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prerequisites:

algorithms and data structures

basic mathematical concepts
(formal proofs; sets, functions, relations, graphs)
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Foundations of AI week structure:

Monday: release of exercise sheet

Monday and Wednesday: lectures

Wednesday: exercise session

Sunday: exercise sheet due

exceptions due to holidays



People Format Assessment Tools About this Course

Time & Place

Lectures

Mon 16:15–18:00 in Biozentrum, lecture hall U1.141
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(4th edition, Global edition)
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exclusion from exam (second time)

if in doubt: check with us what is (and isn’t) OK before submitting
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link to ADAM workspace

enrolment:

https://services.unibas.ch/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://services.unibas.ch/


People Format Assessment Tools About this Course

Communication Channels

Communication Channels

lectures and exercise sessions

ADAM workspace (linked from course homepage)

link to Discord server
exercise sheets and submission
exercise FAQ
bonus material that we cannot share publicly

Discord server (linked from ADAM workspace)

opportunity for Q&A and informal interactions

contact us by email

meet us in person (by arrangement)

meet us on Zoom (by arrangement)
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Classical AI Curriculum

“Classical” AI Curriculum

1. introduction

2. rational agents

3. uninformed search

4. informed search

5. constraint satisfaction

6. board games

7. propositional logic

8. predicate logic

9. modeling with logic

10. classical planning

11. probabilistic reasoning

12. decisions under uncertainty

13. acting under uncertainty

14. machine learning

15. deep learning

16. reinforcement learning

⇝ wide coverage, but somewhat superficial
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8. predicate logic

9. modeling with logic

10. classical planning

11. probabilistic reasoning

12. decisions under uncertainty

13. acting under uncertainty

14. machine learning

15. deep learning

16. reinforcement learning
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Topic Selection

guidelines for topic selection:

fewer topics, more depth

more emphasis on programming projects

connections between topics

avoiding overlap with other courses

Pattern Recognition (B.Sc.)
Machine Learning (M.Sc.)

focus on algorithmic core of model-based AI
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A course is never “done”.

We are always happy about feedback,
corrections and suggestions!
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What is AI?

What do we mean by artificial intelligence?

⇝ no generally accepted definition!

often pragmatic definitions:

“AI is what AI researchers do.”

“AI is the solution of hard problems.”

in this chapter: some common attempts at defining AI
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What Do We Mean by Artificial Intelligence?

what pop culture tells us:

https://www.imdb.com/title/tt0092455/
https://www.imdb.com/title/tt0088247/
https://www.imdb.com/title/tt0076759
https://www.imdb.com/title/tt0133093/
https://www.imdb.com/title/tt0470752/
https://www.imdb.com/title/tt0910970
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What is AI: Humanly vs. Rationally; Thinking vs. Acting

what scientists tell us:

“[the automation of] activi-

ties that we associate with hu-

man thinking, activities such as

decision-making, problem solv-

ing, learning” (Bellman, 1978)

thinking like humans

“the study of how to make

computers do things at which,

at the moment, people are bet-

ter”

(Rich & Knight, 1991)

acting like humans

“the study of mental faculties

through the use of computa-

tional models”

(Charniak & McDermott, 1985)

thinking rationally

“the branch of computer sci-

ence that is concerned with the

automation of intelligent be-

havior”

(Luger & Stubblefield, 1993)

acting rationally
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Cognitive (Neuro-) Science

requires knowledge of how humans think

two ways to a scientific
theory of brain activity:

psychological: observation of
human behavior
neurological: observation of
brain activity

roughly corresponds to cognitive science and
cognitive neuroscience

today separate research areas from AI
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Machines that Think Like Humans

“brains are to intelligence as wings are to flight”

https://youtu.be/9yVtGHbmN4s?t=29
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What Do We Mean by Artificial Intelligence?

thinking like humans thinking rationally

acting like humans acting rationally
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Acting Like Humans
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The Turing Test

Alan Turing, Computing Machinery and Intelligence (1950):

central question: Can machines think?

hypothesis: yes, if they can act like humans

operationalization: the imitation game

AI SYSTEM

HUMAN

?
        HUMAN
INTERROGATOR
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Turing Test in Cinema

https://www.imdb.com/title/tt2084970/
https://www.imdb.com/title/tt0470752/
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Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

developed in 1966 by J. Weizenbaum

uses combination of pattern matching and scripted rules

most famous script mimics a psychologist ⇝ many questions

fooled early users

http://www.med-ai.com/models/eliza.html
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Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

annual competition between 1991–2019

most human-like AI is awarded

highly controversial



What is AI? Thinking Like Humans Acting Like Humans Thinking Rationally Acting Rationally Summary

Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

mimics a 13-year-old boy from Odessa, Ukraine with a guinea pig

“not too old to know everything and not too young to know nothing”

33% of judges were convinced it was human in 2014
⇝ first system that passed the Turing test (?)

http://eugenegoostman.elasticbeanstalk.com/
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Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

five times winner of Loebner prize competitions (2015-2019)

winner of “bot battle” versus Facebook’s Blenderbot
⇝ https://youtu.be/RBK5j0yXDT8

https://www.kuki.ai/
https://youtu.be/RBK5j0yXDT8
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Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

commercial product announced in 2018

performs phone calls (making appointments) fully autonomously

after criticism, it now starts conversation by identifying as a robot

https://youtu.be/D5VN56jQMWM?t=69
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Turing Test: Brief History

Eliza

Loebner Prize

Eugene Goostman

Kuki (formerly Mitsuku)

Google Duplex

LaMDA & ChatGPT

systems like LaMDA and ChatGPT would likely pass the Turing test

example conversation: https://www.nytimes.com/2023/02/16/
technology/bing-chatbot-transcript.html

ChatGPT even passed some exams (but failed on others)

https://www.nytimes.com/2023/02/16/technology/bing-chatbot-transcript.html
https://www.nytimes.com/2023/02/16/technology/bing-chatbot-transcript.html
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Value of the Turing Test

human actions not always intelligent

scientific value of Turing test questionable:

Test for AI or for interrogator?
results not reproducible
strategies to succeed ̸= intelligence:

deceive interrogator
mimic human behavior

⇝ not important in AI “mainstream”

practical application: CAPTCHA
(“Completely Automated Public Turing

test to tell Computers and Humans Apart”)

https://xkcd.com/329/
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What Do We Mean by Artificial Intelligence?

thinking like humans thinking rationally

acting like humans acting rationally
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Thinking Rationally
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Thinking Rationally: Laws of Thought

Aristotle: What are correct arguments
and modes of thought?

syllogisms: structures for arguments that
always yield correct conclusions given
correct premises:

Socrates is a human.
All humans are mortal.
Therefore Socrates is mortal.

direct connection to modern AI
via mathematical logic
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Problems of the Logical Approach

not all intelligent behavior

stems from logical thinking

and formal reasoning
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What Do We Mean by Artificial Intelligence?

thinking like humans thinking rationally

acting like humans acting rationally
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Acting Rationally
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Acting Rationally

acting rationally: “doing the right thing”

the right thing: maximize utility
given available information

does not necessarily require “thought” (e.g., reflexes)

advantages of AI as development of rational agents:

more general than thinking rationally
(logical inference only one way to obtain rational behavior)

better suited for scientific method
than approaches based on human thinking and acting

⇝ most common view of AI scientists today
⇝ what we use in this course
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Summary
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Summary

What is AI? ⇝ many possible definitions

guided by humans vs. by utility (rationality)

based on externally observable actions or inner thoughts?

⇝ four combinations:

acting like humans: e.g., Turing test
thinking like humans: cf. cognitive (neuro-)science
thinking rationally: logic
acting rationally: most common view today
⇝ amenable to scientific method
⇝ used in this course
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Precursors (Until ca. 1943)

Philosophy and mathematics ask similar questions
that influence AI.

Aristotle (384–322 BC)

Leibniz (1646–1716)

Hilbert program (1920s)

Microworlds

RL for
Checkers

General Problem
Solver

Dartmouth

Turing Test

Artificial
Neurons

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...
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Gestation (1943–1956)

Dartmouth

Turing Test

Artificial
Neurons

Invention of electrical computers raised question:
Can computers mimic the human mind?

W. McCulloch & W. Pitts (1943)
first computational model of artificial neuron

network of neurons can compute any computable function

basis of deep learning

Computing Machinery and Intelligence (A. Turing, 1950)

famous for introducing Turing test

(still) relevant discussion of AI potential and requirements

suggests core AI aspects: knowledge representation,
reasoning, language understanding, learning

Dartmouth workshop (1956)

ambitious proposal: “An attempt will be made to find how
to make machines use language, [...] solve kinds of problems
now reserved for humans, and improve themselves.”

J. McCarthy coins term artificial intelligence

Microworlds

RL for
Checkers

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...
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Early Enthusiasm (1952–1969)

Microworlds

RL for
Checkers

GPS

Dartmouth

Turing Test

Artificial
Neurons

early enthusiasm (H. Simon, 1957):
“[...] there are now in the world machines that think, that learn and
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increase rapidly until – in the visible future – the range of problems
they can handle will be coextensive with the range to which the
human mind has been applied.”
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A Dose of Reality (1966–1973)

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

realization that unlimited computational power is illusion
(birth of complexity theory, NP-completeness)

AI systems (e.g., GPS, systems for micro worlds) fail to scale

fundamental limitations on basic structures
e.g., XOR problem of perceptrons

1950 1960 1970 1980 1990 2000 ...



