial states,
generated by random walk from goal state

@ entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph | A* with h; | A" with hy
10 63 15 15
20 1,052 28 27
30 7,546 77 42
40 72,768 227 64
50 359,298 422 83
60 || > 1,000,000 7,100 307
70 || > 1,000,000 12,769 377
80 || > 1,000,000 62,583 849
90 (| > 1,000,000 162,035 1,522
100 || > 1,000,000 690,497 4,964
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Summary

@ A" without reopening using an admissible and consistent
heuristic is optimal
@ key property monotonicity lemma (with consistent heuristics):
o f values never decrease along paths considered by A*
e sequence of f values of expanded nodes is non-decreasing
@ time complexity depends on heuristic and shape of state space

e precise details complex and depend on many aspects

@ reopening increases runtime exponentially in degenerate cases,
but usually negligible overhead

e small improvements in heuristic values often
lead to exponential improvements in runtime
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Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization
@ C1. Introduction and Hill-Climbing
@ C2. Advanced Techniques
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Introduction

previous chapters: classical state-space search
e find action sequence (path) from initial to goal state

o difficulty: large number of states (“state explosion™)

next chapters: combinatorial optimization
~> similar scenario, but:

@ no actions or transitions

@ don't search for path, but for configuration (“state”)
with low cost/high quality

German: Zustandsraumexplosion, kombinatorische Optimierung,
Konfiguration
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Combinatorial Optimization: Example

Example: Nurse Scheduling Problem

@ find a schedule for a hospital
@ satisfy hard constraints

e labor laws, hospital policies, ...
e nurses working night shifts should not work early next day
o have enough nurses with required skills present at all times

@ maximize satisfaction of soft constraints
e individual preferences, reduce overtime, fair distribution, ...

We are interested in a (high-quality) schedule, not a path to a goal.
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Combinatorial Optimization Problems

Definition (combinatorial optimization problem)

A combinatorial optimization problem (COP)
is given by a tuple (C, S, opt, v) consisting of:

a finite set of (solution) candidates C
@ a finite set of solutions S C C

@ an objective sense opt € {min, max}
°

an objective function v: S — R

German: kombinatorisches Optimierungsproblem, Kandidaten,
Losungen, Optimierungsrichtung, Zielfunktion
Remarks:
@ “problem” here in another sense (= “instance”)
than commonly used in computer science
@ practically interesting COPs usually have
too many candidates to enumerate explicitly
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Optimal Solutions

Definition (optimal)
Let O = (C, S, opt, v) be a COP.

The optimal solution quality v* of O is defined as

vV =

. minces v(c) if opt = min
maxces v(c) if opt = max

(v* is undefined if S = 0.)
A solution s of O is called optimal if v(s) = v*.

German: optimale Losungsqualitat, optimal
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Combinatorial Optimization

The basic algorithmic problem we want to solve:

Combinatorial Optimization

Find a solution of good (ideally, optimal) quality
for a combinatorial optimization problem O
or prove that no solution exists.

Good here means close to v* (the closer, the better).
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Relevance and Hardness

@ There is a huge number of practically important
combinatorial optimization problems.

@ Solving these is a central focus of operations research.

@ Many important combinatorial optimization problems
are NP-complete.

@ Most “classical” NP-complete problems can be formulated
as combinatorial optimization problems.

~ Examples: TSP, VERTEXCOVER, CLIQUE, BINPACKING,
PARTITION

German: Unternehmensforschung, NP-vollstandig
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Search vs. Optimization

Combinatorial optimization problems have

@ a search aspect (among all candidates C,
find a solution from the set S) and

@ an optimization aspect (among all solutions in S,
find one of high quality).
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Pure Search/Optimization Problems

Important special cases arise when one of the two aspects is trivial:

@ pure search problems:

e all solutions are of equal quality

o difficulty is in finding a solution at all

e formally: v is a constant function (e.g., constant 0);
opt can be chosen arbitrarily (does not matter)

@ pure optimization problems:

o all candidates are solutions
o difficulty is in finding solutions of high quality
e formally: S=C
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Example: 8 Queens Problem

8 Queens Problem
How can we
@ place 8 queens on a chess board

@ such that no two queens threaten each other?

German: 8-Damen-Problem
@ originally proposed in 1848

@ variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count
symmetric solutions (under rotation or reflection) as distinct.
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Example: 8 Queens Problem

Problem: Place 8 queens on a chess board
such that no two queens threaten each other.

Is this candidate a solution?
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Formally: 8 Queens Problem

How can we formalize the problem?
idea:

@ obviously there must be exactly one queen in each file
(“column™)

@ describe candidates as 8-tuples, where the i-th entry
denotes the rank (“row”) of the queen in the i-th file

formally: O = (C, S, opt, v) with
o C=1{1,...,8)8
o S={(n,...,m) |V1<i<j<8:ri#rNln—r|#|i—j|}
@ v constant, opt irrelevant (pure search problem)
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Local Search: Hill Climbing



Local Search: Hill Climbing
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Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?

o formulation as classical state-space search

e formulation as constraint network
o formulation as logical satisfiability problem

e formulation as mathematical optimization problem (LP/IP)

@ local search
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Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?
o formulation as classical state-space search
~+ Part B
@ formulation as constraint network ~~ Part D
e formulation as logical satisfiability problem ~~ Part E

e formulation as mathematical optimization problem (LP/IP)
~~ not in this course

@ local search ~~ today (Part C)
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Search Methods for Combinatorial Optimization

@ main ideas of heuristic search applicable for COPs
~ states &~ candidates
@ main difference: no “actions” in problem definition
o instead, we (as algorithm designers) can choose
which candidates to consider neighbors
o definition of neighborhood critical aspect
of designing good algorithms for a given COP
@ “path to goal” irrelevant to the user

@ no path costs, parents or generating actions
~~ no search nodes needed
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Local Search: ldea

main ideas of local search algorithms for COPs:
@ heuristic h estimates quality of candidates

e for pure optimization: often objective function v itself
o for pure search: often distance estimate to closest solution
(as in state-space search)

@ do not remember paths, only candidates

@ often only one current candidate ~~ very memory-efficient
(however, not complete or optimal)

@ often initialization with random candidate

@ iterative improvement by hill climbing
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Hill Climbing

Hill Climbing (for Maximization Problems)

current := a random candidate
repeat:
next := a neighbor of current with maximum h value
if h(next) < h(current):
return current
current := next

Remarks:

@ search as walk “uphill” in a landscape
defined by the neighborhood relation

@ heuristic values define “height” of terrain

@ analogous algorithm for minimization problems
also traditionally called “hill climbing”
even though the metaphor does not fully fit
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Properties of Hill Climbing

o always terminates (\Why?)
@ no guarantee that result is a solution

o if result is a solution, it is locally optimal w.r.t. h,
but no global quality guarantees
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Example: 8 Queens Problem

Problem: Place 8 queens on a chess board
such that no two queens threaten each other.
possible heuristic: no. of pairs of queens threatening each other
(formalization as minimization problem)
possible neighborhood: move one queen within its file
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Performance of Hill Climbing for 8 Queens Problem

@ problem has 8% ~ 17 million candidates
(reminder: 92 solutions among these)

o after random initialization, hill climbing finds a solution
in around 14% of the cases

@ only around 3—4 steps on average!



Summary
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Summary

combinatorial optimization problems:
e find solution of good quality (objective value)
among many candidates
@ special cases:

e pure search problems
@ pure optimization problems

o differences to state-space search:
no actions, paths etc.; only “state” matters

often solved via local search:

@ consider one candidate (or a few) at a time;
try to improve it iteratively
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Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization
@ C1. Introduction and Hill-Climbing
@ C2. Advanced Techniques
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Dealing with Local Optima
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Example: Local Minimum in the 8 Queens Problem

local minimum:
@ candidate has 1 conflict

@ all neighbors have at least 2
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Weaknesses of Local Search Algorithms

difficult situations for hill climbing:
@ local optima: all neighbors worse than current candidate

@ plateaus: many neighbors equally good as current candidate;
none better

German: lokale Optima, Plateaus

consequence:

@ algorithm gets stuck at current candidate
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Combating Local Optima

possible remedies to combat local optima:

allow stagnation (steps without improvement)
include random aspects in the search neighborhood
(sometimes) make random steps

breadth-first search to better candidate

restarts (with new random initial candidate)
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Allowing Stagnation

allowing stagnation:
@ do not terminate when no neighbor is an improvement

@ limit number of steps to guarantee termination
@ at end, return best visited candidate
e pure search problems: terminate as soon as solution found

Example 8 queens problem:
@ with a bound of 100 steps solution found in 96% of the cases
@ on average 22 steps until solution found

~» works very well for this problem;
for more difficult problems often not good enough
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Random Aspects in the Search Neighborhood

a possible variation of hill climbing for 8 queens:
Randomly select a file; move queen in this file
to square with minimal number of conflicts (null move possible).

~> Good local search approaches often combine
randomness (exploration) with heuristic guidance (exploitation).

German: Exploration, Exploitation
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Simulated Annealing

Simulated annealing is a local search algorithm that systematically
injects noise, beginning with high noise, then lowering it over time.

e walk with fixed number of steps /V (variations possible)

@ initially it is “hot”, and the walk is mostly random

@ over time temperature drops (controlled by a schedule)

@ as it gets colder, moves to worse neighbors become less likely

very successful in some applications, e.g., VLSI layout

German: simulierte Abkuhlung, Rauschen
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Simulated Annealing: Pseudo-Code

Simulated Annealing (for Maximization Problems)

curr ;= a random candidate
best := none
for each t € {1,..., N}:
if is_solution(curr) and (best is none or v(curr) > v(best)):
best := curr
T := schedule(t)
next := a random neighbor of curr
AE := h(next) — h(curr)
if AE > 0 or with probability e
curr := next
return best )
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Genetic Algorithms

Evolution often finds good solutions.
idea: simulate evolution by selection, crossover and mutation
of individuals
ingredients:
@ encode each candidate as a string of symbols (genome)
e fitness function: evaluates strength of candidates (= heuristic)
@ population of k (e.g. 10-1000) individuals (candidates)

German: Evolution, Selektion, Kreuzung, Mutation, Genom,
Fitnessfunktion, Population, Individuen
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Genetic Algorithm: Example

example 8 queens problem:
@ genome: encode candidate as string of 8 numbers
@ fitness: number of non-attacking queen pairs

@ use population of 100 candidates



selection

—

cross-over

mutation
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Outlook: Genetic Algorithms
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Selection, Mutation and Crossover

many variants:

How to select?

How to perform crossover?
How to mutate?

select according to fitness function,
followed by pairing

determine crossover points,
then recombine

mutation: randomly modify
each string position with
a certain probability
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Summary

o weakness of local search: local optima and plateaus

@ remedy: balance exploration against exploitation
(e.g., with randomness and restarts)

@ simulated annealing and genetic algorithms
are more complex search algorithms
using the typical ideas of local search
(randomization, keeping promising candidates)
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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

e D1-D2. Introduction

e D1. Introduction and Examples
e D2. Constraint Networks

e D3-D5. Basic Algorithms
e D6-D7. Problem Structure



Classification

classification:

Constraint Satisfaction Problems

environment:

@ static vs.
@ deterministic vs. Vs.
o fully observable vs.
@ discrete vs.
@ single-agent vs.
problem solving method:

° vs. general vs.

Special case of a pure search combinatorial optimization problem
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Constraints

What is a Constraint?
a condition that every solution to a problem must satisfy

—

German: Einschrankung, Nebenbedingung (math.)

Examples: where do constraints occur?

@ mathematics: requirements on solutions of optimization
problems (e.g., equations, inequalities)

@ software testing: specification of invariants
to check data consistency (e.g., assertions)

@ databases: integrity constraints



Introduction
ooe

Constraint Satisfaction Problems: Informally

Given:
@ set of variables with corresponding domains

@ set of constraints that the variables must satisfy

e most commonly binary, i.e., every constraint refers
to two variables

Solution:

@ assignment to the variables that satisfies all constraints

German: Variablen, Constraints, binar, Belegung
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Examples

8 queens problem

°
@ Latin squares

@ Sudoku

@ graph coloring
°

satisfiability in propositional logic

German: 8-Damen-Problem, lateinische Quadrate, Sudoku,
Graphfarbung, Erfiillbarkeitsproblem der Aussagenlogik
more complex examples:

@ systems of equations and inequalities

o database queries
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Example: 8 Queens Problem (Reminder)

(reminder from previous two chapters)

8 Queens Problem

How can we
@ place 8 queens on a chess board
@ such that no two queens threaten each other?

@ originally proposed in 1848
@ variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count
symmetric solutions (under rotation or reflection) as distinct.



example solution for the 8 queens problem
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Example: Latin Squares

How can we

@ build an n x n matrix
with n symbols

@ such that every symbol occurs exactly once
in every row and every column?

1 2 3 4

1 2 123 2 3 41

[1] 21 231 341 2
312 4 1 2 3

There exist 12 different Latin squares of size 3,
576 of size 4, 161280 of size 5, ...,
5524751496 156 892 842 531 225 600 of size 9.
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Example: Sudoku

How can we

@ completely fill an already partially filled 9 x 9 matrix
with numbers between 1-9

@ such that each row, each column, and each of the nine
3 x 3 blocks contains every number exactly once?

215 31 J9] [1
1 4
4 17 2. 18
5]2
9/8]1
4 3
316 712
7 3
9 13 6l 14
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Example: Sudoku

How can we
@ completely fill an already partially filled 9 x 9 matrix
with numbers between 1-9

@ such that each row, each column, and each of the nine
3 x 3 blocks contains every number exactly once?

O | O[O0 || W (O IN))
N[~ | OO | O (O (= | O
0| O B N O[O0
O = [ WO |- INJO |00~
OO |-~ [ OO | O | (N[
~I| N O | OO || O
IO OO | O | |- WO
— O ~INo || OOy | OT1|-A|

NN SEE -
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Example: Sudoku

How can we
@ completely fill an already partially filled 9 x 9 matrix
with numbers between 1-9

@ such that each row, each column, and each of the nine
3 x 3 blocks contains every number exactly once?

O | O[O0 || W (O IN))
N[~ | OO | O (O (= | O
0| O B N O[O0
O = [ WO |- INJO |00~
OO |-~ [ OO | O | (N[
~I| N O | OO || O
IO OO | O | |- WO
— O ~INo || OOy | OT1|-A|

NN SEE -

relationship to Latin squares?
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Sudoku: Trivia

o well-formed Sudokus have exactly one solution

@ to achieve well-formedness, > 17 cells must be filled already
(McGuire et al., 2012)

@ 6670903752021072936 960 solutions
@ only 5472730538 “non-symmetrical’ solutions
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Example: Graph Coloring

Graph Coloring

How can we
@ color the vertices of a given graph using k colors
@ such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)
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Example: Graph Coloring

Graph Coloring
How can we
@ color the vertices of a given graph using k colors
@ such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

NP-complete problem
@ even for the special case of planar graphs and kK =3

@ easy for k = 2 (also for general graphs)
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Example: Graph Coloring

Graph Coloring
How can we
@ color the vertices of a given graph using k colors
@ such that two neighboring vertices never have the same color?

(The graph and k are problem parameters.)

NP-complete problem
@ even for the special case of planar graphs and kK =3
@ easy for k = 2 (also for general graphs)

Relationship to Sudoku?
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Four Color Problem

famous problem in mathematics: Four Color Problem

Is it always possible to color a planar graph with 4 colors?
@ conjectured by Francis Guthrie (1852)

@ 1890 first proof that 5 colors suffice
°

several wrong proofs surviving for over 10 years


https://www.youtube.com/watch?v=NgbK43jB4rQ
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Four Color Problem

famous problem in mathematics: Four Color Problem

Is it always possible to color a planar graph with 4 colors?
conjectured by Francis Guthrie (1852)

1890 first proof that 5 colors suffice

several wrong proofs surviving for over 10 years

solved by Appel and Haken in 1976: 4 colors suffice

Appel and Haken reduced the problem to 1936 cases,
which were then checked by computers

first famous mathematical problem solved (partially)
by computers
~ led to controversy: is this a mathematical proof?

Numberphile video:
https://www.youtube.com/watch?v=NgbK43jB4rQ


https://www.youtube.com/watch?v=NgbK43jB4rQ
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Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

@ assign truth values (true/false) to a set of propositional
variables

@ such that a given set of clauses
(formulas of the form X V =Y V Z) is satisfied (true)?
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Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

@ assign truth values (true/false) to a set of propositional
variables

@ such that a given set of clauses
(formulas of the form X V =Y V Z) is satisfied (true)?

remarks:
@ NP-complete (Cook 1971; Levin 1973)

@ requiring clause form (instead of arbitrary propositional
formulas) is no restriction

o clause length bounded by 3 would not be a restriction
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Satisfiability in Propositional Logic

Satisfiability in Propositional Logic

How can we

@ assign truth values (true/false) to a set of propositional
variables

@ such that a given set of clauses
(formulas of the form X V =Y V Z) is satisfied (true)?

remarks:
@ NP-complete (Cook 1971; Levin 1973)

@ requiring clause form (instead of arbitrary propositional
formulas) is no restriction

o clause length bounded by 3 would not be a restriction

relationship to previous problems (e.g., Sudoku)?
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Practical Applications

@ There are thousands of practical applications
of constraint satisfaction problems.

@ This statement is true already for the satisfiability problem
of propositional logic.
some examples:
@ verification of hardware and software

e timetabling (e.g., generating time schedules,
room assignments for university courses)

@ assignment of frequency spectra
(e.g., broadcasting, mobile phones)
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Running Example

Small Math Puzzle (informal description)

@ assign a value from {1,2,3,4} to the variables w and y

e and from {1,2,3} to x and z
@ such that

o w = 2x,

e w < zand

o y>z

We will use this example to explain definitions and algorithms
in the next chapters.
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Summary

@ constraint satisfaction:
e find assignment for a set of variables
e with given variable domains
e that satisfies a given set of constraints.

@ examples:

e 8 queens problem

Latin squares

Sudoku

graph coloring

satisfiability in propositional logic
many practical applications
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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems
e DI1-D2. Introduction

e D1. Introduction and Examples
e D2. Constraint Networks

e D3-D5. Basic Algorithms
e D6-D7. Problem Structure
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Constraint Networks: Informally

Constraint Networks: Informal Definition

A constraint network is defined by
@ a finite set of variables
@ a finite domain for each variable

@ a set of constraints (here: binary relations)

The objective is to find a solution for the constraint network, i.e.,
an assignment of the variables that complies with all constraints.

Informally, people often just speak of constraint satisfaction
problems (CSP) instead of constraint networks.

More formally, a "CSP” is the algorithmic problem
of finding a solution for a constraint network.
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Constraint Networks: Formally

Definition (binary constraint network)

A (binary) constraint network
is a 3-tuple C = (V,dom, (Ry,)) such that:

@ V is a non-empty and finite set of variables,

@ dom is a function that assigns a non-empty and finite domain
to each variable v € V, and

® (Ruv)uvev,uzv is a family of binary relations (constraints)
over V where for all u # v: R,, C dom(u) x dom(v)

German: (binadres) Constraint-Netz, Variablen, Wertebereich,
Constraints
possible generalizations:
e infinite domains (e.g., dom(v) = Z)
@ constraints of higher arity
(e.g., satisfiability in propositional logic)
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Variables and Domains

Running Example (informally)
@ assign a value from {1,2,3,4} to the variables w and y
e and from {1,2,3} to x and z

@ such that ...

.

Running Example (formally)

C = (V,dom, (Ry)) with
o V={w,x,y,z}
e dom(w) =dom(y) = {1,2,3,4}
e dom(x) =dom(z) ={1,2,3}

.
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Binary Constraints (1)

binary constraints:

@ For variables u, v, the constraint R, expresses
which joint assignments to u and v are allowed in a solution.

Running Example (informally)

@ ... such that

o ..., w<z,...