A Short History of AI Where are We Today? Summary

Expert Systems (1969–1986)

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

example: R1/XCON (J. McDermott, 1978)

input: desired properties of a VAX computer system
according to customer specifications

output: specification of the computer system

inference engine: simple forward chaining of rules

end of 1980s: AI Winter

companies failed to deliver promises

expert systems difficult to maintain

expert systems susceptible to uncertainty

1950 1960 1970 1980 1990 2000 ...
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Coming of Age (1990s and 2000s)

. . . . . .
. . .

. . .

. . .

. . .

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

advent of probabilistic methods

formalization of AI techniques

better understanding of theoretical complexity

increased use of mathematical methods

exploitation of large data sets (big data)

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks
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Broad Visibility in Society (Since 2010s)

AI Winter

Expert
Systems

Limitations

Microworlds

RL for
Checkers

Dartmouth

Turing Test

Artificial
Neurons

GPS

well known systems and famous breakthroughs, e.g.,

broadly used systems (e.g., virtual assistants)

AI systems act in real-world (e.g., self-driving cars)

systems outperform humans in hard tasks (e.g., AlphaGo)

AI and human-written text hard to distinguish (ChatGPT)

1980s: AI gold rush

rule-based expert systems commercially successful

(human) expert knowledge as input

allows automatic reasoning on larger problems
in narrower applications

also: second heyday of neural networks

1950 1960 1970 1980 1990 2000 ...
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Where are We Today?



A Short History of AI Where are We Today? Summary

AI Approaching Maturity

Russell & Norvig (1995)

Gentle revolutions have occurred in robotics, computer vision,
machine learning, and knowledge representation.
A better understanding of the problems and their complexity
properties, combined with increased mathematical sophistication,
has led to workable research agendas and robust methods.
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Where are We Today?

many coexisting paradigms

reactive vs. deliberative
data-driven vs. model-driven
often hybrid approaches

many methods, often borrowing from other research areas

logic, decision theory, statistics, . . .

different approaches

theoretical
algorithmic/experimental
application-oriented
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Focus on Algorithms and Experiments

Many AI problems are inherently difficult (NP-hard),
but strong search techniques and heuristics often solve
large problem instances regardless:

satisfiability in propositional logic

10,000 propositional variables or more
via conflict-directed clause learning

constraint solvers

good scalability via constraint propagation
and automatic exploitation of problem structure

action planning

10100 search states and more by search
using automatically inferred heuristics



A Short History of AI Where are We Today? Summary

What Can AI Do Today?

https://kahoot.it/

https://kahoot.it/
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What Can AI Do Today? – Videos, Articles and AIs

https://www.youtube.com./watch?v=TDqzyd7fDRc
https://www.youtube.com./watch?v=kZzL2rDNSJk&t=22s
https://www.youtube.com./watch?v=bAdqazixuRY&t=86
https://www.youtube.com./watch?v=8zTCM6BV03Q
https://www.youtube.com./watch?v=sRxaMDDMWQQ
https://www.youtube.com./channel/UCu0u7DbHJlvATLHjoANa3wQ
https://www.youtube.com./watch?v=FoyR1U7Y7Po&t=46s
https://github.com/features/copilot
https://www.cs.cmu.edu/~noamb/papers/19-Science-Superhuman.pdf
https://www.nature.com/articles/nature24270/
https://inspirobot.me/
https://youtu.be/OeVzbGEFEyU
https://openai.com/blog/chatgpt/
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What Can AI Do Today?

results of our classroom poll:

✓ successfully complete an off-road car race

✗ beat a world champion table tennis player

✓ play guitar in a robot band

✓ do and fold the laundry

✓ drive safely in downtown Basel

✗ win a football match against a human team

✓ dance synchronously in a group of robots

✓ write code on the level of a CS student

✓ beat a world champion Chess, Go or Poker player

✓ create inspiring quotes

✓ compose music

✓ engage in a scientific conversation
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Summary
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Summary

1950s/1960s: beginnings of AI; early enthusiasm

1970s: micro worlds and knowledge-based systems

1980s: gold rush of expert systems followed by “AI winter”

1990s/2000s: AI comes of age; research becomes
more rigorous and mathematical; mature methods

2010s: AI systems enter mainstream
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Introduction: Overview

Chapter overview: introduction

A1. Organizational Matters

A2. What is Artificial Intelligence?