Running Example (formally)
ooy Ruz = {<17 2>a <1a 3>7 (27 3>}7 000
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Binary Constraints (2)

binary constraints:

e If R,, =dom(u) x dom(v), the constraint is trivial:
there is no restriction, and the constraint is typically
not given explicitly in the constraint network description
(although it formally always exists!).

Running Example
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Binary Constraints (3)

binary constraints:

@ Constraints R,, and R,, refer to the same variables.
Hence, usually only one of them is given in the description.

Running Example (informally)

@ ... such that
o ..., w<z,...

.

Running Example (formally)

ooy Ruz = {(1,2),(1,3), (2,3}, ...
oy Row = {(2,1), (3,1), (3,2)}, ...
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Unary Constraints

unary constraints:

@ It is often useful to have additional restrictions
on single variables as constraints.

@ Such constraints are called unary constraints.

@ A unary constraint R, for v € V corresponds to a restriction
of dom(v) to the values allowed by R, .

@ Formally, unary constraints are not necessary, but they
often allow us to describe constraint networks more clearly.

German: unare Constraints

Running Example

dom(z) = {1,2,3} could be described as
dom(z) = {1,2,3,4},R, = {1,2,3}
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and Summar

Example

Full Formal Model of Running Example

C = (V,dom, (Ry,)) with
@ variables:
V ={w,x,y,z}
@ domains:
dom(w) = dom(y) = {1,2,3,4}
dom(x) = dom(z) = {1,2,3}

@ constraints:

Rux = {<27 1>7 <47 2>}

Ruz = {(1,2),(1,3),(2,3)}

RyZ = {<27 1>7 <3= 1>7 <37 2)7
(4,1),(4,2),(4,3)}
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Compact Encodings and General Constraint Solvers

Constraint networks allow for compact encodings
of large sets of assignments:

@ Consider a network with n variables with domains of size k.

~ k" assignments
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Compact Encodings and General Constraint Solvers

Constraint networks allow for compact encodings
of large sets of assignments:

@ Consider a network with n variables with domains of size k.
~ k" assignments

o For the description as constraint network, at most (5),
i.e., O(n?) constraints have to be provided.
Every constraint in turn consists of at most O(k?) pairs.
~~ encoding size O(n?k?)
@ We observe: The number of assignments is exponentially
larger than the description of the constraint network.
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Compact Encodings and General Constraint Solvers

Constraint networks allow for compact encodings
of large sets of assignments:

@ Consider a network with n variables with domains of size k.
~ k" assignments

o For the description as constraint network, at most (5),
i.e., O(n?) constraints have to be provided.
Every constraint in turn consists of at most O(k?) pairs.
~~ encoding size O(n?k?)
@ We observe: The number of assignments is exponentially
larger than the description of the constraint network.

@ As a consequence, such descriptions can be used as inputs
of general constraint solvers.
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Example: 4 Queens Problem

4 Queens Problem as Constraint Network

@ variables: V = {v1, vo,v3, v4}
v; encodes the rank of the queen in the j-th file

@ domains:
dom(v;) = dom(v2) = dom(vz) = dom(vs) = {1, 2, 3,4}

o constraints: forall 1 </ <j <4, weset: R, ., = {(k,/) €
{1,2,3,4} x {1,2,3,4} | k£ IN|k—1|#|i —]j|}
eg R =1{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)}

Vi Vo V3 W

A WO =
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Example: Sudoku

Sudoku as Constraint Network

o variables: V = {v;; | 1 <i,j <9}; vjj: Value row i, column j
e domains: dom(v) ={1,...,9} forall v e V

@ unary constraints: Ry, = {k},
if (i,J) is a cell with predefined value k

@ binary constraints: for all vij, virjr € V, we set

Ry = {{a8) € (..., 9} X {L,...,9} | a# b},

if i =1" (same row) Ol’j = j/ (same column)

or ([$1.141) = ([51, T51) (same block)

o
2|5 3 9 1
1 4
4 7 2 3
502
9[8]1
4 3
3|6 712
7 3
9 3 6 4
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Assignments

Definition (assignment, partial assignment)

Let C = (V,dom, (Ry,)) be a constraint network.
A partial assignment of C (or of V) is a function

a: V' =,y dom(v)
with V/ C V and a(v) € dom(v) for all v € V.

If V' =V, then « is also called total assignment (or assignment).
V.

German: partielle Belegung, (totale) Belegung
~» partial assighments assign values to some or to all variables

~~ (total) assignments are defined on all variables
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Example

Partial Assignments of Running Example

ag={w— 1z 2}
ar={w— 3, x— 1}

Total Assignments of Running Example

az={wr— 1 x—1ly—2z—2}
ag={w—2,x—1,y— 4 z+— 3}
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Consistency

Definition (inconsistent, consistent, violated)

A partial assignment « of a constraint network C is called
inconsistent if there are variables u, v such that « is defined
for both u and v, and (a(u),a(v)) ¢ Ruy.

In this case, we say « violates the constraint Ry, .

A partial assignment is called consistent if it is not inconsistent.

German: inkonsistent, verletzt, konsistent

trivial example: The empty assignment is always consistent.
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Example

Consistent Partial Assignment
a;={w—1z—2}

Inconsistent Partial Assignment

ar ={w— 2, x— 2}
violates Ryx = {(2,1), (4,2)}

Inconsistent Assignment

az3={w—2,x—1l,y— 2z 2}
violates Ry, = {(1,2),(1,3),(2,3)} and
Ry ={(2,1),(3,1),(3,2),(4,1),(4,2), (4,3)}
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Solution

Definition (solution, solvable)

Let C be a constraint network.

A consistent and total assignment of C is called a solution of C.
If a solution of C exists, C is called solvable.

If no solution exists, C is called inconsistent.

German: Losung, losbar, inkonsistent

Solution of the Running Example

a={w—2,x—1y— 4z~ 3}
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Consistency vs. Solvability

Note: Consistent partial assignments o cannot necessarily
be extended to a solution.

It only means that so far (i.e., on the variables where « is defined)
no constraint is violated.

Example (4 queens problem): o ={wv3 — 1,vo — 4, v3 — 2}

Vi Vo V3 V4

1| g

A~ wN
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Complexity of Constraint Satisfaction Problems

Proposition (CSPs are NP-complete)

It is an NP-complete problem to decide
whether a given constraint network is solvable.

Membership in NP:
Guess and check: guess a solution and check it for validity.
This can be done in polynomial time in the size of the input.

NP-hardness:
The graph coloring problem is a special case of CSPs
and is already known to be NP-complete.
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Tightness of Constraint Networks

Definition (tighter, strictly tighter)
Let C = (V,dom, R,,) and C' = (V,dom’, R.,,) be constraint
networks with equal variable sets V.
C is called tighter than C’, in symbols C C (’, if
e dom(v) C dom/(v) for all v € V, and

e Ry, CR), forall u,v € V (including trivial constraints).

If at least one of these subset equations is strict,
then C is called strictly tighter than C’, in symbols C [ C’.

German: (echt) scharfer
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Equivalence of Constraint Networks

Definition (equivalent)

Let C and C’ be constraint networks with equal variable sets.

C and (' are called equivalent, in symbols C = C’,
if they have the same solutions.

German: aquivalent
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CSP Algorithms

In the following chapters, we will consider solution algorithms
for constraint networks.

basic concepts:
@ search: check partial assignments systematically

@ backtracking: discard inconsistent partial assignments

@ inference: derive equivalent, but tighter constraints
to reduce the size of the search space
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Summary

formal definition of constraint networks:
variables, domains, constraints

compact encodings of exponentially many configurations
unary and binary constraints

assignments: partial and total

consistency of assignments; solutions

deciding solvability is NP-complete

tightness of constraints

equivalence of constraints
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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems
e DI1-D2. Introduction
e D3-D5. Basic Algorithms

e D3. Backtracking
e D4. Arc Consistency
e D5. Path Consistency

e D6-D7. Problem Structure
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CSP Algorithms

In the following chapters, we consider algorithms for solving
constraint networks.

basic concepts:
@ search: check partial assignments systematically

@ backtracking: discard inconsistent partial assignments

@ inference: derive equivalent, but tighter constraints
to reduce the size of the search space
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Naive Backtracking



CSP Algorithms Naive Backtracking
0®00000

Naive Backtracking (= Without Inference)

function NaiveBacktracking(C,
(V,dom,(Ry)) :=C

if « is inconsistent with C:
return inconsistent

if « is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{v—d}
o := NaiveBacktracking(C, ')
if o' # inconsistent:
return o
return inconsistent

input: constraint network C and partial assignment « for C
(first invocation: empty assignment o = ()
result: solution of C or inconsistent
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Running Example

Full Formal Model of Running Example

C = (V,dom, (Ry,)) with
@ variables:
V ={w,x,y,z}
@ domains:
dom(w) = dom(y) = {1,2,3,4}
dom(x) = dom(z) = {1,2,3}

@ constraints:

Rux = {<27 1>7 <47 2>}

Ruz = {(1,2),(1,3),(2,3)}

RyZ = {<27 1>7 <3= 1>7 <37 2)7
(4,1),(4,2),(4,3)}
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Running Example: Search Tree
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Is This a New Algorithm?

We have already seen this algorithm:
Backtracking corresponds to depth-first search (Chapter B8)
with the following state space:

@ states: partial assignments

initial state: empty assignment ()

goal states: consistent total assignments

actions: assign, 4 assigns value d € dom(v) to variable v
action costs: all 0 (all solutions are of equal quality)

transitions:

e for each non-total consistent assignment «,

choose variable v = select(«) that is unassigned in «
assign, 4

o transition « —— aU {v — d} for each d € dom(v)



Naive Backtracking
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Why Depth-First Search?

Depth-first search is particularly well-suited for CSPs:
@ path length bounded (by the number of variables)
@ solutions located at the same depth (lowest search layer)

@ state space is directed tree, initial state is the root
~» no duplicates (Why?)
Hence none of the problematic cases for depth-first search occurs.
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Naive Backtracking: Discussion

o Naive backtracking often has to exhaustively explore
similar search paths (i.e., partial assignments
that are identical except for a few variables).

@ “Critical” variables are not recognized
and hence considered for assignment (too) late.

@ Decisions that necessarily lead to constraint violations
are only recognized when all variables involved
in the constraint have been assigned.

~> more intelligence by focusing on critical decisions
and by inference of consequences of previous decisions
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Naive Backtracking

function NaiveBacktracking(C
(V,dom,(Ry)) :=C

if o is inconsistent with C:
return inconsistent

if « is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{v—d}
o' := NaiveBacktracking(C, o)
if o' # inconsistent:
return o
return inconsistent
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Variable Orders

e Backtracking does not specify in which order
variables are considered for assignment.

@ Such orders can strongly influence the search space size
and hence the search performance.
~ example: exercises

o Eventually we have to assign all variables
~- prefer critical assignments (fail early)

German: Variablenordnung
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Value Orders

e Backtracking does not specify in which order
the values of the selected variable v are considered.

@ This is not as important because it does not matter
in subtrees without a solution. (Why not?)

o If there is a solution in the subtree, then ideally
a value that leads to a solution should be chosen.
~~ prefer promising assignments

German: Werteordnung
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Static vs. Dynamic Orders

we distinguish:
e static orders (fixed prior to search)

e dynamic orders (selected variable or value order
depends on the search state)

comparison:
@ dynamic orders obviously more powerful

@ static orders ~» no computational overhead during search

The following ordering criteria can be used statically, but are more
effective combined with inference (~ later) and used dynamically.
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Variable Orders

two common variable ordering criteria:
@ minimum remaining values:
prefer variables that have small domains
e intuition: few subtrees ~~ smaller tree
e extreme case: only one value ~~ forced assignment
@ most constraining variable:
prefer variables contained in many nontrivial constraints
e intuition: constraints tested early
~~ inconsistencies recognized early ~> smaller tree
combination: use minimum remaining values criterion,
then most constraining variable criterion to break ties
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Value Orders

Definition (conflict)

Let C = (V,dom, (Ry,)) be a constraint network.
For variables v # v/ and values d € dom(v), d’ € dom(V/),
the assignment v — d is in conflict with v/ — d’ if (d,d’) ¢ R,,.

value ordering criterion for partial assignment «
and selected variable v:
e minimum conflicts: prefer values d € dom(v)
such that v — d causes as few conflicts as possible
with variables that are unassigned in «
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Summary: Backtracking

basic search algorithm for constraint networks: backtracking

@ extends the (initially empty) partial assignment step by step
until an inconsistency or a solution is found

@ is a form of depth-first search

@ depth-first search particularly well-suited
because state space is directed tree
and all solutions at same (known) depth



Summary
ooe

Summary: Variable and Value Orders

@ Variable orders influence the performance
of backtracking significantly.

e goal: critical decisions as early as possible
@ Value orders influence the performance
of backtracking on solvable constraint networks significantly.
e goal: most promising assignments first
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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems
e DI1-D2. Introduction
e D3-D5. Basic Algorithms

e D3. Backtracking
e D4. Arc Consistency
e D5. Path Consistency

e D6-D7. Problem Structure
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Inference

Derive additional constraints (here: unary or binary)
that are implied by the given constraints,
i.e., that are satisfied in all solutions.
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Inference: Example

Running Example

binary constraints: domains:
o Rux ={(2,1),(4,2)} o dom(w) ={1,2,3,4}
e R,,=1{(1,2),(1,3),(2,3)} @ dom(x) ={1,2,3}
° R,=1{(2,1),(3,1),(3,2), e dom(y) =1{1,2,3,4}
#.1),(4,2), (43)} o dom(z) = {1,2,3}

Can we use the constraint R, (w < z) to come up with a unary
constraint R,,?
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Inference: Example

Running Example

binary constraints: domains (unary constraints):
® Rux={(2,1),(4,2)} @ dom(w) = {1,2}
® Ruw,=1{(1,2),(1,3),(2,3)} @ dom(x) = {1,2,3}
° R,=1{(2,1),(3,1),(3,2), e dom(y) =1{1,2,3,4}
(4,1),(4,2), (4,3)} o dom(z) = {1,2,3}

Can we use the constraint R, (w < z) to come up with a unary
constraint R,,?
~ tighten domain with unary constraint

(sometimes called node consistency)



Inference
[e]e] lelelele]

Inference: Example

Running Example

binary constraints: domains (unary constraints):
® Rux={(2,1),(4,2)} @ dom(w) = {1,2}
® Ru,=1{(1,2),(1,3),(2,3)} @ dom(x) = {1,2,3}
° R,=1{(2,1),(3,1),(3,2), e dom(y) =1{1,2,3,4}
1), (4.2),4.3) o dom(z) = {1,2,3}

How does this affect the binary constraint R, ?
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Inference: Example

Running Example

binary constraints: domains (unary constraints):
@ Rux={(2,1)} o dom(w) = {1,2}
® Ru,=1{(1,2),(1,3),(2,3)} @ dom(x) = {1,2,3}
° R,=1{(2,1),(3,1),(3,2), e dom(y) =1{1,2,3,4}
%1, 4,2),4,3) o dom(z) = {1,2,3)

How does this affect the binary constraint R, ?
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Inference: Example

Running Example

binary constraints: domains (unary constraints):
® Rux={(2,1)} @ dom(w) = {1,2}
® Ru,=1{(1,2),(1,3),(2,3)} @ dom(x) = {1,2,3}
o R, ={(2,1),(3,1),(3,2), o dom(y) = {1,2,3,4}
(4.1),(4,2), (4,3)} o dom(z) = {1,2,3}

Can we generate a "new” binary constraint from w < z and z < y?
(i.e., tighten a trivial constraint)
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Inference: Example

Running Example

binary constraints: domains (unary constraints):
® Rux={(2,1)} @ dom(w) = {1,2}
® Ru,=1{(1,2),(1,3),(2,3)} @ dom(x) = {1,2,3}
° R,=1{(2,1),(3,1),(3,2), e dom(y) ={1,2,3,4}
#1), (4.2),4,3)} o dom(z) = {1,2,3}
® Ry ={(1,3),(1,4),(2,4)} )

Can we generate a “new” binary constraint from w < z and z < y?
(i.e., tighten a trivial constraint)
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Trade-Off Search vs. Inference

Inference formally

For a given constraint network C, replace C
with an equivalent, but tighter constraint network.

Trade-off:
@ the more complex the inference, and
@ the more often inference is applied,
@ the smaller the resulting state space, but

@ the higher the complexity per search node.



Inference
0000e00

When to Apply Inference?

different possibilities to apply inference:
@ once as preprocessing before search

@ combined with search: before recursive calls
during backtracking procedure

o already assigned variable v — d corresponds to dom(v) = {d}
~~ more inferences possible
e during backtracking, derived constraints have to be retracted
because they were based on the given assignment
~ powerful, but possibly expensive
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Backtracking with Inference

function BacktrackingWithInference(C, «):

if « is inconsistent with C:
return inconsistent

if  is a total assignment:
return o
C' = (V,dom’,(R.,)) := copy of C
apply inference to C’
if dom’(v) # 0 for all variables v:
select some variable v for which « is not defined

for each d € copy of dom’(v) in some order:
o =aU{v—d}
dom’(v) := {d}
o' := BacktrackingWithInference(C’, o)
if o/’ # inconsistent:
return o
return inconsistent
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Backtracking with Inference

function BacktrackingWithInference(C, «):

if « is inconsistent with C:
return inconsistent
if  is a total assignment:
return o
C' :=(V,dom’,(R!,)) := copy of C
apply inference to C’
if dom’(v) # () for all variables v:
select some variable v for which « is not defined
for each d € copy of dom’(v) in some order:
o =aU{v—d}
dom’(v) := {d}
o := BacktrackingWithInference(C’, o)
if o/’ # inconsistent:
return o
return inconsistent
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Backtracking with Inference: Discussion

@ Inference is a placeholder:
different inference methods can be applied.

@ Inference methods can recognize unsolvability (given «)
and indicate this by clearing the domain of a variable.

o Efficient implementations of inference are often incremental:
the last assigned variable/value pair v — d is taken
into account to speed up the inference computation.
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Forward Checking

We start with a simple inference method:

Forward Checking

Let o be a partial assignment.

Inference: For all unassigned variables v in a,

remove all values from the domain of v that are in conflict
with already assigned variable/value pairs in «.

~ definition of conflict as in the previous chapter

Incremental computation:

@ When adding v — d to the assignment,
delete all pairs that conflict with v +— d.
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Forward Checking: Example

Running Example

Removing values in conflict with a = {w +— 2}:
binary constraints: domains:
o Rux ={(2,1),(4,2)} @ w is already assigned
o Ru.={(1,2),(1,3),(2,3)} e dom(x) = {1,2,3}
o R, =1{(2,1),(3,1),(3,2), o dom(y) = {1,2,3,4}
(1) (4:2), (4,3)} o dom(z) = {1,2,3} |
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Forward Checking: Example

Running Example

Removing values in conflict with a = {w +— 2}:
binary constraints: domains:
o Rux ={(2,1),(4,2)} @ w is already assigned
o Ru.={(1,2),(1,3),(2,3)} e dom(x) = {1,2,3}
o R, =1{(2,1),(3,1),(3,2), o dom(y) = {1,2,3,4}
(1) (4:2), (4,3)} o dom(z) = {1,2,3} |
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Forward Checking: Example

Running Example

Removing values in conflict with a = {w +— 2}:
binary constraints: domains:
o Rux ={(2,1),(4,2)} @ w is already assigned
o Ru.={(1,2),(1,3),(2,3)} @ dom(x) = {1}
o R, =1{(2,1),(3,1),(3,2), o dom(y) = {1,2,3,4}
1), (4,2), (4, 3)} o dom(z) = {1,2,3} |
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Forward Checking: Example

Running Example

Removing values in conflict with a = {w +— 2}:
binary constraints: domains:
o Rux ={(2,1),(4,2)} @ w is already assigned
o Ru.={(1,2),(1,3),(2,3)} @ dom(x) = {1}
° R,=1{(2,1),(3,1),(3,2), e dom(y) ={1,2,3,4}
4.1),(4,2),(4,3)} o dom(z) = {3} |
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Forward Checking: Discussion

properties of forward checking:
@ correct inference method (retains equivalence)

e affects domains (= unary constraints),
but not binary constraints

@ consistency check at the beginning of the backtracking
procedure no longer needed (\Why?)

@ cheap, but often still useful inference method

~ apply at least forward checking in the backtracking procedure

In the following, we will consider more powerful inference methods.



®00000000000

Arc Consistency



Arc Consistency
0e0000000000

Arc Consistency: Definition

Definition (Arc Consistent)

Let C = (V,dom, (Ry,)) be a constraint network.

@ The variable v € V is arc consistent

with respect to another variable v/ € V,

if for every value d € dom(v)

there exists a value d’ € dom(v’) with (d,d’) € R,,.
@ The constraint network C is arc consistent,

if every variable v € V is arc consistent
with respect to every other variable v/ € V.

German: kantenkonsistent
remarks:

@ definition for variable pair is not symmetrical

@ v always arc consistent with respect to v/
if the constraint between v and v/ is trivial



Arc Consistency: Example

Running Example

Arc Consistency
008000000000

Consider variables w and z from our running example:

e dom(w) =1{1,2,3,4}
e dom(z) ={1,2,3}
o Ry, = {<172>7 <1v3>7 <273>}

Arc consistency

of w with respect to z and
of z with respect to w

is violated.



Arc Consistency
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Enforcing Arc Consistency

e Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v/,
is a correct inference method. (Why?)

e more powerful than forward checking (Why?)



Arc Consistency
000800000000

Enforcing Arc Consistency

e Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v/,
is a correct inference method. (Why?)

e more powerful than forward checking (Why?)
~ Forward checking is a special case:
enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to forward checking.

We will next consider algorithms that enforce arc consistency.
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Processing Variable Pairs: revise

function revise(C, v, v'):
(V,dom, (Ry)) :=C
for each d € dom(v):
if there is no d’ € dom(v') with (d,d") € R,
remove d from dom(v)

input: constraint network C and two variables v, v/ of C

effect: v arc consistent with respect to v'.
All violating values in dom(v) are removed.

time complexity: O(k?), where k is maximal domain size
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revise(C, w, z) in Running Example

AN
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revise(C, w, z) in Running Example

AN
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revise(C, w, z) in Running Example

AN
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revise(C, w, z) in Running Example

AN
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revise(C, w, z) in Running Example

AN



Arc Consistency
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revise(C, w, z) in Running Example

AN
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Enforcing Arc Consistency: AC-1

function AC-1(C):
(V,dom, (Ry)) :=C
repeat
for each nontrivial constraint R, :
revise(C, u, v)
revise(C, v, u)
until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: ?
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Enforcing Arc Consistency: AC-1

(V,dom, (Ru)) :=C
repeat
for each nontrivial constraint R, :
revise(C, u, v)
revise(C, v, u)
until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: O(n- e - k3), with n variables,
e nontrivial constraints and maximal domain size k



Arc Consistency
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AC-1: Discussion

@ AC-1 does the job, but is rather inefficient.

@ Drawback: Variable pairs are often checked again and again
although their domains have remained unchanged.

@ These (redundant) checks can be saved.

~~ more efficient algorithm: AC-3
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Enforcing Arc Consistency: AC-3

idea: store potentially inconsistent variable pairs in a queue

(V,dom, (Ru)) :=C

queue := )

for each nontrivial constraint R, :
insert (u, v) into queue
insert (v, u) into queue

while queue # (:
remove an arbitrary element (u, v) from queue
revise(C, u, v)
if dom(u) changed in the call to revise:
for each w € V' \ {u, v} where R, is nontrivial:
insert (w, u) into queue




Arc Consistency
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AC-3: Discussion

@ queue can be an arbitrary data structure
that supports insert and remove operations
(the order of removal does not affect the result)
~~ use data structure with fast insertion and removal, e.g., stack
@ AC-3 has the same effect as AC-1:
it enforces arc consistency
@ proof idea: invariant of the while loop:
If (u,v) ¢ queue, then u is arc consistent with respect to v



Arc Consistency
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AC-3: Time Complexity

Proposition (time complexity of AC-3)

Let C be a constraint network with e nontrivial constraints
and maximal domain size k.

The time complexity of AC-3 is O(e - k3).




Arc Consistency
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AC-3: Time Complexity (Proof)

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)
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AC-3: Time Complexity (Proof)

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.
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AC-3: Time Complexity (Proof)

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.
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AC-3: Time Complexity (Proof)

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair (u, v) is inserted into the queue
at most k + 1 times ~» at most O(ek) insert operations in total.
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AC-3: Time Complexity (Proof)

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.
Hence every pair (u, v) is inserted into the queue
at most k + 1 times ~» at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) - O(k?) = O(ek3). DJ
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Summary: Inference

@ inference: derivation of additional constraints
that are implied by the known constraints

~~ tighter equivalent constraint network
@ trade-off search vs. inference
@ inference as preprocessing or integrated into backtracking

Summary
oeo
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Summary: Forward Checking, Arc Consistency

@ cheap and easy inference: forward checking
e remove values that conflict with already assigned values
@ more expensive and more powerful: arc consistency

e iteratively remove values without a suitable “partner value”
for another variable until fixed-point reached

o efficient implementation of AC-3: O(ek3)
with e: #nontrivial constraints, k: size of domain
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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems
e DI1-D2. Introduction
e D3-D5. Basic Algorithms

o D3. Backtracking
e D4. Arc Consistency
e D5. Path Consistency

e D6-D7. Problem Structure
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Beyond Arc Consistency: Path Consistency

idea of arc consistency:

o For every assignment to a variable u
there must be a suitable assignment to every other variable v.

@ If not: remove values of u for which
no suitable “partner” assignment to v exists.

~~ tighter unary constraint on u

This idea can be extended to three variables (path consistency):

@ For every joint assignment to variables u, v
there must be a suitable assignment to every third variable w.

e If not: remove pairs of values of u and v for which
no suitable “partner” assignment to w exists.

~ tighter binary constraint on v and v

German: Pfadkonsistenz



Beyond Arc Consistency
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Beyond Arc Consistency: i-Consistency

general concept of i-consistency for i > 2:

@ For every joint assignment to variables vq,...,v;_1
there must be a suitable assignment to every i-th variable v;.
@ If not: remove value tuples of vy, ..., v;_1 for which
no suitable “partner” assignment for v; exists.
~~ tighter (/ — 1)-ary constraint on vq,...,vj_1
@ 2-consistency = arc consistency
@ 3-consistency = path consistency (*)
We do not consider general i-consistency further
as larger values than i = 3 are rarely used
and we restrict ourselves to binary constraints in this course.
(*) usual definitions of 3-consistency vs. path consistency differ

when ternary constraints are allowed
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Path Consistency
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Path Consistency: Definition

Definition (path consistent)

Let C = (V,dom, (Ry,)) be a constraint network.

@ Two different variables u, v € V are path consistent
with respect to a third variable w € V' if
for all values d, € dom(u), d, € dom(v) with (d,, d,) € R,
there is a value d,, € dom(w) with (d,, dy) € Ry and
(dy,dw) € Ryw.

@ The constraint network C is path consistent
if for all triples of different variables u, v, w,
the variables v and v are path consistent with respect to w.




Path Consistency
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Path Consistency on Running Example

Running Example

sz = {<172>’ <1=3>7 <273>}
Ry ={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}

Are w and y path consistent with respect to z?
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Path Consistency on Running Example

Running Example

Are w and y path consistent with respect to z?
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Path Consistency on Running Example

Running Example

Are w and y path consistent with respect to z? No!



Path Consistency
[e]e] lelelele]e]

Path Consistency on Running Example

Running Example

sz = {<172>’ <1=3>7 <273>}
Ry ={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}

RWy = {<173>a <174>a <2v4>}

Are w and y path consistent with respect to z?
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Path Consistency on Running Example

Running Example

sz = {<172>’ <1=3>7 <273>}
Ry ={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}

RWy = {<173>a <174>a <2v4>}

Are w and y path consistent with respect to z? Yes!
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Path Consistency on Running Example

Running Example

sz = {<172>’ <1=3>7 <273>}
Ry ={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}

RWy = {<173>a <1’4>a <2v4>}

Are w and y path consistent with respect to z? Yes!
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Path Consistency on Running Example

Running Example

sz = {<172>’ <1=3>7 <273>}
Ry ={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}

RWy = {<173>a <174>a <274>}

Are w and y path consistent with respect to z? Yes!
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Path Consistency: Remarks

remarks:

@ Even if the constraint Ry, is trivial, path consistency
can infer nontrivial constraints between u and v.

@ name “path consistency”:
path u — w — v leads to new information on u — v



Path Consistency
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Path Consistency: Example

Vi

Vo V3

arc consistent, but not path consistent
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Processing Variable Triples: revise-3

analogous to revise for arc consistency:

function revise-3(C, u, v, w):
(V,dom, (Ry)) :=C
for each (d,,d,) € Ry,,:
if there is no d,, € dom(w) with
(dy,dw) € Ruw and (d,,dw) € Ryw:
remove (d,, d,) from Ry,

input: constraint network C and three variables u, v, w of C

effect: u, v path consistent with respect to w.
All violating pairs are removed from R, .

time complexity: O(k3) where k is maximal domain size



Path Consistency
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Enforcing Path Consistency: PC-2

analogous to AC-3 for arc consistency:

(V,dom, (Ry)) :=C
queue :== ()
for each set of two variables {u, v}:
for each w € V' \ {u, v}:
insert (u, v, w) into queue

while queue # (:
remove any element (u, v, w) from queue
revise-3(C, u, v, w)
if R,, changed in the call to revise-3:
for each w' € V' \ {u, v}:
insert (W', u, v) into queue
insert (w/, v, u) into queue




Path Consistency
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PC-2: Discussion

The comments for AC-3 hold analogously.
@ PC-2 enforces path consistency
@ proof idea: invariant of the while loop:
if (u,v,w) ¢ queue, then u, v path consistent
with respect to w
e time complexity O(n3k®) for n variables and maximal domain
size k (Why?)
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Summary

generalization of

arc consistency (considers pairs of variables)

to path consistency (considers triples of variables)
and i-consistency (considers i-tuples of variables)

arc consistency tightens unary constraints
path consistency tightens binary constraints
i-consistency tightens (/ — 1)-ary constraints

higher levels of consistency more powerful
but more expensive than arc consistency

S
o

ummary
o
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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems
e D1-D2. Introduction
e D3-D5. Basic Algorithms
e D6-D7. Problem Structure

e D6. Constraint Graphs
e D7. Decomposition Methods
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Constraint Graphs
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Motivation

@ To solve a constraint network consisting of n variables
and k values, k" assignments must be considered.

@ Inference can alleviate this combinatorial explosion,
but will not always avoid it.

@ Many practically relevant constraint networks are efficiently
solvable if their structure is taken into account.
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Constraint Graphs

Definition (constraint graph)
Let C = (V,dom, (R,,)) be a constraint network.

The constraint graph of C is the graph whose vertices are V' and
which contains an edge {u, v} iff Ry, is a nontrivial constraint.
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Constraint Graphs: Running Example

Nontrivial Constraints of Running Example

Rux = {(27 1>7<47 2>}
Ruz = {<172>7 <1v3>7 <2a3>}
R,Vz = {(27 1>? <3a 1>7 <372>7 <4? 1>a <47 2>7 <47 3>}

Resulting Constraint Graph:




Constraint Graphs
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Constraint Graphs: Better Example

Coloring of the Australian states (plus Northern Territory)
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Unconnected Graphs

Summar
oeo

Unconnected Constraint Graphs

Proposition (unconnected constraint graphs)

If the constraint graph of C has multiple connected components,
the subproblems induced by each component can be solved
separately.

The union of the solutions of these subproblems is a solution for C.

A total assignment consisting of combined subsolutions
satisfies all constraints that occur within the subproblems.

All constraints between two subproblems are trivial
(follows from the definitions of constraint graphs
and connected components). O




Unconnected Graphs
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Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently
from the rest of Australia.

B—a
@‘@"‘a@

©
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Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently
from the rest of Australia.

e

M

od

further example:

network with k =2, n = 30 that decomposes
into three components of equal size

savings?
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Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently
from the rest of Australia.

e

M

od

further example:
network with k =2, n = 30 that decomposes
into three components of equal size

savings?
only 3-219 = 3072 assignments instead of 230 = 1073741824
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Trees as Constraint Graphs

Proposition (trees as constraint graphs)

Let C be a constraint network with n variables and maximal
domain size k whose constraint graph is a tree or forest
(i.e., does not contain cycles).

Then we can solve C or prove that no solution exists
in time O(nk?).

example: k=5,n=10
~ k" = 9765625, nk? = 250



Trees as Constraint Graphs: Algorithm

algorithm for trees:

Build a directed tree for the constraint graph.

Select an arbitrary variable as the root.

Order variables vy, ..., v, such that parents are ordered
before their children.

Fori€ (n,n—1,...,2): call revise(Vparent(i), Vi)

~+ each variable is arc consistent with respect to its children
If a domain becomes empty, the problem is unsolvable.

Otherwise: solve with BacktrackingWithlInference,
variable order vy, ..., v, and forward checking.
~~ solution is found without backtracking steps

proof: ~» exercises



Trees as Constraint Graphs: Example

1. constraint graph:



Trees as Constraint Graphs: Example

1. constraint graph: 2. directed tree: 0



Trees as Constraint Graphs: Example

1. constraint graph: 2. directed tree: 0

3. order:



Trees as Constraint Graphs: Example

1. constraint graph:

4. revise steps:

e revise(D, F)
revise(D, E)
e revise(B, D)
e revise(B, C)
°

revise(A, B)

2. directed tree: 0

3. order:



Trees as Constraint Graphs: Example

1. constraint graph:

4. revise steps:

e revise(D, F)
revise(D, E)
e revise(B, D)
e revise(B, C)
°

revise(A, B)

2. directed tree: 0

3. order:

5. finding a solution:
backtracking with forward checking and order
A<B<C<D=<E=<F



Summary
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Summary

@ Constraint networks with simple structure are easy to solve.
o Constraint graphs formalize this structure:

e several connected components:
solve separately for each component
e tree: algorithm linear in number of variables
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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems
e D1-D2. Introduction
e D3-D5. Basic Algorithms
e D6-D7. Problem Structure

o D6. Constraint Graphs
e D7. Decomposition Methods
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Decomposition Methods
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More Complex Graphs

What if the constraint graph is not a tree
and does not decompose into several components?

@ idea 1: conditioning
@ idea 2: tree decomposition

German: Konditionierung, Baumzerlegung
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Conditioning

Conditioning

idea: Apply backtracking with forward checking until the
constraint graph restricted to the remaining unassigned variables
decomposes or is a tree.

remaining problem ~~ algorithms for simple constraint graphs
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Conditioning

Conditioning

idea: Apply backtracking with forward checking until the
constraint graph restricted to the remaining unassigned variables
decomposes or is a tree.

remaining problem ~~ algorithms for simple constraint graphs

cutset conditioning:

Choose variable order such that early variables form a small cutset
(i.e., set of variables such that removing these variables

results in an acyclic constraint graph).

German: Cutset

time complexity: n variables, m < n in cutset,
maximal domain size k: O(k™ - (n — m)k?)

(Finding optimal cutsets is an NP-complete problem.)
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Conditioning: Example

Australia example: Cutset of size 1 suffices:

O—0 Y—@
@
‘@"‘a@w =)
®
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Tree Decomposition

basic idea of tree decomposition:

@ Decompose constraint network into smaller subproblems
(overlapping).
@ Find solutions for the subproblems.

@ Build overall solution based on the subsolutions.

more details:

@ "Overall solution building problem” based on subsolutions
is a constraint network itself (meta constraint network).

@ Choose subproblems in a way that the constraint graph

of the meta constraint network is a tree/forest.
~ build overall solution with efficient tree algorithm



Tree Decomposition
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Tree Decomposition: Example

constraint network: tree decomposition:
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Tree Decomposition: Definition

Definition (tree decomposition)

Consider a constraint network C with variables V.
A tree decomposition of C

is a graph 7 with the following properties.
requirements on vertices:

@ Every vertex of T corresponds to a subset of the variables V.
Such a vertex (and corresponding variable set) is called
a subproblem of C.

@ Every variable of V appears in at least one subproblem of 7T .

@ For every nontrivial constraint R, of C, the variables u and v
appear together in at least one subproblem in 7.
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Tree Decomposition: Definition

Definition (tree decomposition)

Consider a constraint network C with variables V.

A tree decomposition of C
is a graph T with the following properties.

requirements on edges:

@ For each variable v € V, let T, be the set of vertices
corresponding to the subproblems that contain v.

@ For each variable v, the set 7, is connected,
i.e., each vertex in 7T, is reachable from every other vertex
in 7, without visiting vertices not contained in 7.

e 7 is acyclic (a tree/forest)




Tree Decomposition
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Meta Constraint Network

meta constraint network C7 = (V7 dom?, (RT))
based on tree decomposition T

o V7= vertices of T (i.e., subproblems of C occurring in T)
o dom” (v) := set of solutions of subproblem v

o RT :={(s,t) | s,t compatible solutions of subproblems u, v}
if {u,v} is an edge of T. (All constraints between
subproblems not connected by an edge of T are trivial.)

German: Meta-Constraintnetz

Solutions of two subproblems are called compatible
if all overlapping variables are assigned identically.



Tree Decomposition
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Solving with Tree Decompositions: Algorithm

algorithm:
@ Find all solutions for all subproblems in the decomposition
and build a tree-like meta constraint network.

o Constraints in meta constraint network:
subsolutions must be compatible.

@ Solve meta constraint network
with an algorithm for tree-like networks.




Tree Decomposition
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Good Tree Decompositions

goal: each subproblem has as few variables as possible

@ crucial: subproblem V'’ in T with highest number of variables
@ number of variables in V/ minus 1

is called width of the decomposition
@ best width over all decompositions: tree width

of the constraint graph (computation is NP-complete)

time complexity of solving algorithm based on tree decompositions:
O(nk"1), where w is width of decomposition

(requires specialized version of revise; otherwise O(nk®"*2).)
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Summary: This Chapter

@ Reduce complex constraint graphs to simple constraint graphs.
@ cutset conditioning:
o Choose as few variables as possible (cutset)
such that an assignment to these variables yields
a remaining problem which is structurally simple.
e search over assignments of variables in cutset
@ tree decomposition: build tree-like meta constraint network
e meta variables: groups of original variables
that jointly cover all variables and constraints
o values correspond to consistent assignments to the groups
e constraints between overlapping groups to ensure compatibility
e overall algorithm exponential in width of decomposition
(size of largest group)
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Summary: CSPs

Constraint Satisfaction Problems (CSP)

General formalism for problems where

@ values have to be assigned to variables

such that the given constraints are satisfied.

algorithms: backtracking search + inference
(e.g., forward checking, arc consistency, path consistency)

variable and value orders important

more efficient: exploit structure of constraint graph
(connected components; trees)



Summary
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More Advanced Topics

more advanced topics (not considered in this course):
@ backjumping: backtracking over several layers

@ no-good learning: infer additional constraints based on
information collected during backtracking

@ local search methods in the space of total,
but not necessarily consistent assignments

@ tractable constraint classes: identification of constraint types
that allow for polynomial algorithms

@ solutions of different quality:
constraint optimization problems (COP)

~ more than enough content for a one-semester course
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Propositional Logic: Overview

Chapter overview: propositional logic

o E1.
o E2.
o E3.
o E4.
o Eb5.

Syntax and Semantics
Equivalence and Normal Forms
Reasoning and Resolution
DPLL Algorithm

Local Search and Outlook



Classification

classification:

Propositional Logic

environment:

@ static vs.
@ deterministic vs. Vs.
o fully observable vs.
@ discrete vs.
@ single-agent vs.
problem solving method:

° vs. general vs.

(applications also in more complex environments)
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Motivation
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Propositional Logic: Motivation

propositional logic
@ modeling and representing problems and knowledge

@ basis for general problem descriptions and solving strategies
~~ automated planning (Part F)

@ allows for automated reasoning

German: Aussagenlogik, automatisches Schliessen



Motivation
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Relationship to CSPs

previous part: constraint satisfaction problems

satisfiability problem in propositional logic can be viewed
as non-binary CSP over {F, T}

formula encodes constraints

solution: satisfying assignment of values to variables
backtracking with inference &~ DPLL (Chapter E4)
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Propositional Logic: Description of State Spaces

propositional variables for missionaries and cannibals problem:

two-missionaries—-are-on-left-shore
one-cannibal-is-on-left-shore
boat-is-on-left-shore

@ problem description for general problem solvers
@ states represented as truth values of atomic propositions

German: Aussagenvariablen
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Propositional Logic: Intuition

propositions: atomic statements over the world
that cannot be divided further

Propositions with logical connectives like
“and”, “or” and “not” form the propositional formulas.

German: logische Verkniipfungen
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Syntax and Semantics

Today, we define syntax and semantics of propositional logic.
~ reminder from Discrete Mathematics in Computer Science

syntax:

o defines which symbols are allowed in formulas
G),NAAB CX,Q,—, A& .7
@ ...and which sequences of these symbols are correct formulas
(AANB), ((A)AB), NA(B, ...?
semantics:
@ defines the meaning of formulas

@ uses interpretations to describe a possible world
I ={A—T,B— F}

@ tells us which formulas are true in which worlds
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Alphabet of Propositions

@ Logical formulas use an alphabet ¥ of propositions,
for example ¥ = {P, Q, R, S} or ¥ = {X1, X2, X3,... }.

@ We do not mention the alphabet in the following.

@ More formally, all definitions are parameterized by ¥ .

German: Alphabet
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Definition (propositional formula)

T and L are formulas (constant true/constant false).
Every proposition in X is a formula (atomic formula).
If ¢ is a formula, then = is a formula (negation).
If © and ¢ are formulas, then so are

e (¢ A1) (conjunction)

o (¢ V1) (disjunction)

o (¢ — ) (implication)

German: aussagenlogische Formel, konstant wahr/falsch,
atomare Formel, Konjunktion, Disjunktion, Implikation

Note: minor differences to Discrete Mathematics course
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Abbreviating Notations: Omitting Parenthesis

may omit redundant parentheses:
@ outer parentheses of formula:
o (PAQ)VR instead of (PAQ)V R)
e multiple conjunctions/disjunctions:
o PAQ@A—-RAS instead of (PAQ)A-R)AS)
e implicit binding strength: (=) > (A) > (V) > (=):
o PV QAR instead of PV (Q A R)
e use responsibly
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Abbreviating Notations: Prefix Notation

prefix notations used like ) for sums:

4

° \/ Xi instead of (X1 V X2 V X3V Xa)
i=1
3

° /\ Y; instead of (Y1 A Y2 A Y3)
i=1
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Intuition for Semantics

A formula is true or false
depending on the interpretation of the propositions.

Semantics: Intuition

@ A proposition P is either true or false.
The truth value of P is determined by an interpretation.

@ The truth value of a formula follows from
the truth values of the propositions.

example interpretations for ¢ = (P V Q) A R:

o If P and Q are false and R is true, then ¢ is false.
o If Pis false and @ and R are true, then ¢ is true.
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Interpretations

Definition (interpretation)
An interpretation / is a function / : ¥ — {T,F}.

Interpretations are sometimes called truth assignments.

German: Interpretation/Belegung/Wahrheitsbelegung
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The Semantics of Formulas

When is a formula ¢ true under interpretation /?
symbolically: When does | = ¢ hold?

Definition (Models and the |= Relation)

The relation “[=" is a relation between interpretations
and formulas and is defined as follows:

o /E=Tand /L

o I=EPifI(P)=T forPex

I if 1o
I'=(eAy)if I @and =4

I (p Vo) if 1 gor | =y
IE(p—=y)iflEporl =y

If I =@ (I &), we say ¢ is true (false) under /.
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Examples

Example (Interpretation /)
I={P—-T,Q—»T,R—FS—F}

Which formulas are true under /7

° v1=—(PAQ)A(RA=S). Does | = ¢; hold?
@ w2 =(PAQ)A-(RA=S). Does | = ¢z hold?
@ w3 = (R — P). Does | |= ¢3 hold?
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Models of Formulas and Sets of Formulas

Definition (model)
An interpretation / is called a model of ¢ if | = ¢.

Definition (/ = ®)

Let ® be a set of propositional formulas.
We write | = ® if | = ¢ for all p € ®.
Such an interpretation / is called a model of .

If I is a model of formula ¢, we also say "/ satisfies "
or “¢ holds under I" (similarly for sets of formulas ®).

German: Modell, erfiillt, gilt unter
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Satisfiable, Unsatisfiable, Falsifiable, Valid

Definition (satisfiable etc.)

A formula ¢ is called
o satisfiable if there exists a model for ¢
@ unsatisfiable if there exists no model for ¢
e valid (= a tautology) if all interpretations are models of ¢

o falsifiable if not all interpretations are models of ¢

V.

German: erfiillbar, unerfiillbar, allgemeingiiltig (giiltig, Tautologie),
falsifizierbar
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Truth Tables

How to determine automatically if a given formula
is (un)satisfiable, valid, falsifiable?

~ simple method: truth tables

example: Is ¢ = ((PV H) A =H) — P valid?

| P H] PVH ][ (PVH)A-H) | (PVH)A-H)— P |

F|F F F T
FIT] T F T
T|F|| T T T
T(T| T F T

| = ¢ for all interpretations /, hence ¢ is valid.
o Is it satisfiable/unsatisfiable/falsifiable?
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Terminology (Side Note)

What does “¢ is true” mean?

@ not formally defined
@ the statement misses an interpretation

e could be meant as “in the obvious interpretation”
in some cases
e or as “in all possible interpretations” (tautology)

@ imprecise language ~» avoid
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Summary

@ Propositional logic forms the basis for a general
representation of problems and knowledge.

e Propositions (atomic formulas) are statements over the world
that cannot be divided further.

@ Propositional formulas combine constant and atomic formulas
with =, A, V, — to more complex statements.

@ Interpretations determine which atomic formulas are true
and which ones are false.

@ Interpretations making a formula true are called models.

@ important properties a formula may have:
satisfiable, unsatisfiable, valid, falsifiable



Foundations of Artificial Intelligence

E2. Propositional Logic: Equivalence and Normal Forms

Malte Helmert

University of Basel

April 23, 2025



Propositional Logic: Overview

Chapter overview: propositional logic

o EIl.
o E2.
o E3.
o E4.
o Eb5.

Syntax and Semantics
Equivalence and Normal Forms
Reasoning and Resolution
DPLL Algorithm

Local Search and Outlook



Equivalence



Equivalence

Logical Equivalance

Definition (logically equivalent)

Formulas ¢ and v are called logically equivalent (¢ = 1)
if for all interpretations I: | |= ¢ iff | = 4.

German: logisch aquivalent
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Equivalences

Logical Equivalences

Let o, 9, and i be formulas.
o (pAY)=[WAp)and (pVY)=(Ve) (commutativity)

° ((pAp)An) =(pA(¥An)) and

((ev)vn)=(pV (¥ Vn) (associativity)
o ((pAy)Vvn)=((pVn)A(¥Vn)) and

((evi)an)=((eAn) V(Y An)) (distributivity)
° ~(pA9)=(-¢V—¢)and

(e V)= (e A ¢) (De Morgan)
e —p=¢p (double negation)
° (p > 9¢)=(—p V) ((—>)—e|imination)J

Commutativity and associativity are often used implicitly
~» We write (Xl AXo A X3 A X4) instead of (X1 VAN (X2 VAN (X3 VAN X4)))
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Normal Forms: Terminology

Definition (literal)
If P € X, then the formulas P and —P are called literals.
P is called positive literal, =P is called negative literal.

The complementary literal to P is =P and vice versa.
For a literal £, the complementary literal to £ is denoted with /.

German: Literal, positives/negatives/komplementares Literal

Question: What is the difference between ¢ and —¢?
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Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause.
The empty clause (with O literals) is L.
Clauses consisting of exactly one literal are called unit clauses.

German: Klausel, leere Klausel, Einheitsklausel

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.

German: Monom
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Normal Forms

Definition (normal forms)

A formula ¢ is in conjunctive normal form (CNF, clause form)
if ¢ is a conjunction of 0 or more clauses:

n mj
o= NV
i=1 \j=1

A formula ¢ is in disjunctive normal form (DNF)
if ¢ is a disjunction of 0 or more monomials:

mj

/\ b

n
(p ==
i=1 \j=1

German: konjunktive Normalform, disjunktive Normalform
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Normal Forms

For every propositional formula, there exists
a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF with equivalences

@ eliminate implications

(¢ = ¥)= (e V) ((—)-elimination)
@ move negations inside

(e AY) = (mp V) (De Morgan)

(e V) = (e A0) (De Morgan)

= (double negation)
@ distribute V over A

((pAg)vn) =((pVn) Ay Vn)) (distributivity)
@ simplify constant subformulas (T, L) )

There are formulas ¢ for which every logically equivalent formula
in CNF and DNF is exponentially longer than ¢.
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Summary

@ two formulas are logically equivalent
if they have the same models
o different kinds of formulas:

e atomic formulas and literals

o clauses and monomials

e conjunctive normal form (CNF) and
disjunctive normal form (DNF)

o for every formula, there is a logically equivalent formula
in CNF and a logically equivalent formula in DNF
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Reasoning: Intuition

Reasoning: Intuition

o Generally, formulas only represent
an incomplete description of the world.

@ In many cases, we want to know
if a formula logically follows from (a set of) other formulas.

@ What does this mean?
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Reasoning: Intuition

e example: p =(PVQ)A(RV-P)AS
@ S holds in every model of ¢.
What about P, @ and R?

~ consider all models of ¢:

Lh={P—F,Q—~T,R—-FS—T}
L={P—F,Q—~T,R—=>T,5S5—T}
L={P—T,Q—»F,R—T,S— T}
Lb={P—-T,Q»T,R—>T,5— T}

Observation

@ In all models of ¢, the formula @ V R holds as well.

e We say: “QV R logically follows from ¢.”
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Reasoning: Formally

Definition (logical consequence)

Let ® be a set of formulas. A formula v logically follows from &
(in symbols: ® [= 1)) if all models of ® are also models of .

German: logische Konsequenz, folgt logisch

In other words: for each interpretation /,
if I = ¢ for all p € ®, then also | |= 1.

How can we automatically compute if ¢ |= ¢7?
@ One possibility: Build a truth table. (How?)

@ Are there “better” possibilities that (potentially) avoid
generating the whole truth table?
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Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let ® be a finite set of formulas and let ¢ be a formula. Then

o=y iff (/\ ) — 1 is a tautology.
ped

German: Deduktionssatz
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Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let ® be a finite set of formulas and let ¢ be a formula. Then

o=y iff (/\ ) — 1 is a tautology.
ped

German: Deduktionssatz

(Proof. |
=
iff for each interpretation /: if | = ¢ for all ¢ € ®, then | =1
Iff for each interpretation /1 if | |= )\ e ¢, then | |= ¢
iff for each interpretation I: [ j& A\ cop or I =9
iff for each interpretation I: | = (A co ) = ¥

iff (Apeow ¢) — ¢ is tautology O
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Reasoning by Unsatisfiability Testing

Consequence of Deduction Theorem

Reasoning can be reduced to testing unsatisfiability.

Question: Does ® = 1) hold?

ldea:

Let x = (/\(pecb ©) = .

We know that ® = 9 iff x is a tautology.

A formula is a tautology iff its negation is unsatisfiable.
Hence, ® |= ¢ iff —x is unsatisfiable.

Use equivalences:
X = ((Apeo ©) = 1) = 2(=(Apeo ) V V)
= (_|_|(/\<p€¢ p) N ) = /\g;ecb oA
We have that ® = o iff A<P€¢ © A =) is unsatisfiable.
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Algorithm for Reasoning

Question: Does ® = 1) hold?
Algorithm (given an algorithm for testing unsatisfiability):
O Letn =N co N0,
@ Test if n is unsatisfiable.
@ If yes, return “® =",
© Otherwise, return “® = )",

In the following: Can we test unsatisfiability in a more efficient way
than by computing the whole truth table?
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Sets of Clauses

for the rest of this chapter:
@ prerequisite: formulas in conjunctive normal form
@ clause represented as a set C of literals

o formula represented as a set A of clauses

Let o = (PV Q) A =P,

@  in conjunctive normal form

@ ¢ consists of clauses (P V Q) and =P
@ representation of ¢ as set of sets of literals: {{P, Q},{—P}}
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Sets of Clauses (Corner Cases)

Distinguish L (empty clause = empty set of literals)
vs. () (empty set of clauses).

e C =1 (=0) represents a disjunction over zero literals:
Vi=1
Leh
o A; = {L} represents a conjunction over one clause:
N\ e=1L
pe{l}
@ A, = () represents a conjunction over zero clauses:

Ne=T

e
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Resolution: Idea

Resolution

@ method to test CNF formula ¢ for unsatisfiability
@ idea: derive new clauses from ¢ that logically follow from ¢

o if empty clause | can be derived ~~ ¢ unsatisfiable

German: Resolution
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The Resolution Rule

G u {é}, GuU {E}
GuUG

e “From C; U {¢} and G, U {/}, we can conclude C; U G,."
o C; U G is resolvent of parent clauses C; U {¢} and G, U {/}.

o The literals ¢ and 7 are called resolution literals,
the corresponding proposition is called resolution variable.

@ resolvent follows logically from parent clauses (\Why?7)

German: Resolutionsregel, Resolvent, Elternklauseln,
Resolutionsliterale, Resolutionsvariable

o resolvent of {A, B,~C} and {A,D, C}?
e resolvents of {—A,B,—~C} and {A,D, C}?
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Resolution: Derivations

Definition (derivation)
Notation: R(A) = AU{C | C is resolvent of two clauses in A}
A clause D can be derived from A (in symbols A = D) if there is a

sequence of clauses Gy, ..., C, = D such that for all i € {1,...,n}
we have C; € R(A @] {Cl, ce C,'_l}).

German: Ableitung, abgeleitet

Lemma (soundness of resolution)
If A+ D, then A = D.

Does the converse direction hold as well (completeness)?
German: Korrektheit, Vollstandigkeit
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Resolution: Completeness?

The converse of the lemma does not hold in general.

example:
o {{A B}, {—-B,C}} E{A,B,C}, but
° {{A7 8}7 {_‘B’ C}} e {A7 B, C}

but: converse holds for special case of empty clause L (no proof)

Theorem (refutation-completeness of resolution)

A is unsatisfiable iff A = L

German: Widerlegungsvollstandigkeit
consequences:
@ Resolution is a complete proof method
for testing unsatisfiability of CNF formulas.
@ Resolution can be used for general reasoning
by reducing to a test for unsatisfiability of CNF formulas.
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Example

Let = {PV Q,—P}. Does ¢ = Q hold?

test if (PV Q) A—=P) — Q is tautology

equivalently: test if ((PV Q) A =P) A =Q is unsatisfiable
resulting set of clauses: ®' = {{P, Q}, {-P},{-Q}}
resolving {P, @} with {=P} yields {Q}

resolving { @} with {—Q} yields L

observation: empty clause can be derived,
hence @’ unsatisfiable

@ consequently = Q




Resolution
0O0000000e

Resolution: Discussion

@ Resolution is a complete proof method
to test formulas for unsatisfiability.

@ In the worst case, resolution proofs can take exponential time.

@ In practice, a strategy which determines
the next resolution step is needed.

@ In the following chapter, we discuss the DPLL algorithm,
which is a combination of backtracking and resolution.
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Reasoning: the formula v follows from the set of formulas ¢
if all models of ® are also models of .

Reasoning can be reduced to testing validity
(with the deduction theorem).

Testing validity can be reduced to testing unsatisfiability.

Resolution is a refutation-complete proof method
applicable to formulas in conjunctive normal form.

can be used to test if a set of clauses is unsatisfiable

S
o

ummary
o
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Propositional Logic: Motivation

@ Propositional logic allows for the representation of knowledge
and for deriving conclusions based on this knowledge.
@ many practical applications can be directly encoded, e.g.
e constraint satisfaction problems of all kinds
e circuit design and verification
@ many problems contain logic as ingredient, e.g.
e automated planning
e general game playing
o description logic queries (semantic web)
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Propositional Logic: Algorithmic Problems

main problems:
@ reasoning (¢ | ¢?):
Does the formula ¢ logically follow from the formulas ®7?
@ equivalence (¢ = ¥):
Are the formulas ¢ and v logically equivalent?
e satisfiability (SAT):
Is formula ¢ satisfiable? If yes, find a model.

German: Schlussfolgern, Aquivalenz, Erfiillbarkeit
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The Satisfiability Problem

The Satisfiability Problem (SAT)

given:
propositional formula in conjunctive normal form (CNF)

usually represented as pair (V,A):
@ V set of propositional variables (propositions)
@ A set of clauses over V
(clause = set of literals v or —v with v € V)
find:
e satisfying interpretation (model)
@ or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).
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Relevance of SAT

@ The name “SAT" is often used for the satisfiability problem for
general propositional formulas (instead of restriction to CNF).

@ General SAT can be reduced to CNF case in linear time.

@ All previously mentioned problems can be reduced to SAT
or its complement UNSAT (is a given CNF formula
unsatisfiable?) in linear time.

~+ SAT algorithms important and intensively studied

this and next chapter: SAT algorithms
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Systematic Search: DPLL
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SAT vs. CSP

SAT can be considered a constraint satisfaction problem:
@ CSP variables = propositions
e domains = {F, T}

@ constraints = clauses
However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:
@ search

@ inference
@ variable and value orders
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The DPLL Algorithm

The DPLL algorithm (Davis/Putnam/Logemann/Loveland)
corresponds to backtracking with inference for CSPs.
e recursive call DPLL(A, /)
for clause set A and partial interpretation /
@ result is a model of A that extends /;
unsatisfiable if no such model exists

e first call DPLL(A, D)
inference in DPLL:
@ simplify: after assigning value d to variable v,
simplify all clauses that contain v
~~ forward checking (for constraints of arbitrary arity)
@ unit propagation: variables that occur in clauses without other

variables (unit clauses) are assigned immediately
~» minimum remaining values variable order
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The DPLL Algorithm: Pseudo-Code

function DPLL(A, /):

if L eA: [empty clause exists ~ unsatisfiable]
return unsatisfiable
else if A = 0: [no clauses left ~~ interpretation / satisfies formula]
return /
else if there exists a unit clause {v} or {=v} in A:  [unit propagation]
Let v be such a variable, d the truth value that satisfies the clause.
A" = simplify(A, v, d)
return DPLL(A', /U {v — d})
else: [splitting rule]
Select some variable v which occurs in A.
for each d € {F, T} in some order:
A" = simplify(A, v, d)
I := DPLL(A', I U {v — d})
if I’ # unsatisfiable
return //
return unsatisfiable )
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The DPLL Algorithm: simplify

function simplify(A, v, d)

Let ¢ be the literal for v that is satisfied by v — d.
A":={C|C € Asuchthat £ ¢ C}

A" :={C\{{}| CeA’}

return A"

@ Remove clauses containing /¢
~» clause is satisfied by v — d

@ Remove ¢ from remaining clauses
~~ clause has to be satisfied with another variable



Systematic Search: DPLL
[e]e]e]e]e] lele]

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}
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Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
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Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}
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Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}

@ splitting rule:
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Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}

@ splitting rule:

2a. X —F
{yh{-v}
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Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{X Y EA{=X =YX, ~Y}H)
@ splitting rule:
2a. X —F
{Yh{=-v}

3a. unit propagation: Y — T

{1}
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Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{X Y EA{=X =YX, ~Y}H)
@ splitting rule:
2a. X —F 2b. X —T
{Yh{=-v} {=Y}}

3a. unit propagation: Y — T

{1}



Systematic Search: DPLL
[e]e]e]e]e] lele]

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}
@ splitting rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. unit propagation: Y — T 3b. unit propagation: Y — F

{1} {
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Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}
@ splitting rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. unit propagation: Y — T 3b. unit propagation: Y — F

{1} {
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Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}
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Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
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Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
W, =X, =Y} X} {Y}}
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Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{Hw, X =Y} X} Y}
@ unit propagation: X — T

{W, =Y} A{Y}}
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Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{{Wv_‘Xv_‘Y}a{X}7{Y}}

@ unit propagation: X — T
{wW, =Y} A{Y}}

@ unit propagation: Y — T

{w}}
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Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{{Wv_‘Xv_‘Y}a{X}7{Y}}

@ unit propagation: X — T
{wW, =Y} A{Y}}

@ unit propagation: Y — T
{{w}}

@ unit propagation: W — T

{
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Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{{Wv_‘Xv_‘Y}a{X}7{Y}}

@ unit propagation: X — T
{wW, =Y} A{Y}}

@ unit propagation: Y — T
{{w}}

@ unit propagation: W — T

{
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Properties of DPLL

@ DPLL is sound and complete.
@ DPLL computes a model if a model exists.

e Some variables possibly remain unassigned in the solution /;
their values can be chosen arbitrarily.

@ time complexity in general exponential

~~ important in practice: good variable order and
additional inference methods (in particular clause learning)

@ Best known SAT algorithms are based on DPLL.
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DPLL on Horn Formulas
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Horn Formulas

important special case: Horn formulas

Definition (Horn formula)

A Horn clause is a clause with at most one positive literal,
i.e., of the form

X1 V- Vax,Vyor xgV:-V-xy

(n=0is allowed.)

A Horn formula is a propositional formula
in conjunctive normal form that only consists of Horn clauses.

German: Hornformel
e foundation of logic programming (e.g., PROLOG)

@ critical in many kinds of practical reasoning problems
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DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula ¢ is a Horn formula, then
the time complexity of DPLL is polynomial in the length of .

properties:
@ |If Ais a Horn formula, then so is simplify(A, v, d). (Why?)
~~ all formulas encountered during DPLL search
are Horn formulas if input is Horn formula
@ Every Horn formula without empty or unit clauses is
satisfiable:
o all such clauses consist of at least two literals

e Horn property: at least one of them is negative
e assigning F to all variables satisfies formula

\.
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DPLL on Horn Formulas (Continued)

Proof (continued).

@ From 2. we can conclude:
o if splitting rule applied, then current formula satisfiable, and
e if a wrong decision is taken, then this will be recognized
without applying further splitting rules (i.e., only by applying
unit propagation and by deriving the empty clause).
@ Hence the generated search tree for n variables can only
contain at most n nodes where the splitting rule is applied
(i.e., where the tree branches).

@ It follows that the search tree is of polynomial size,
and hence the runtime is polynomial.
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Summary

@ satisfiability basic problem in propositional logic
to which other problems can be reduced

@ here: satisfiability for CNF formulas

@ Davis-Putnam-Logemann-Loveland procedure (DPLL):
systematic backtracking search with unit propagation
as inference method

@ DPLL successful in practice, in particular when combined
with other ideas such as clause learning

@ polynomial on Horn formulas
(= at most one positive literal per clause)
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Chapter overview: propositional logic

o EIl.
e E2.
o E3.
o E4.
e Eb5.

Syntax and Semantics
Equivalence and Normal Forms
Reasoning and Resolution
DPLL Algorithm

Local Search and Outlook
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Local Search for SAT

o Apart from systematic search, there are also successful
local search methods for SAT.

@ These are usually not complete and in particular
cannot prove unsatisfiability for a formula.

@ They are often still interesting
because they can find models for hard problems.

@ However, all in all, DPLL-based methods have been
more successful in recent years.



Local Search: GSAT
[e]e] Tele]

Local Search for SAT: Ideas

local search methods directly applicable to SAT:
e candidates: (complete) assignments
@ solutions: satisfying assignments
@ search neighborhood: change assignment of one variable

@ heuristic: depends on algorithm; e.g., #unsatisfied clauses
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GSAT (Greedy SAT): Pseudo-Code

auxiliary functions:
@ violated(A, /): number of clauses in A not satisfied by /

o flip(/, v): assignment that results from /
when changing the valuation of proposition v

function GSAT(A):

repeat max-tries times:
| ;== a random assignment
repeat max-flips times:
if | EA:
return /
Vigreedy = the set of variables v occurring in A
for which violated(A, flip(/, v)) is minimal
randomly select v € Vireedy
I :=Alip(/, v)
return no solution found




Local Search: GSAT
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GSAT: Discussion

GSAT has the usual ingredients of local search methods:
@ hill climbing
e randomness (although relatively little!)

@ restarts
empirically, much time is spent on plateaus:

60 T T
50+
401 il
#30%‘ -

unsat

T T
100 var

201 g

10 —\_|_‘_|_ il

0 1 T
0 50 100 150 200,230 300 350 400 450 500
# flips
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Walksat: Pseudo-Code

lost(A, I, v): #clauses in A satisfied by /, but not by flip(/, v)

function Walksat(A):

repeat max-tries times:
| ;== a random assignment
repeat max-flips times:
if | EA:
return /
C := randomly chosen unsatisfied clause in A
if there is a variable v in C with lost(A,/,v) = 0:
Vehoices := all such variables in C
else with probability ppoise:
Vehoices := all variables occurring in C
else:
Vihoices := Vvariables v in C that minimize lost(A, /, v)
randomly select v € Vipoices
I :=Alip(/, v)
return no solution found )




Local Search: Walksat
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Walksat vs. GSAT

Comparison GSAT vs. Walksat:

@ much more randomness in Walksat
because of random choice of considered clause

@ ‘“counter-intuitive” steps that temporarily increase
the number of unsatisfied clauses are possible in Walksat

~ smaller risk of getting stuck in local minima
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How Difficult is SAT in Practice?

@ SAT is NP-complete.
~> known algorithms like DPLL
need exponential time in the worst case
@ What about the average case?

@ depends on how the average is computed
(no “obvious” way to define the average)
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SAT: Polynomial Average Runtime

Good News (Goldberg 1979)

construct random CNF formulas
with n variables and k clauses as follows:

In every clause, every variable occurs
@ positively with probability %
o negatively with probability 3,
e not at all with probability 3.

Then the runtime of DPLL in the average case
is polynomial in n and k.

~» not a realistic model for practically relevant CNF formulas
(because almost all of the random formulas are satisfiable)



How Difficult Is SAT?
[e]e]e] lele]e]

Phase Transitions

How to find interesting random problems?

conjecture of Cheeseman et al.:

Cheeseman et al., IJCAI 1991

Every NP-complete problem has at least one size parameter
such that the difficult instances are close to a critical value
of this parameter.

This so-called phase transition separates two problem regions,
e.g., an over-constrained and an under-constrained region.

~» confirmed for, e.g., graph coloring, Hamiltonian paths and SAT
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Phase Transitions for 3-SAT

Problem Model of Mitchell et al., AAAI 1992
o fixed clause size of 3
@ in every clause, choose the variables randomly

@ literals positive or negative with equal probability

critical parameter: #clauses divided by #variables
phase transition at ratio =~ 4.3

100

50 var. formulas ——

80

60

40

20

probability of satisfiability

o

clauses/variable



How Difficult Is SAT?
0O0000e0

Phase Transition of DPLL

DPLL shows high runtime close to the phase transition region:

4000

50 var. formulas ——

3500
3000
2500
2000

1500

recursive calls (median)

1000

2 3 4 5 6 7
clauses/variable
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Phase Transition: Intuitive Explanation

@ If there are many clauses and hence the instance is
unsatisfiable with high probability, this can be shown efficiently
with unit propagation.

o If there are few clauses, there are many satisfying
assignments, and it is easy to find one of them.

@ Close to the phase transition, there are many
“almost-solutions” that have to be considered
by the search algorithm.
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of the Art

@ research on SAT in general:
~» http://www.satlive.org/

e conferences on SAT since 1996 (annually since 2000)
~> http://wuw.satisfiability.org/

@ competitions for SAT algorithms since 1992
~ http://www.satcompetition.org/

o largest instances have more than 1000000 literals
o different tracks (e.g., SAT vs. SAT+UNSAT;
industrial vs. random instances)


http://www.satlive.org/
http://www.satisfiability.org/
http://www.satcompetition.org/

Outlook
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More Advanced Topics

DPLL-based SAT algorithms:
o efficient implementation techniques
@ accurate variable orders

@ clause learning

local search algorithms:
o efficient implementation techniques

@ adaptive search methods ( “difficult” clauses
are recognized after some time and then prioritized)

SAT modulo theories:

@ extension with background theories
(e.g., real numbers, data structures, ...)
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Summary (1)

@ local search for SAT searches in the space of interpretations;
neighbors: assignments that differ only in one variable

@ has typical properties of local search methods:
evaluation functions, randomization, restarts
o example: GSAT (Greedy SAT)
o hill climbing with heuristic function: #unsatisfied clauses
e randomization through tie-breaking and restarts
@ example: Walksat

o focuses on randomly selected unsatisfied clauses
e does not follow the heuristic always, but also injects noise
e consequence: more randomization as GSAT

and lower risk of getting stuck in local minima



Summary (2)

@ more detailed analysis of SAT shows: the problem
is NP-complete, but not all instances are difficult

@ randomly generated SAT instances are
easy to satisfy if they contain few clauses, and
easy to prove unsatisfiable if they contain many clauses

@ in between: phase transition

Summary
ooe
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Classification

classification:

Automated Planning

environment:

@ static vs.
@ deterministic vs. Vs.
o fully observable vs.
@ discrete vs.
@ single-agent vs.
problem solving method:

° vs. general vs.

(applications also in more complex environments)
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Automated Planning

What is Automated Planning?

“Planning is the art and practice of thinking before acting.”
— P. Haslum

~> finding plans (sequences of actions)
that lead from an initial state to a goal state
our topic in this course: classical planning

@ general approach to finding solutions
for state-space search problems (Part B)

@ classical = static, deterministic, fully observable

@ variants: probabilistic planning, planning under partial
observability, online planning, ...
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Planning: Informally

given:

@ state space description in terms of suitable problem
description language (planning formalism)

required:

@ a plan, i.e., a solution for the described state space
(sequence of actions from initial state to goal)

@ or a proof that no plan exists

distinguish between
@ optimal planning: guarantee that returned plans
are optimal, i.e., have minimal overall cost
@ suboptimal planning (satisficing):
suboptimal plans are allowed



Introduction
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What is New?

Many previously encountered problems are planning tasks:
@ blocks world
@ missionaries and cannibals

@ 15-puzzle

New: we are now interested in general algorithms, i.e.,
the developer of the search algorithm does not know
the tasks that the algorithm needs to solve.

~ no problem-specific heuristics!

~» input language to model the planning task
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Formal Models for State-Space Search

To cleanly study search problems we need a formal model.

Nothing New Here!

This section is a repetition of Section B1.2
of the chapter “State-Space Search: State Spaces”.




State Spaces
[e]e] lele]e]

State Spaces

Definition (state space)

A state space or transition system is a
6-tuple S = (S, A, cost, T, s, Sg) with

o finite set of states S
@ finite set of actions A
@ action costs cost : A — ]R.(J,r

@ transition relation T € S x A x S that is
deterministic in (s, a) (see next slide)

@ initial state 55 € S

@ set of goal states 5S¢ C S

German: Zustandsraum, Transitionssystem, Zustande, Aktionen,
Aktionskosten, Transitions-/Ubergangsrelation, deterministisch,
Anfangszustand, Zielzustande



State Spaces
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State Spaces: Terminology & Notation

Definition (transition, deterministic)
Let S = (S, A, cost, T, s, Sg) be a state space.
The triples (s,a,s’) € T are called (state) transitions.

We say S has the transition (s, a,s’) if (s,a,s’) € T.
We write this as s — s/, or s — s’ when a does not matter.

Transitions are deterministic in (s, a): it is forbidden to have
both s 2 s; and s = s, with s; % 5.
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Graph Interpretation

state spaces are often depicted as directed, labeled graphs

@ states: graph vertices

@ transitions: labeled arcs

@ initial state: incoming arrow
@ goal states: double circles
@ actions: the arc labels

@ action costs: described separately
(or implicitly = 1)



State Spaces
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Graph Interpretation

state spaces are often depicted as directed, labeled graphs

@ states: graph vertices

@ transitions: labeled arcs
(here: colors instead of labels)

@ initial state: incoming arrow
@ goal states: double circles

@ actions: the arc labels

@ action costs: described separately
(or implicitly = 1)
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State Spaces: Terminology

terminology:
@ predecessor, successor
@ applicable action
@ path, length, costs
@ reachable
@ solution, optimal solution

German: Vorganger, Nachfolger, anwendbare Aktion, Pfad, Lange,
Kosten, erreichbar, Losung, optimale Losung
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State Spaces with Declarative Representations

How do we represent state spaces in the computer?

previously: as black box

now: as declarative description

reminder: Chapter B2

State Spaces with Declarative Representations

represent state spaces declaratively:

@ compact description of state space as input to algorithms
~> state spaces exponentially larger than the input

@ algorithms directly operate on compact description

~ allows automatic reasoning about problem:
reformulation, simplification, abstraction, etc.




Compact Descriptions
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Reminder: Blocks World

problem: n blocks ~» more than n! states
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Compact Description of State Spaces

How to describe state spaces compactly?

Compact Description of Several States

@ introduce state variables
@ states: assignments to state variables
~~ e.g., h binary state variables can describe 2" states

@ transitions and goal states are compactly described
with a logic-based formalism

different variants: different planning formalisms



Summary
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Summary

@ planning: search in general state spaces

@ input: compact, declarative description of state space
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Four Planning Formalisms

@ A description language for state spaces (planning tasks)
is called a planning formalism.
@ We introduce four planning formalisms:
@ STRIPS (Stanford Research Institute Problem Solver)
@ ADL (Action Description Language)
© SAST (Simplified Action Structures)
@Q PDDL (Planning Domain Definition Language)
@ STRIPS and SAS™ are the most simple formalisms;
in the next chapters, we only consider these.



STRIPS
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STRIPS: Basic Concepts

basic concepts of STRIPS:
@ STRIPS is the most simple common planning formalism.

@ state variables are binary (true or false)
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STRIPS: Basic Concepts

basic concepts of STRIPS:
@ STRIPS is the most simple common planning formalism.
@ state variables are binary (true or false)

@ states s (based on a given set of state variables V)
can be represented in two equivalent ways:
o as assignments s: V — {F, T}
e assets s C V,
where s encodes the set of state variables that are true in s

We will use the set representation.
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STRIPS: Basic Concepts

basic concepts of STRIPS:
@ STRIPS is the most simple common planning formalism.
@ state variables are binary (true or false)
@ states s (based on a given set of state variables V)

can be represented in two equivalent ways:

o as assignments s: V — {F, T}
e assets s C V,
where s encodes the set of state variables that are true in s

We will use the set representation.

@ goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

o effects of actions are given as sets of variables
that are set to true and set to false, respectively
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STRIPS Planning Task

Definition (STRIPS Planning Task)

A STRIPS planning task is a 4 tuple N = (V. /I, G, A) with
@ V: finite set of state variables
@ |/ C V: the initial state
@ G C V: the set of goals

@ A: finite set of actions,
where for all actions a € A, the following is defined:
pre(a) C V: the preconditions of a
o add(a) C V: the add effects of a
o del(a) C V: the delete effects of a
o cost(a) € Ny: the costs of a

German: STRIPS-Planungsaufgabe, Zustandsvariablen,
Anfangszustand, Ziele, Aktionen, Add-/Delete-Effekte, Kosten
remark: action costs are an extension of “traditional” STRIPS
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State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)
Let M= (V,I, G, A) be a STRIPS planning task.
Then M induces the state space S(IN) = (S, A, cost, T, s, S):
o set of states: S =2Y (= power set of V)
@ actions: actions A as defined in Il
@ action costs: cost as defined in [l

e transitions: s = s for states s,s’ € S and action a € A iff

o pre(a) C s (preconditions satisfied)
o s’ = (s\ del(a)) U add(a) (effects are applied)

@ initial state: s =/

@ goal states: s € Sg for state s iff G C s (goals reached)

German: induziert den Zustandsraum
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Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)
MN=(V,I, G,A) with:
o V= {OnR,B, OnR ¢, 0N Rr,0NB G,0N: R, 0NG B,
on-tabler, on-tableg, on-table,
clearg, clearg, clearc }
o | = {on¢ g, on-tabler, on-tableg, clear:, clearg }
o G = {OnR7B, OnB7G}
o A= {moveg g, mover ¢ g, MOVER R ¢,
movep ¢ r, MOVEG R B, MOVEC B R,
to-tabler g, to-tabler (;, to-tableg g,
to-tableg (., to-table r, to-table: g,
from-tabler g, from-tabler (., from-tableg g,
from-tableg (., from-table; g, from-table; g}
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Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

move actions encode moving a block
from one block to another

example:
o pre(moveg g ) = {ongr g, clearg, clear: }
e add(mover g.) = {ong,c, clearg}
o del(mover p.) = {ong B, clear: }
°

cost(moveg g ) =1
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Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

to-table actions encode moving a block
from a block to the table

example:
o pre(to-tabler g) = {ongr g, clearr}
e add(to-tabler g) = {on-tabler, clearg }
o del(to-tabler g) = {onr g}
o cost(to-tabler g) =1
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Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

from-table actions encode moving a block
from the table to a block

example:
o pre(from-tabler g) = {on-tabler, clearg, clearg}
o add(from-tabler g) = {onr g}
o del(from-tabler g) = {on-tabler, clearg}

o cost(from-tabler g) =1
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Why STRIPS?

@ STRIPS is particularly simple.

~ simplifies the design and implementation
of planning algorithms
@ often cumbersome for the user
to model tasks directly in STRIPS
@ but: STRIPS is equally “powerful”
to much more complex planning formalisms

~= automatic “compilers” exist that translate more complex
formalisms (like ADL and SAS™) to STRIPS
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Basic Concepts of ADL

basic concepts of ADL:

o Like STRIPS, ADL uses propositional variables (true/false)
as state variables.

@ preconditions of actions and goal are arbitrary logic formulas
(action applicable/goal reached in states
that satisfy the formula)

@ in addition to STRIPS effects, there are conditional effects:
variable v is only set to true/false if a given logical formula
is true in the current state
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Basic Concepts of SAS™

basic concepts of SAS™:
@ very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)
@ states are assignments to these variables (cf. CSPs)

@ preconditions and goals given as partial assignments
example: {v; — a, v3 — b} as preconditions (or goals)
o If s(vi) = aand s(v3) = b,
then the action is applicable in s (or goal is reached)
o values of other variables do not matter
o effects are assignments to subset of variables
example: effect {v3 — b, vo — c} means

o In the successor state s, s’(v;) = b and s'(v,) = c.
o All other variables retain their values.
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Basic Concept of PDDL

o PDDL is the standard language used in practice
to describe planning tasks.

@ descriptions in (restricted) predicate logic instead of
propositional logic (~> even more compact)

@ other features like numeric variables and derived variables
(axioms) for defining complex logical conditions
(formulas that are automatically evaluated in every state
and can, e.g., be used in preconditions)

@ There exist defined PDDL fragments for STRIPS and ADL;
many planners only support the STRIPS fragment.

example: blocks world in PDDL
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Summary

planning formalisms:
o STRIPS: particularly simple, easy to handle for algorithms

e binary state variables
e preconditions, add and delete effects, goals:
sets of variables

@ ADL: extension of STRIPS

e logic formulas for complex preconditions and goals
e conditional effects
@ SAST: extension of STRIPS
e state variables with arbitrary finite domains
o PDDL: input language used in practice
e based on predicate logic
(more compact than propositional logic)

e only partly supported by most algorithms
(e.g., STRIPS or ADL fragment)
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A Simple Planning Heuristic

The STRIPS planner (Fikes & Nilsson, 1971) uses the number of
goals not yet satisfied in a STRIPS planning task as heuristic:

h(s) =1G \'s|.
intuition: fewer unsatisfied goals ~~ closer to goal state

~~» STRIPS heuristic
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Problems of STRIPS Heuristic

drawback of STRIPS heuristic?

@ rather uninformed:
For state s, if there is no applicable action a in s such that
applying a in s satisfies strictly more (or fewer) goals,
then all successor states have the same heuristic value as s.

@ ignores almost the whole task structure:
The heuristic values do not depend on the actions.

~> we need better methods to design heuristics
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Planning Heuristics

We consider two basic ideas for general heuristics:
@ delete relaxation ~~ this and next chapter

@ abstraction ~~ Chapters F5-F6

Delete Relaxation: Basic ldea

Estimate solution costs by considering a simplified planning task,
where all negative action effects are ignored.
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Relaxed Planning Tasks: Idea

In STRIPS planning tasks,
good and bad effects are easy to distinguish:

o Add effects are always useful.
@ Delete effects are always harmful.
Why?

idea for designing heuristics: ignore all delete effects
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Relaxed Planning Tasks

Definition (relaxation of actions)

The relaxation a* of STRIPS action a is the action with
o pre(a™) = pre(a),
e add(a™) = add(a),
e cost(a™) = cost(a), and
e del(a™) = 0.

German: Relaxierung von Aktionen

Definition (relaxation of planning tasks)

The relaxation 17 of a STRIPS planning task 1= (V. /1, G, A)
is the task T = (V, [, G,{a" | a € A}).

German: Relaxierung von Planungsaufgaben
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Relaxed Planning Tasks: Terminology

@ STRIPS planning tasks without delete effects
are called relaxed planning tasks
or delete-free planning tasks.
@ Plans for relaxed planning tasks are called relaxed plans.

e If Mis a STRIPS planning task and 7 is a plan for M,
then 7 is called relaxed plan for I1.
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Optimal Relaxation Heuristic

Definition (optimal relaxation heuristic h™)

Let I be a STRIPS planning task with the relaxation
nt=(v,I,G,A").

The optimal relaxation heuristic h™ for 1 maps each state s

to the cost of an optimal plan for the planning task (V,s, G, AT).

In other words, the heuristic value for s is the optimal solution cost
in the relaxation of 1 with s as the initial state.
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Examples
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Example: Logistics

L, o m_ _m

Left Right

Left Right

Example (Logistics Task)
@ variables: V = {ataL, atar, atgL, atgRr, attL, atTr, INAT, INBT }
@ initial state: | = {ata(, atgr, atTL}
@ goals: G = {atag, atgL}

@ actions: {move g, movegy, loada, loadag, loadg| , loadgg,
unloada , unloadag, unloadg , unloadggr }
° ...
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Left Right

Example (Logistics Task)

° pre(moveLR) = {at—n_}, add(moveLR) = {at—rR},
del(move r) = {attL}, cost(move g) =1

-} pre(loadAL) = {at—n_, atAL}, add(loadAL) = {inA-r},
del(loadal) = {ataL}, cost(loada) =1

o pre(unloadp ) = {atty, inaT}, add(unloadal) = {ataL},
del(unloadp; ) = {inaT}, cost(unloada ) =1
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Example: Logistics

x
Plcsnnss T | N N S—

Left Right

Left Right

@ optimal plan:

0 /oadAL
Q@ move r
© unloadar
e IoadBR
e moveRrL
@ unloadg

@ optimal relaxed plan: 7
o h*(I)=6, ht(I)="7
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Example: 8-Puzzle

4156 4
7 . 8 7
@ actual goal distance: h*(s) = 17

@ Manhattan distance: "MP(s) =5

@ optimal delete relaxation: hT(s) =7

relationship (no proof):
h* dominates the Manhattan distance in the sliding tile puzzle
(i.e., ”MP(s) < ht(s) < h*(s) for all states s)
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Relaxed Solutions: Suboptimal or Optimal?

@ For general STRIPS planning tasks, h™
is an admissible and consistent heuristic (no proof).
@ Can h™ be computed efficiently?
o It is easy to solve delete-free planning tasks
suboptimally. (How?)
o optimal solution (and hence the computation of h™)
is NP-hard (reduction from SET COVER)

@ In practice, heuristics approximate h™ from below or above.
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Summary

delete relaxation:
@ ignore negative effects (delete effects) of actions

@ use solution costs of relaxed planning task
as heuristic for solution costs of the original planning task

@ computation of optimal relaxed solution costs h' is NP-hard,
hence usually approximated from below or above
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Relaxed Planning Graphs

@ relaxed planning graphs: represent which variables in M+
can be reached and how
@ graphs with variable layers V' and action layers A’
o variable layer V0 contains the variable vertex v0 for all v € /
e action layer A1 contains the action vertex a’*! for action a
if V' contains the vertex v/ for all v € pre(a)
o variable layer V/*1 contains the variable vertex v/*!
if previous variable layer contains v/,
or previous action layer contains a'*! with v € add(a)

German: relaxierter Planungsgraph, Variablenknoten,
Aktionsknoten
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Relaxed Planning Graphs (Continued)

@ a goal vertex g if v € V" for all v € G,
where n is last layer

@ graph can be constructed for arbitrary many layers
but stabilizes after a bounded number of layers
~s VT = Viand AT = A7 (Why?)
o directed edges:
o from v/ to a'*1 if v € pre(a) (precondition edges)
from a' to v' if v € add(a) (effect edges)
from v/ to vi*! (no-op edges)
from v" to g if v € G (goal edges)

German: Zielknoten, Vorbedingungskanten, Effektkanten,
Zielkanten, No-Op-Kanten
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[llustrative Example

We write actions a with pre(a) = {p1,..., px}
add(a) = {q1,...,q}, del(a) = 0 and cost(a) = ¢
as p1,...,Pk = q1, .., q

V={mno,p,q,r,s,t}
I'={m}

G =1{o,p,q,r,s}

A ={a1,a2,a3,a4, 35,36}
ai=m=3n,0

a =m0 p

a3=n,0>5q
as=n>Sr

1
as=pHaqr
ag=p-=s
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph
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[llustrative Example: Relaxed Planning Graph




Relaxed Planning Graphs

[e]e]e]e]e] o)

Generic Relaxed Planning Graph Heuristic

Heuristic Values from Relaxed Planning Graph

function generic-rpg-heuristic((V, I, G, A), s):
nt:=(V,s, G,A")
for k € {0,1,2,...}:
rpg := RPG,(N™) [relaxed planning graph to layer k]
if rpg contains a goal node:
Annotate nodes of rpg.
if termination criterion is true:
return heuristic value from annotations
else if graph has stabilized:
return oo

~ general template for RPG heuristics

~+ to obtain concrete heuristic: instantiate highlighted elements



Relaxed Planning Graphs
000000e

Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.

In this course:
e maximum heuristic "™** (Bonet & Geffner, 1999)
o additive heuristic h*¢ (Bonet, Loerincs & Geffner, 1997)

o Keyder & Geffner's (2008) variant of the FF heuristic hfF
(Hoffmann & Nebel, 2001)

German: Maximum-Heuristik, additive Heuristik, FF-Heuristik

remark:
@ The most efficient implementations of these heuristics
do not use explicit planning graphs,
but rather alternative (equivalent) definitions.
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Maximum and Additive Heuristics

o h™> and h?99 are the simplest RPG heuristics.

@ Vertex annotations are numerical values.
@ The vertex values estimate the costs
e to make a given variable true

e to reach and apply a given action
e to reach the goal
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Maximum and Additive Heuristics: Filled-in Template

computation of annotations:

@ costs of variable vertices:
0 in layer 0;
otherwise minimum of the costs of predecessor vertices

@ costs of action and goal vertices:
maximum (h™3) or sum (h®4d) of predecessor vertex costs;
for action vertices a', also add cost(a)

termination criterion:

e stability: terminate if V/ = V=1 and costs of all vertices
in V' equal corresponding vertex costs in V/~1

heuristic value:

@ value of goal vertex
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Maximum and Additive Heuristics: Intuition

intuition:
@ variable vertices:
e choose cheapest way of reaching the variable
@ action/goal vertices:
e h™® s optimistic: assumption:
when reaching the most expensive precondition variable,
we can reach the other precondition variables in parallel
(hence maximization of costs)
o h?dd is pessimistic: assumption:
all precondition variables must be reached completely
independently of each other (hence summation of costs)
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hmax

[llustrative Example:
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hmax

[llustrative Example:




Maximum and Additive Heuristics
[e]e]ele] lele]

hmax

[llustrative Example:
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hmax

[llustrative Example:
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hmax

[llustrative Example:




Maximum and Additive Heuristics
[e]e]ele] lele]

hmax

[llustrative Example:
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hmax

[llustrative Example:
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[llustrative Example:
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[llustrative Example:
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[llustrative Example:
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[llustrative Example:
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hmax

[llustrative Example:
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[llustrative Example: A™*

hme({m}) =5
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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hadd

[llustrative Example:
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lllustrative Example: A2

hd({m}) = 21
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h™% and h29d: Remarks

comparison of h™2* and h24d:
@ both are safe and goal-aware
@ h™M2* js admissible and consistent; h?9d is neither.

~ h24d not suited for optimal planning
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h™% and h29d: Remarks

comparison of h™2* and h24d:
@ both are safe and goal-aware
@ h™M2* js admissible and consistent; h?9d is neither.
~ h24d not suited for optimal planning

o However, h* is usually much more informative than h™2*.
Greedy best-first search with h*? is a decent algorithm.



Maximum and Additive Heuristics
000000e

h™% and h29d: Remarks

comparison of h™2* and h24d:
@ both are safe and goal-aware
@ h™M2* js admissible and consistent; h?9d is neither.
~ h24d not suited for optimal planning

o However, h* is usually much more informative than h™2*.
Greedy best-first search with h*? is a decent algorithm.

@ Apart from not being admissible, h?9¢ often vastly
overestimates the actual costs because
positive synergies between subgoals are not recognized.
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h™% and h29d: Remarks

comparison of h™2* and h24d:
@ both are safe and goal-aware
@ h™M2* js admissible and consistent; h?9d is neither.
~ h24d not suited for optimal planning

o However, h* is usually much more informative than h™2*.
Greedy best-first search with h*? is a decent algorithm.

@ Apart from not being admissible, h?9¢ often vastly
overestimates the actual costs because
positive synergies between subgoals are not recognized.

~~ FF heuristic
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FF Heuristic

identical to h?99, but additional steps at the end:

o Mark goal vertex.
@ Apply the following marking rules until nothing more to do:

e marked action or goal vertex?
~> mark all predecessors

o marked variable vertex v/ in layer i > 17
~ mark one predecessor with minimal h?4 value
(tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

@ The actions corresponding to the marked action vertices
build a relaxed plan.

@ The cost of this plan is the heuristic value.




FF Heuristic
00e00

lllustrative Example: A"
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lllustrative Example: A"
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lllustrative Example: AfF
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lllustrative Example: AfF

AFF({m})=3+1+1+1+1=7
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FF Heuristic: Remarks

o Like h?9d, AFF is safe and goal-aware,
but neither admissible nor consistent.

@ approximation of h™ which is always at least as good as h2d
@ usually significantly better

@ can be computed in almost linear time (O(nlog n))
in the size of the description of the planning task
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FF Heuristic: Remarks

o Like h?9d, AFF is safe and goal-aware,
but neither admissible nor consistent.

@ approximation of h™ which is always at least as good as h2d
@ usually significantly better

@ can be computed in almost linear time (O(nlog n))
in the size of the description of the planning task

@ computation of heuristic value depends on tie-breaking
of marking rules (hFF not well-defined)

@ one of the most successful planning heuristics
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Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task (V,/, G, A).
Then

h™ax(s) < ht(s) < h*(s)

hm2*(s) < ht(s) < hFF(s) < h2dd(s)

o
o h* and AFF are incomparable
o

h* and h?94 are incomparable

further remarks:

@ For non-admissible heuristics, it is generally neither good
nor bad to compute higher values than another heuristic.

@ For relaxation heuristics, the objective is to approximate h™
as closely as possible.
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Summary

Many delete relaxation heuristics can be viewed
as computations on relaxed planning graphs (RPGs).

examples: A2 padd - pFF

h™2 and h?9d propagate numeric values in the RPGs

o difference: h™2* computes the maximum of predecessor costs
for action and goal vertices; h*% computes the sum
hFF marks vertices and sums the costs

of marked action vertices.
generally: hm¥(s) < h't(s) < hFF(s) < hadd(s)
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Planning Heuristics

We consider two basic ideas for general heuristics:
@ Delete Relaxation

@ Abstraction ~~ this chapter



Planning Heuristics

We consider two basic ideas for general heuristics:
@ Delete Relaxation

@ Abstraction ~~ this chapter

Abstraction: ldea

Estimate solution costs by considering a smaller planning task.
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SAS™ Encoding

@ in this chapter: SAS™ encoding
instead of STRIPS (see Chapter F2)

o difference: state variables v not binary,
but with finite domain dom(v)

@ accordingly, preconditions, effects, goals
specified as partial assignments

@ everything else equal to STRIPS

(In practice, planning systems convert automatically
between STRIPS and SAS™.)
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SAS™ Planning Task

Definition (SAS™ planning task)

A SAS™ planning task is a 5-tuple M = (V,dom, I, G, A)
with the following components:

@ V: finite set of state variables
@ dom: domain; dom(v) finite and non-empty for all v € V
e states: total assignments for V' according to dom

I: the initial state (state = total assignment)

G: goals (partial assignment)
A: finite set of actions a with

o pre(a): its preconditions (partial assignment)
o eff{a): its effects (partial assignment)
o cost(a) € Ny: its cost

German: SASt-Planungsaufgabe
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State Space of SAS™ Planning Task

Definition (state space induced by SAS™ planning task)

Let M= (V,dom, I, G, A) be a SAS™ planning task.
Then [T induces the state space S(IN) = (S, A, cost, T, s, Sg):

@ set of states: total assignments of V' according to dom

@ actions: actions A defined as in I
@ action costs: cost as defined in Tl
°

transitions: s = s’ for states s, s’ and action a iff

o pre(a) agrees with s (precondition satisfied)
o s’ agrees with eff(a) for all variables mentioned in eff, agrees
with s for all other variables (effects are applied)

@ initial state: 5=/

@ goal states: s € Sg for state s iff G agrees with s

German: durch SAST-Planungsaufgabe induzierter Zustandsraum
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Example: Logistics Task with One Package, Two Trucks

Example (one package, two trucks)
Consider the SAS™ planning task (V,dom, I, G, A) with:

o V= {p7 ta, tB}

dom(p) = {L,R,A,B} and dom(ta) = dom(tg) = {L,R}
/:{pHL,tAHR,tBP—)R}

G={p—R}

A={load;; | i € {A,B},j € {L,R}}

U {unload;; | i € {A,B},j € {L,R}}

U{move;jj | i € {A,B}, ),/ € {L,R},j # j'} with:
load; j has preconditions {t; — j, p + j}, effects {p — i}
unload; j has preconditions {t; — j, p — i}, effects {p — j}
move; j i» has preconditions {t; — j}, effects {t; — '}
All actions have cost 1.
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State Space for Example Task

e state {p — i, ta — j, tg — k} denoted as ijk
@ annotations of edges not shown for simplicity

o for example, edge from LLL to ALL has annotation loada |
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State Space Abstraction

State space abstractions drop distinctions between certain states,
but preserve the state space behavior as well as possible.

@ An abstraction of a state space S is defined by
an abstraction function « that determines which states
can be distinguished in the abstraction.

@ Based on S and a, we compute the abstract state space S¢
which is “similar’ to S but smaller.

@ main idea: use optimal solution cost in % as heuristic

German: Abstraktionsfunktion, abstrakter Zustandsraum
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Induced Abstraction

Definition (induced abstraction)

Let S = (S, A, cost, T, s|, Sg) be a state space,
and let a : S — S’ be a surjective function.
The abstraction of S induced by «, denoted as §¢,
is the state space S® = (S', A, cost, T', s/, S¢) with:
o T'={(a(s),a,at)) ]| (s,a,t)e T}
o s/ =a(s)
o St ={als) |'s € e}

German: induzierte Abstraktion
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

abstraction function oo : S — S§¢

a(A)=W a(B)=X «C) =

Y
a(D)=Z o(E)=Z a(F)=Y



Abstractions
[e]e]e] ]

Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

OnONO @®®
ORORG @

abstraction function oo : S — S§¢

a(A)=W a(B)=X «C) =

Y
a(D)=Z o(E)=Z a(F)=Y
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

OnONO @®®
ORORG @

abstraction function oo : S — S§¢

a(A)=W a(B)=X oC)=

)= Y
aD)=2 o(E)=2Z oF)=Y
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

OnONO @®®
ORORG @

abstraction function oo : S — S§¢

a(A)=W a(B)=X a(C)=Y
a(D)=2Z o(E)=Z of(F)=Y
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

OnONO @®®
ORORG @

abstraction function oo : S — S§¢

a(A) =W oB)=
a(D)=2Z ofE)

X ofC)=Y
Z o)=Y
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

OnONO O
ORORG v

abstraction function oo : S — S§¢

a(A)=W a(B)=X «C) =

Y
aD)=2Z a(E)=2Z ao(F)=Y
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

e

abstraction function oo : S — S§¢

a(A)=W «a(B)=X a(C)=Y
a(D)=2Z o(E)=Z o(F)=Y
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

8

abstraction function oo : S — S§¢

a(A)=W a(B)=X «(C)
a(D)=2Z o(E)=2Z oF)

Y
Y
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

233 é

abstraction function oo : S — S§¢

X a(C)=Y
a(F)=Y

a(A) =W «(B)
a(D)=2Z o)
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Abstraction: Example

concrete state space with abstract state space with
states S = {A,B,C,D,E, F} states S* = {W, X, Y, Z}

abstraction function oo : S — S§¢

a(A)=W a(B)=X a(C)=Y
a(D)=2 a(E)=2Z o Y
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Abstraction: Example

concrete state space with
states S = {A,B,C,D,E,F}

abstraction function oo : S — S§¢

a(A) =
a(D) =

W «a(B) =

a(E) =

X ofC)=
a(F) =

Y
Y

abstract state space with
states S* = {W, X, Y, Z}

intuition: grouping states
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Summary

@ basic idea of abstractions: simplify state space
by considering a smaller version

o formally: abstraction function o maps states to abstract
states and thus defines which states can be distinguished
by the resulting abstraction

@ induces abstract state space
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Abstraction Heuristic

Given an abstraction function « for a state space S,
use abstract solution cost (solution cost of a(s) in S%) as
heuristic for concrete solution cost (solution cost of s in S).

Definition (abstraction heuristic)

The abstraction heuristic for abstraction & maps each state s
to its abstract solution cost

h?(s) = hsa(a(s));

where hg, is the perfect heuristic in S¢.

German: abstrakte/konkrete Zielabstande, Abstraktionsheuristik



Abstraction Heuristics

[e]e] lele]ele)

Abstraction: Example

concrete state space
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Abstraction: Example

(an) abstract state space

j

R LR RL

LLR RRL

N
@ )

LLL je— «<—RRR
cRm

n

LRL RLR

N

BRL BLR

Remark: Most arcs correspond to several (parallel) transitions
with different labels.
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Abstraction Heuristic: Example

/()\ ALR ARL O
< L
T
BRL BLR

h({p—Lta— R, tg—R})=3
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Abstraction Heuristics: Discussion

Every abstraction heuristic is admissible and consistent.
(proof idea?)
@ The choice of the abstraction function « is very important.

e Every « yields an admissible and consistent heuristic.
e But most « lead to poor heuristics.

An effective o must yield an informative heuristic . ..

...as well as being efficiently computable.

How to find a suitable o?
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Automatic Computation of Suitable Abstractions

Main Problem with Abstraction Heuristics
How to find a good abstraction?

Several successful methods:

@ pattern databases (PDBs) ~ this course
(Culberson & Schaeffer, 1996)

@ merge-and-shrink abstractions
(Drager, Finkbeiner & Podelski, 2006)

o Cartesian abstractions (Seipp & Helmert, 2013)
e domain abstractions (Kreft et al., 2023)

German: Pattern Databases, Merge-and-Shrink-Abstraktionen,
Kartesische Abstraktionen, Domanenabstraktionen
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Pattern Databases: Background

@ The most common abstraction heuristics are
pattern database heuristics.

e originally introduced for the 15-puzzle (Culberson &
Schaeffer, 1996) and for Rubik's Cube (Korf, 1997)

@ introduced for automated planning by Edelkamp (2001)
@ for many search problems the best known heuristics

@ many many research papers studying

theoretical properties
efficient implementation and application
pattern selection
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Pattern Databases: Projections

A PDB heuristic for a planning task is an abstraction heuristic
where

@ some aspects (= state variables) of the task
are preserved with perfect precision while

@ all other aspects are not preserved at all.
formalized as projections to a pattern P C V:
wp(s) ={v—s(v)|ve P}

example:
e s={p—Lta— R tg— R}
@ projection on P = {p} (= ignore trucks):
mp(s) ={p— L}
@ projection on P = {p,ta} (= ignore truck B):
7TP(S) = {p — L, tg — R}
German: Projektionen
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Pattern Databases: Definition

Definition (pattern database heuristic)

Let P be a subset of the variables of a planning task.

The abstraction heuristic induced by the projection mp on P is
called pattern database heuristic (PDB heuristic) with pattern P.

abbreviated notation: h* for h™P

German: Pattern-Database-Heuristik

remark:

@ ‘“pattern databases” in analogy to endgame databases
(which have been successfully applied in 2-person-games)
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Example: Concrete State Space

e state variable package: {L,R,A,B}
e state variable truck A: {L,R}
e state variable truck B: {L,R}
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Example: Projection (1)

abstraction induced by 7(,.cxage):

LLR

LRL

h{package} ( LRR) —9






h{package,truck A}(LRR) -9
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Pattern Databases in Practice

practical aspects which we do not discuss in detail:
@ How to automatically find good patterns?

@ How to combine multiple PDB heuristics?
@ How to implement PDB heuristics efficiently?
e good implementations efficiently handle abstract state spaces
with 107, 10® or more abstract states
o effort independent of the size of the concrete state space
o usually all heuristic values are precomputed
~~ space complexity = number of abstract states
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Summary

@ basic idea of abstraction heuristics: estimate solution cost
by considering a smaller planning task.

o formally: abstraction function o maps states to abstract
states and thus defines which states can be distinguished
by the resulting heuristic.

@ induces abstract state space whose solution costs
are used as heuristic

@ Pattern database heuristics are abstraction heuristics
based on projections onto state variable subsets (patterns):
states are distinguishable iff they differ on the pattern.
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Why Board Games?

Board games are one of the oldest areas of Al
(Shannon 1950; Turing 1950).

@ abstract class of problems, easy to formalize

@ obviously “intelligence” is needed (really?)

@ dream of an intelligent machine capable of playing chess
is older than electronic computers

@ cf. von Kempelen's “Schachtiirke” (1769),
Torres y Quevedo's “El Ajedrecista” (1912)
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Board Games

algorithms considered previously:

agent has full control over environment:

@ agent is only acting entity

@ effects of actions fully predictable
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Board Games

algorithms considered previously:

agent has full control over environment:

@ agent is only acting entity

@ effects of actions fully predictable

games considered now (Chapters G1-G3):

environment changes independently of agent:

@ other agent (with opposing objective) acts
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Board Games

algorithms considered previously:

agent has full control over environment:

@ agent is only acting entity

@ effects of actions fully predictable

games considered later (Chapter G4):

environment changes independently of agent:
@ other agent (with opposing objective) acts

o effects of actions underly chance
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Applications
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Game Applications Beyond Specific Board Games

video games general game playing cyber security

General Game
-k Playing

wildlife preservation generative adversarial networks auctions


http://ggp.stanford.edu/
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
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Game Environments

game environments cover entire spectrum of properties
~+ need some restrictions
important classes of games that we do not consider:
@ with randomness (e.g., backgammon) (~ Chapter G4)
with more than two players (e.g., poker)
with hidden information (e.g., scrabble)
with simultaneous moves (e.g., rock-paper-scissors)
without turns (e.g., many video games)

without zero-sum property (e.g., auctions)

many of these can be handled with similar/generalized algorithms
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Properties of Games Considered (for Now)

current situation representable by finite set of positions

there is a finite set of moves players can play

effects of actions are deterministic

the game ends when a terminal position is reached

a terminal position is reached after a finite number of steps (*)

terminal positions yield a utility

no randomness, no hidden information

(*) Our definitions do not enforce this, and there are some subtleties

associated with this requirement which we ignore.



Introduction

0000000800

Properties of Games Considered (for Now)

@ there are exactly two players
called MAX and MIN

@ both players observe the entire position
(perfect information)

@ it is the turn of exactly one player
in each non-terminal position

o utility for MAX is opposite of
utility for MIN (zero-sum game)

o MAX aims to maximize utility,
MIN aims to minimize utility



Introduction
0000000080

Classification

classification:

Board Games

environment:
@ static vs.
@ deterministic vs. Vs.
o fully observable vs.
@ discrete vs.
° vs. multi-agent (adversarial)

problem solving method:

@ problem-specific vs. Vs.
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Informal Description

objective of the agent:
@ compute a strategy
@ that determines which move to execute

@ in the current position or in any (reachable) position

performance measure:

e maximize utility (given available resources)

To study board games, we need a formal model.
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Games
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Example: Chess

Example (Chess)

@ positions described by:

e configuration of pieces
e whose turn it is
e en-passant and castling rights

@ turns alternate

e terminal positions: checkmate and stalemate positions
o utility of terminal position for first player (white):
e +1 if black is checkmated

o 0 if stalemate position
e —1 if white is checkmated
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Terminology Compared to State-Space Search

Many concepts for board games are similar to state-space search.
Terminology differs, but is often in close correspondence:

@ state ~~ position
@ goal state ~~ terminal position
@ action ~» move

@ search tree ~» game tree
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Definition

Definition (game)

A game is a 7-tuple S = (S, A, T, s, Sg, utility, player) with
@ finite set of positions S
finite set of moves A

deterministic transition relation TC S x Ax S
initial position s € S

set of terminal positions S¢ C S

utility function utility : Sg¢ — R

player function player: S\ S¢ — {MAX, MIN}
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Reminder: Bounded Inc-and-Square Search Problem

informal description:

@ find a sequence of

e increment-mod10 (inc) and
e square-mod10 (sqr) actions

@ on the natural numbers from 0 to 9
@ that reaches the number 6 or 7
@ starting from the number 1

@ assuming each action costs 1.
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Running Example: Bounded Inc-and-Square Game

informal description:
@ Players alternatingly apply a

e increment-mod10 (inc) or
e square-mod10 (sqr) move

@ on the natural numbers from 0 to 9

@ starting from the number 1;

@ if the game reaches the number 6 or 7
@ or after a fixed number of 4 moves

@ MAX obtains utility u (MIN: —u)
where u is the current number.
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Running Example: Bounded Inc-and-Square Game

informal description: formal model:

@ Players alternatingly apply a

S={sfF|0<i<9,0<k<4}
e increment-mod10 (inc) or .
e square-mod10 (sqr) move ® A= {inc,sqr}

@ for0<i<9and 0 < k < 4:

k

i

k k+1
o (sf,sqr,s;5 q10) €T

@ on the natural numbers from 0 to 9

Lkl
o (sF inc, S(i-+1) mod w €T

@ starting from the number 1;

@ if the game reaches the number 6 or 7

(*] S|:S§)

o Sc={sk|ie{6,7}Vk=4}

@ or after a fixed number of 4 moves

@ MAX obtains utility u (MIN: —u) e .
where u is the current number. o utility(sf) = i for all s € Sg

@ player(sf) = MAX if k even and
player(sk) = MIN otherwise
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Why are Board Games Difficult?

As in classical search problems, the number of positions
of (interesting) board games is huge:
o Chess: roughly 1040 reachable positions;

game with 50 moves/player and branching factor 35:

tree size roughly 3500 ~ 10154

@ Go: more than 10 positions;
game with roughly 300 moves and branching factor 200:
tree size roughly 200300 ~ 1069

In addition, it is not sufficient to find a solution path:
@ We need a strategy reacting to all possible opponent moves.

@ Usually, such a strategy is implemented as an algorithm
that provides the next move on the fly (i.e., not precomputed).
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Strategies

Definition (strategy, partial strategy)
Let S = (S, A, T,s, Sg, utility, player) be a game
and let Syax = {s € S | player(s) = MAX}.
A partial strategy for player MAX is a function
T Syax — A
with S5;ax € Smax and 7(s) = a implies that a is applicable in s.

If Siiax = Smax, then 7 is also called total strategy (or strategy). |

We always take the viewpoint of MAX, but Syn and
a (partial/total) strategy for MIN are defined accordingly.
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Specific vs. General Algorithms

@ We consider approaches that must be tailored
to a specific board game for good performance,
e.g., by using a suitable evaluation function.

~> see chapters on informed search methods

@ Analogously to the generalization of search methods
to declaratively described problems (automated planning),
board games can be considered in a more general setting,
where game rules (state spaces) are part of the input.

~+ general game playing: regular competitions since 2005
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Algorithms for Board Games

properties of good algorithms for board games:
@ look ahead as far as possible (deep search)

@ consider only interesting parts of the game tree
(selective search, analogously to heuristic search algorithms)

@ evaluate current position as accurately as possible
(evaluation functions, analogously to heuristics)
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State of the Art
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State of the Art

some well-known board games:
@ Chess, Go: ~ next slides
@ Othello: Logistello defeated human world champion in 1997;
best computer players significantly stronger than best humans

@ Checkers: Chinook official world champion (since 1994);
proved in 2007 that it cannot be defeated
and perfect game play results in a draw (game “solved”)
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Computer Chess

World champion Garry Kasparov was defeated by Deep Blue
in 1997 (6 matches, result 3.5-2.5).

@ specialized chess hardware (30 cores with 16 chips each)
@ alpha-beta search (~ Chapter G3) with extensions
@ database of opening moves from millions of chess games

Nowadays, chess programs on standard PCs are much stronger
than all human players.
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Computer Chess: Quotes

Claude Shannon (1950)
The chess machine is an ideal one to start with, since

@ the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

@ it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

© chess is generally considered to require “thinking”
for skillful play, [...]

@ the discrete structure of chess fits well
into the digital nature of modern computers.
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Computer Chess: Quotes

Claude Shannon (1950)
The chess machine is an ideal one to start with, since

@ the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

@ it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

© chess is generally considered to require “thinking”
for skillful play, [...]

@ the discrete structure of chess fits well
into the digital nature of modern computers.

.

Alexander Kronrod (1965)
Chess is the drosophila of Artificial Intelligence.
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Computer Chess: Another Quote

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
“Chess is the drosophila of artificial intelligence.”
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Computer Chess: Another Quote

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
“Chess is the drosophila of artificial intelligence.”

However, computer chess has developed much as genetics
might have if the geneticists had concentrated their efforts
starting in 1910 on breeding racing drosophilae. We would have
some science, but mainly we would have very fast fruit flies.
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Computer Go

Computer Go

@ The best Go programs use Monte-Carlo techniques (UCT).

@ Until autumn 2015, leading programs Zen, Mogo, Crazystone
played on the level of strong amateurs (1 kyu/1 dan).

@ Until then, Go was considered as one of the “last” games that
are too complex for computers.

@ In October 2015, Deep Mind's AlphaGo defeated
the European Champion Fan Hui (2p dan) with 5:0.

@ In March 2016, AlphaGo defeated world-class player

Lee Sedol (9p dan) with 4:1. The prize for the winner was
1 million US dollars.
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Summary

@ Board games can be considered as classical search problems
extended by an opponent.

@ Both players try to reach a terminal position
with (for the respective player) maximal utility.

@ very successful for a large number of popular games

@ Deep Blue defeated the world chess champion in 1997.
Today, chess programs play vastly more strongly than humans.

@ AlphaGo defeated one of the world’s best players
in the game of Go in 2016.



Foundations of Artificial Intelligence

G2. Board Games: Minimax Search and Evaluation Functions

Malte Helmert

University of Basel

May 14, 2025



Board Games: Overview

chapter overview:

GL.
G2.
G3.
G4.
G5.
G6.

Introduction and State of the Art
Minimax Search and Evaluation Functions
Alpha-Beta Search

Stochastic Games

Monte-Carlo Tree Search Framework

Monte-Carlo Tree Search Variants



Minimax Search

®000000

Minimax Search
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Example: Tic-Tac-Toe

consider it's the turn of player ¢:

% O %
O
¥ O

If the utility for win/draw/lose for player 3¢ is +1/0/-1,
what is an appropriate utility value for the depicted position?
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Example: Tic-Tac-Toe

consider it's the turn of player ¢:

o

o ¢

And what about this one?
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Idea and Example

@ depth-first search in game tree
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Idea and Example

@ depth-first search in game tree
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Idea and Example

@ depth-first search in game tree
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Idea and Example

@ depth-first search in game tree



Minimax Search
[e]e]e] lelele]

Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
position with utility function
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Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
position with utility function
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

inc
sqr

inc sar inc sqr

sqr inc sqr
5 0 @ 5 4 5 3 1
inc sqr inc sqr inc sqr - inc sqr inc sqr - inc sqr inc sqr

@ depth-first search in game tree @ compute utility value of inner nodes
@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

utility values of children
@ MAX's turn: utility value is maximum of
utility values of children
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Idea and Example

inc
sqr

inc sqr inc sqr

sqr inc sqr
5 0 @ 5 4 5 3 1
inc sqr inc sqr inc sqr - inc sqr inc sqr - inc sqr inc sqr

@ depth-first search in game tree @ compute utility value of inner nodes

@ determine utility value of terminal from below to above through the tree:
position with utility function @ MIN’s turn: utility value is minimum of

@ strategy: action that maximizes utility values of children

@ MAX's turn: utility value is maximum of

utility value (minimax decision)
utility values of children
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Minimax: Pseudo-Code

function minimax(p)

if p is terminal position:
return (utility(p), none)
best_move := none
if player(p) = MAX:
vV .= —&X
else:
vV =00
for each (move, p’) € succ(p):
(v/, best_move') := minimax(p’)
if (player(p) = MAX and v/ > v) or
(player(p) = MIN and v/ < v):
vi=V
best_move := move
return (v, best_move)
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Discussion

@ minimax is the simplest (decent) search algorithm for games

e yields optimal strategy (in the game-theoretic sense, i.e.,
under the assumption that the opponent plays perfectly)

@ MAX obtains at least the utility value computed for the root,
no matter how MIN plays

o if MIN plays perfectly, MAX obtains exactly
the computed value
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Limitations of Minimax

What if the size of the game tree is too big for minimax?

~ heuristic alpha-beta search

o heuristics (evaluation functions): rest of this chapter

@ alpha-beta search: next chapter
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Evaluation Functions

Definition (evaluation function)

Let S be a game with set of positions S.
An evaluation function for S is a function

h:S =R

which assigns a real-valued number to each position s € S.

Looks familiar? Commonalities? Differences?
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Intuition

@ problem: game tree too big
@ idea: search only up to predefined depth

@ depth reached: estimate the utility value according to
heuristic criteria (as if terminal position had been reached)

accuracy of evaluation function is crucial
@ high values should relate to high “winning chances”

@ at the same time, the evaluation should be
efficiently computable in order to be able to search deeply
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Example: Connect Four

«O0O00000
«O0O00000
«O0O00000
el 10X I JOI0
e XX XX 1@
9 000@®O®C

£3/2 o/1 173

[ay
~
o

o/1 3/1 3/3¢

evalution function: difference of number of possible lines of four
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General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:
h(s) = wo + wifi(s) + wafa(s) + - -+ + wufa(s),

where w; are weights and f; are features.
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General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:
h(s) = wo + wifi(s) + wafa(s) + - -+ + wufa(s),

where w; are weights and f; are features.

@ assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

o features are (usually) provided by human experts

@ weights provided by human experts or learned automatically
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General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:
h(s) = wo + wifi(s) + wafa(s) + - -+ + wufa(s),

where w; are weights and f; are features.

example: evaluation function in chess (cf. Lolli 1763)

no. of pieces pawn knight bishop rook queen

weight for MIN -1 -3 -3 -5 -9

often additional features based on pawn structure, mobility, ...

s h(s) = prAX(S) + 3EMAX(s) 4 3EMAX () 4 BEMAX(5) 4 gquAX(s)
_pr|N(S) — 3FMIN(s) — 3fbMIN(S) — 5fMIN(5) — gquIN(S)
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General Method: State Value Networks

alternative: evaluation functions based on neural networks

@ value network takes position features as input
(usually provided by human experts)

@ and outputs utility value prediction

@ weights of network learned automatically
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General Method: State Value Networks

alternative: evaluation functions based on neural networks

@ value network takes position features as input
(usually provided by human experts)

@ and outputs utility value prediction

@ weights of network learned automatically

example: value network of AlphaGo
@ start with policy network trained on human expert games
@ train sequence of policy networks by self-play against earlier version
@ final step: convert to utility value network

(slightly worse informed but much faster)

~~ Mastering the game of Go with deep neural networks and tree search
(Silver et al., 2016)
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How Deep Shall We Search?

@ objective: search as deeply as possible within a given time

@ problem: search time difficult to predict

@ solution: iterative deepening
e sequence of searches of increasing depth
e time expires: return result of previously finished search
o overhead acceptable (~~ Chapter B8)

@ refinement: search deeper in “turbulent” states

(i.e., with strong fluctuations of the evaluation function)
~= quiescence search

e example chess: deepen the search after capturing moves



Summary
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Summary

@ Minimax is a tree search algorithm that plays perfectly
(in the game-theoretic sense), but its complexity is O(b9)
(branching factor b, search depth d).

@ In practice, the search depth must be bounded
~~ apply evaluation functions.
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What if the size of the game tree is too big for minimax?

~ heuristic alpha-beta search

@ heuristics (evaluation functions): previous chapter

@ alpha-beta search: this chapter
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Alpha-Beta Search
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Can We Save Search Effort?

5
inc sqr
5} 3
inc sqr inc sar
D) 6 5 3
inc sqr sqr inc inc sqr inc sqr
5 0 @ 5 4 5 3 1
sqr inc sqr sqrinc sqrinc sqrinc sqrinc sqr

0000 0000000000
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Can We Save Search Effort?

What do we know about the utility
value of s7 in this situation?
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Can We Save Search Effort?

And about the utility value of s17?

What do we know about the utility
value of s7 in this situation?
it's 6 or higher
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Can We Save Search Effort?

And about the utility value of s17?
it's 5 (independently of the
missing subtree below s2)

inc

What do we know about the utility
value of s7 in this situation?
it's 6 or higher
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Can We Save Search Effort?

And about the utility value of s17?
it's 5 (independently of the
missing subtree below s2)

inc

What do we know about the utility
value of s7 in this situation?
it's 6 or higher

~+ we don't have to look at this
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Idea

idea: for every search node, use two values v and /3 such that
we know that the subtree rooted at the node

@ is irrelevant if its utility is < «

because MAX will prevent entering it when playing optimally
@ is irrelevant if its utility is >

because MIN will prevent entering it when playing optimally

We can prune every node with o > (8
because it must be irrelevant (no matter what its utility is).
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Alpha-Beta Search: Pseudo Code

@ algorithm skeleton the same as minimax

@ function signature extended by two variables « and 3

function alpha-beta-main(p)

(v, move) := alpha-beta(p, —oo, +00)
return move
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Alpha-Beta Search: Pseudo-Code

function alpha-beta(p, o, 5)

if p is terminal position:
return (utility(p), none)
initialize v and best_move [as in minimax]
for each (move, p’) € succ(p):
(v', best_move') := alpha-beta(p’, a, B)
update v and best_move [as in minimax]
if player(p) = MAX:
if v>p:
return (v, none)
a = max{a, v}
if player(p) = MIN:

if v<a:
return (v, none)
B = min{j, v}

return (v, best_move)
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Example
—00 “+o0o
@ «a: lower bound of relevant utility @ [3: upper bound of relevant utility

@ a MAX subtree is pruned if utility > 5 @ a MIN subtree is pruned if utility < «
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Example
—00 “+o0o
inc
—00 +oo
@ «a: lower bound of relevant utility @ [3: upper bound of relevant utility

@ a MAX subtree is pruned if utility > 5 @ a MIN subtree is pruned if utility < «
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@ «a: lower bound of relevant utility @ [3: upper bound of relevant utility

@ a MAX subtree is pruned if utility > 5 @ a MIN subtree is pruned if utility < «
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Example

@ «a: lower bound of relevant utility @ [3: upper bound of relevant utility

@ a MAX subtree is pruned if utility > 5 @ a MIN subtree is pruned if utility < «
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Discussion

What do the utility values express?
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Discussion

some utility values are

some utility values exact - 5 lower or upper bounds

sqr

f

inc i some utility
values missing

What do the utility values express?
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Discussion

What does this mean for the computed policy?
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Discussion

What does this mean for the computed policy?

@ only partial @ optimal in positions reachable under optimal play

@ need to take earliest move in case of ties



Move Ordering
00000

Move Ordering
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How Much Effort Do We Save?
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How Much Effort Do We Save?
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Were We Lucky?

5
sar
5 5
inc sqr inc sqr
5 6 5 3
inc sqr sqr inc sqr inc/ sar
5 0 @ 5 \ / 5 3 1

sqr  inc sqr

00 0000000000

if successors are considered in reverse order, we prune only a few positions

sqr inc sqr inc sqr inc sqr
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Move Ordering

idea: first consider the successors that are likely to be best
@ domain-specific ordering function
e.g., chess: captures < threats < forward moves < backward moves
@ dynamic move-ordering

o first try moves that were good in the past
e e.g., in iterative deepening search:
best moves from previous iteration
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How Much Do We Gain with Alpha-Beta Pruning?

assumption: uniform game tree, depth d, branching factor b > 2;
MAX and MIN positions alternate

@ perfect move ordering

best move at every position is considered first

maximizing move for MAX, minimizing move for MIN

effort reduced from O(b9) (minimax) to O(b9/?)

doubles the search depth that can be achieved in same time

@ random move ordering
o effort still reduced to O(b3¢/*)

In practice, we can often get close to the perfect move ordering.
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Heuristic Alpha-Beta Search

@ combines evaluation function and alpha-beta search
o often uses additional techniques, e.g.

@ quiescence search

e transposition tables

o forward pruning

e specialized subprocedures for certain parts of the game
(e.g., opening libraries and endgame databases)



Summary



Summary
oce

Summary

alpha-beta search

@ stores which utility both players can force
somewhere else in the game tree

@ exploits this information to avoid unnecessary computations
@ can have significantly lower search effort than minimax

@ best case: search twice as deep in the same time
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Discrete Random Variable

e a random event (like the result of a die roll)

o is described in terms of a random variable X
o with associated domain dom(X)
e and a probability distribution over the domain

@ if the number of outcomes of a random event is finite
(like here), the random variable is a discrete random variable

@ and the probability distribution is given as a probability
P(X = x) that the outcome is x € dom(X)
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Discrete Random Variable: Example

informal description:

@ you plan to invest in stocks
and can afford one share

@ your analyst expects these
stock price changes:

Bellman Inc. Markov Tec.
+2 with 30%  +4 with 20%
+1 with 60% +2 with 30%
40 with 10% —1 with 50%
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Discrete Random Variable: Example

informal description: formal model:
@ you plan to invest in stocks @ discrete random variables B and M
and can afford one share @ dom(B) = {2,1,0}
@ your analyst expects these dom(M) = {4,2, -1}
stock price changes: @ p(B=2)=03 PM=4) =02
Bellman Inc. ~ Markov Tec. P(B=1)=06 PM=2) =03
+2 with 30%  +4 with 20% P(B=0)=01 PM=-1)=05

+1 with 60% 42 with 30%
+0 with 10% —1 with 50%
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Expected Value

@ the expected value E[X] of a random variable X
is a weighted average of its outcomes

@ it is computed as the probability-weighted sum
of all outcomes x € dom(X), i.e.,

EX]= > PX=x)-x

xedom(X)

@ in stochastic environments, it is rational to deal
with uncertainty by optimizing expected values
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Expected Value: Example

formal model:

@ discrete random variables
B and M

@ dom(B) ={2,1,0}
dom(M) = {4,2, -1}

@0 P(B=2)=03 P(M=4) =02
P(B=1)=06 PM=2) =03
P(B=0)=01 P(M=-1)=05
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Expected Value: Example

formal model: expected gain:
@ discrete random variables  E[B]=P(B=2)-2+P(B=1)-1+P(B=0)-0
B and M =03-2406-1+01-0=1.2
_ E[M] = P(M = 4)-4+P(M = 2)-2+P(M = —1)-—1
o =
dom(B) = {2,1,0} =02-4403-2405--1=0.9

dom(M) = {4,2, -1}

@ P(B=2)=03 P(M=4) =02
P(B=1)=06 P(M=2) =03
P(B=0)=01 PM=-1)=05
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Expected Value: Example

formal model: expected gain:
@ discrete random variables  E[B]=P(B=2)-2+P(B=1)-1+P(B=0)-0
B and M =03-2406-1+01-0=1.2
_ E[M] = P(M = 4)-4+P(M = 2)-2+P(M = —1)-—1
o =
dom(B) = {2,1,0} =02-4403-2405--1=0.9

dom(M) = {4,2, -1}

@ P(B=2)=03 P(M=4) =02
P(B=1)=06 PM=2) =03
P(B=0)=01 P(M=-1)=05

rational decision: buy Bellman Inc.
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Definition

Definition (stochastic game)

A stochastic game is a

7-tuple S = (S, A, T, s, Sg, utility, player) with
@ finite set of positions S

finite set of moves A

@ transition function 7 : S x A x S+ [0,1] that is
well-defined for (s, a) (see below)

initial position s € S

set of terminal positions S¢ C S

utility function utility : S¢ — R

player function player: S\ S¢ — {MAX, MIN}

A transition function is well-defined for (s, a) if >, .5 T(s,a,5") =1
(then a is applicable in s) or >~ s T(s,a,s") = 0.
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Example: Stochastic Inc-and-Square Game

@ As an example, we consider a variant of the bounded
inc-and-square game from Chapter G1.
@ The sqr move now acts stochastically:

o It squares the current value v (mod 10) with probability 5.
o Otherwise it doubles the current value v (mod 10)
(with prob. 1 — 75).

@ We also reduce the maximum game length to 3 moves
(counting both players) to make the example smaller.

@ Everything else stays the same.
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Idea and Example

A

@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
maximum utility value of children
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@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
maximum utility value of children
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Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
maximum utility value of children
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Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
maximum utility value of children
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@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
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@ policy for MAX: select action that leads to
maximum utility value of children
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@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function
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bottom-up through the tree:

o MIN's turn: utility value is
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@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:
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minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
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@ policy for MAX: select action that leads to
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@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:
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Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
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Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
maximum utility value of children
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Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
maximum utility value of children
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Idea and Example

@ depth-first search in game tree

@ determine utility value of terminal
positions with utility function

@ compute utility value of inner nodes
bottom-up through the tree:

o MIN's turn: utility value is
minimum of utility values of children
o MAX’s turn: utility value is
maximum of utility values of children
e chance: utility value is expected
value of utility values of children

@ policy for MAX: select action that leads to
maximum utility value of children
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Idea and Example

03, Y07 04,/ 06
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Idea and Example

03, Y07 04,/ 06
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Discussion

@ expectiminimax is the simplest (decent) search algorithm
for stochastic games

e yields optimal policy (in the game-theoretic sense, i.e.,
under the assumption that the opponent plays perfectly)

@ MAX obtains at least the utility value computed for the root
in expectation, no matter how MIN plays

o if MIN plays perfectly, MAX obtains exactly the computed
value in expectation

The same improvements as for minimax are possible
(evaluation functions, alpha-beta search).
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Summary

@ Stochastic games are board games
with an additional element of chance.

@ Expectiminimax is a minimax variant for stochastic games
with identical behavior in MAX and MIN nodes.

@ In chance nodes, it propagates the expected value
(probability-weighted sum) of all successors.

@ Expectiminimax has same guarantees as minimax,
but in expectation.
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Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

@ systematic exploration of search space

@ computation of (state) quality
follows performance metric
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Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

@ systematic exploration of search space

@ computation of (state) quality
follows performance metric

algorithms considered today:

;w search based on Monte-Carlo methods:
] -
s, W @ sampling of game simulations

@ estimation of (state) quality by
averaging over simulation results
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Game Applications

board games hidden information games stochastic games

general game playing real-time strategy games dynamic difficulty adjustment

Swiechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)


http://ggp.stanford.edu/

Introduction
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Applications Beyond Games

story generation chemical synthesis UAV routing

' Us o o~
0457 Sz
. 4

coast security forest harvesting Earth observation

Swiechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)
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MCTS Environments

MCTS environments cover entire spectrum of properties.

We study MCTS under the same restrictions as before, i.e.,
@ environment classification,
@ problem solving method,
@ objective of the agent and
@ performance measure
are identical to Chapters G1-G3.

MCTS extensions exist that allow us to drop most restrictions.
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Monte-Carlo Tree Search



Monte-Carlo Tree Search
(o] lelele]e]e]

Data Structures

Monte-Carlo tree search

@ is a tree search variant
~> no closed list

@ iteratively performs game simulations from the initial position
(called trial or rollout)
~ no (explicit) open list

~» MCTS nodes are the only used data structure
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Data Structure: MCTS Nodes

MCTS nodes store
@ a reached position
@ how it was reached

@ its successors

a utility estimate ()

@ a visit counter (N)

possibly additional information
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Data Structure: MCTS Nodes

MCTS nodes store
@ a reached position
@ how it was reached

@ its successors

a utility estimate ()

a visit counter (N)

possibly additional information

! position:

not displayed

e move:

SUCCESSOrs:

S>

96
[ none, ? ]
18

2
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Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:
@ build a partial game tree

@ by performing trials as long as resources
(deliberation time, memory) allow

initially, the tree contains only the root node

each trial adds (at most) one node to the tree

after termination, play the associated move of a successor
of the root node with highest utility estimate
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

selection:
traverse the tree by applying tree policy
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

selection:
traverse the tree by applying tree policy

@ until a node with associated terminal position

@ or a node with missing successor is reached
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

expansion:

for one of the missing successors,
add a node to the game tree
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

simulation:
apply default policy from the added successor
until a terminal position is reached;

(no nodes are added to the tree)
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

backpropagation:
update visited nodes n in reverse order:

@ increase the visit counter n.N by 1

@ update utility estimate n.V with
utility from reached terminal position
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

backpropagation:
update visited nodes n in reverse order:

@ increase the visit counter n.N by 1

@ update utility estimate n.V with
utility from reached terminal position
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

backpropagation:
update visited nodes n in reverse order:

@ increase the visit counter n.N by 1

@ update utility estimate n.V with
utility from reached terminal position
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Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

perform next iteration if resources allow and
play move with highest utility estimate otherwise



Monte-Carlo Tree Search
0O0000e0

Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

no := create_root_node()
while time_allows():
visit_node(ng)

Npest = Arg MaXpesuce(ng) M-V
return npest.move
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Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)

if is_terminal(n.position):
utility := utility(n.position)
else:
s := n.get_unvisited_successor()
if s is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
utility :== simulate_game(s)
n.add_and_initialize_child_node(s, utility)
nN:=nN+1 X
n.V:=nv+ ﬂ”;%
return utility
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Summary

@ Monte-Carlo methods compute averages
over a number of random samples.

e Monte-Carlo Tree Search (MCTS) algorithms
simulate a playout of the game

@ and iteratively build a search tree,
adding (at most) one node in each iteration.

@ MCTS is parameterized by a tree policy and a default policy.
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Monte-Carlo Tree Search Framework
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Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)

if is_terminal(n.position):
utility := utility(n.position)
else:
s := n.get_unvisited_successor()
if s is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
utility :== simulate_game(s)
n.add_and_initialize_child_node(s, utility)
nN:=nN+1 X
n.V:=nv+ ﬂl’;%
return utility
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Simulation Phase

idea: determine initial utility estimate by
simulating game following a default policy

Definition (default policy)
Let S = (S, A, T,s, Sg, utility, player) be a game.
A default policy for S is a mapping mgef : S X A [0, 1] s.t.
Q 74ef(s, a) > 0 implies that move a is applicable in position s
Q > caTdef(s,a) =1forallse S

In the call to simulate_game(s),

o the default policy is applied starting from position s
(determining decisions for both players)

@ until a terminal position sg is reached

e and utility(sg) is returned.
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Implementations

“standard” implementation: Monte-Carlo random walk
@ in each position, select a move uniformly at random
@ until a terminal position is reached
@ policy very cheap to compute
@ uninformed ~~ often not sufficient for good results

@ not always cheap to simulate

alternative: game-specific default policy
@ hand-crafted or

@ learned offline

Gelly and Silver, Combining Online and Offline Knowledge in UCT (ICML, 2007)
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Default Policy vs. Evaluation Function

@ default policy simulates a game to obtain utility estimate
~~ default policy must be evaluated in many positions

o if default policy is expensive to compute or poorly informed,
simulations are expensive

@ observe: simulating a game to the end is just a
specific implementation of an evaluation function

@ many modern implementations replace default policy with
evaluation function that directly computes a utility estimate

~ MCTS becomes a heuristic search algorithm
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Objective of Tree Policy (1)
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Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
~ prefer successors with high (MAX)
or low utility estimate (MIN)
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Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
~ prefer successors with high (MAX)
or low utility estimate (MIN)

explore areas that have

not been investigated thoroughly

~~ also consider other successors,
in particular with low visit count
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Objective of Tree Policy (1)

exploit collected information to These are contradictory objectives!

focus search on promising areas ~~ 1st central challenge for tree policy:
~ prefer successors with high (MAX) balance exploration and exploitation
or low utility estimate (MIN)

explore areas that have

not been investigated thoroughly

~~ also consider other successors,
in particular with low visit count
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Objective of Tree Policy (2)

What's wrong with this subtree?
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Objective of Tree Policy (2)

What's wrong with this subtree?

right move is better for MIN, but left move
has higher influence on utility estimate
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Objective of Tree Policy (2)

What's wrong with this subtree?

right move is better for MIN, but left move
has higher influence on utility estimate

~» 2nd central challenge for tree policy:

exploit much more often than explore
(in the limit)
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Asymptotic Optimality

Definition (asymptotic optimality)

Let S be a game with set of positions S.
Let v*(s) denote the (true) utility of position s € S.

Let n.0% denote the utility estimate
of a search node n after k trials.

An MCTS algorithm is asymptotically optimal if

lim n.0X = v*(n.position)
k—o0

for all search nodes n.
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Asymptotic Optimality

a tree policy is asymptotically optimal if
@ it explores forever:

@ and

every position is eventually added to the game tree

and visited infinitely often

(requires that the game tree is finite)

after a finite number of trials, all trials end in a terminal
position and the default policy is no longer used

it is greedy in the limit:
the probability that an optimal move is selected converges to 1

in the limit, backups based on trials where only
an optimal policy is followed dominate suboptimal backups
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e-greedy: ldea and Example

@ tree policy with constant parameter ¢
@ with probability 1 — ¢, pick a greedy move which leads to:

e a successor with highest utility estimate (for MAX)
e a successor with lowest utility estimate (for MIN)

@ otherwise, pick a non-greedy successor uniformly at random
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e-greedy: ldea and Example

@ tree policy with constant parameter ¢
@ with probability 1 — ¢, pick a greedy move which leads to:

e a successor with highest utility estimate (for MAX)
e a successor with lowest utility estimate (for MIN)

@ otherwise, pick a non-greedy successor uniformly at random

e=0.2

P(n) = 0.1 P(ny) = 0.8 P(n3) = 0.1

(P(n) denotes probability that successor n is selected)
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e-greedy: Optimality

e-greedy is not asymptotically optimal:

converges to
0.8-1+4+0.2-10
with kK — oo

variants that are asymptotically optimal exist
(e.g., decaying £, minimax backups)
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e-greedy: Weakness

problem:
when e-greedy explores, all non-greedy moves are treated equally

¢ nodes

eg.,e=02/¢=09 P(n)=0.8, P(n)=0.02
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Softmax: Idea and Example

@ tree policy with constant parameter 7 > 0

@ select moves with a frequency that directly relates
to their utility estimate

@ Boltzmann exploration selects moves proportionally to
P(n) < = for MAX and to P(n) occ e = for MIN
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Softmax: Idea and Example

@ tree policy with constant parameter 7 > 0

@ select moves with a frequency that directly relates
to their utility estimate

@ Boltzmann exploration selects moves proportionally to
P(n) < = for MAX and to P(n) occ e = for MIN

£ nodes
eg., 7=10,0=9: P(n)~0.51, P(ny) ~ 0.46
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Boltzmann exploration: Optimality

Boltzmann exploration is not asymptotically optimal:

converges to
=10 ~0.71-140.29-10
with kK — oo

variants that are asymptotically optimal exist
(e.g., decaying 7, minimax backups)
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Boltzmann Exploration: Weakness

m mq
m3

m3

scenario 1: high variance for ms scenario 2: low variance for ms

@ Boltzmann exploration only considers mean
of sampled utilities for the given moves

@ as we sample the same node many times, we can also gather
information about variance (how reliable the information is)

@ Boltzmann exploration ignores the variance,
treating the two scenarios equally
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Upper Confidence Bounds: ldea

balance exploration and exploitation by preferring moves that
@ have been successful in earlier iterations (exploit)

@ have been selected rarely (explore)
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Upper Confidence Bounds: ldea

upper confidence bound for MAX:

select successor n’ of n that maximizes n’.V + B(n')
based on utility estimate n’.¥

and a bonus term B(n’)

select B(n') such that v*(n'.position) < n'.¥ + B(n')
with high probability

idea: n'.U + B(n') is an upper confidence bound

on n".¥ under the collected information

(for MIN: maximize —n'".0 4+ B(n’))
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Upper Confidence Bounds: UCB1

o use B(n') = /24N a5 bonus term

@ bonus term is derived from Chernoff-Hoeffding bound, which

o gives the probability that a sampled value (here: n’.?)
o is far from its true expected value (here: v*(n’.position))
o in dependence of the number of samples (here: n’.N)

@ picks an optimal move exponentially more often in the limit

UCBL1 is asymptotically optimal.
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Comparison of Game Algorithms



Minimax Tree

full tree up to depth 4

| (ll I m\ ll MMI L m\ il lMI\ I m il lMI\ I m ll m\l (ll I m\ ll llmu tl L

alpha-beta search with same effort:
~ depth 6-8 with good move ordering
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Summary

@ tree policy is crucial for MCTS

e c-greedy favors greedy moves and treats all others equally
e Boltzmann exploration selects moves proportionally to

an exponential function of their utility estimates
e UCBI1 favors moves that were successful in the past

or have been explored rarely

@ for each, there are applications where they perform best

@ good default policies are domain-dependent and hand-crafted
or learned offline

@ using evaluation functions instead of a default policy
often pays off