A3. AI Past and Present

A4. Rational Agents

A5. Environments and Problem Solving Methods
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Systematic AI Framework

AI systems applied to
wide variety of challenges

so far we have seen that:

AI systems act rationally

thinking like humans thinking rationally

acting like humans acting rationally

now: describe a systematic framework that

captures this diversity of challenges

includes an entity that acts in the environment

determines if the agent acts rationally in the environment

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions
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Agent-Environment Interaction

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

sensors: physical entities that allow the agent to observe

observation: data perceived by the agent’s sensors

actuators: physical entities that allow the agent to act

action: abstract concept that affects the state of the environment

sensors and actuators are not relevant for the course
(⇝ typically covered in courses on robotics)

observations and actions describe the agent’s capabilities
(the agent model)

internal representation

specifics possibly unknown to outside

takes observation as input

outputs an action

computed on physical machine
(the agent architecture)
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Formalizing an Agent’s Behavior

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

1 as agent program:

internal representation

specifics possibly unknown to outside

takes observation as input

outputs an action

computed on physical machine (the agent architecture)

2 as agent function:

external characterization

maps sequence of observations to
(probability distribution over) actions

abstract mathematical formalization
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Vacuum Domain

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety
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Vacuum Agent: Sensors and Actuators

sensors: cliff sensors, bump sensors, wall sensors,
state of charge sensor, WiFi module

actuators: wheels, cleaning system

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety
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Vacuum Agent: Observations and Actions

observations: current location, dirt level of current room,
presence of humans, battery charge

actions: move-to-next-room, move-to-base, vacuum, wait

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety
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Vacuum Agent: Agent Program

1 def vacuum-agent([location, dirt-level, owner-present, battery]):
2 if battery ≤ 10%: return move-to-base
3 else if owner-present = True: return move-to-next-room
4 else if dirt-level = dirty: return vacuum
5 else: return move-to-next-room

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety
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Vacuum Domain: Agent Function

observation sequence action
⟨[blue, clean,False, 100%]⟩ move-to-next-room
⟨[blue, dirty,False, 100%]⟩ vacuum
⟨[blue, clean,True, 100%]⟩ move-to-next-room
. . . . . .
⟨[blue, clean,False, 100%], [blue, clean,False, 90%]⟩ move-to-next-room
⟨[blue, clean,False, 100%], [blue, dirty,False, 90%]⟩ vacuum
. . . . . .

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety
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Vacuum Domain: Performance Measure

potential influences on performance measure:

dirt levels

noise levels

energy consumption

safety
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Rationality
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Evaluating Agent Functions

What is the right agent function?
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Rationality

rationality of an agent depends on performance measure
(often: utility, reward, cost) and environment

Perfect Rationality

for each possible observation sequence

select an action which maximizes

expected value of future performance

given available information on observation history

and environment
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Perfect Rationality of Our Vacuum Agent

Is our vacuum agent perfectly rational?

depends on performance measure and environment, e.g.:

Do actions reliably have the desired effect?

Do we know the initial situation?

Can new dirt be produced while the agent is acting?
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Performance Measure

specified by designer

sometimes clear,
sometimes not so clear

significant impact on

desired behavior
difficulty of problem



Systematic AI Framework Example Rationality Summary

Performance Measure

specified by designer

sometimes clear,
sometimes not so clear

significant impact on

desired behavior
difficulty of problem



Systematic AI Framework Example Rationality Summary

Performance Measure

specified by designer

sometimes clear,
sometimes not so clear

significant impact on

desired behavior
difficulty of problem

https://youtu.be/tlOIHko8ySg
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Perfect Rationality of Our Vacuum Agent

consider performance measure:

+1 utility for cleaning a dirty room

consider environment:

actions and observations reliable

world only changes through actions of the agent

our vacuum agent is perfectly rational
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Perfect Rationality of Our Vacuum Agent

consider performance measure:

−1 utility for each dirty room in each step

consider environment:

actions and observations reliable

world only changes through actions of the agent

our vacuum agent is not perfectly rational
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Perfect Rationality of Our Vacuum Agent

consider performance measure:

−1 utility for each dirty room in each step

consider environment:

actions and observations reliable

yellow room may spontaneously become dirty

our vacuum agent is not perfectly rational
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Rationality: Discussion

perfect rationality ̸= omniscience

incomplete information (due to limited observations)
reduces achievable utility

perfect rationality ̸= perfect prediction of future

uncertain behavior of environment (e.g., stochastic
action effects) reduces achievable utility

perfect rationality is rarely achievable

limited computational power ⇝ bounded rationality
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Summary (1)

common metaphor for AI systems: rational agents

agent interacts with environment:

sensors perceive observations about state of the environment

actuators perform actions modifying the environment

formally: agent function maps observation sequences
to actions
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Summary (2)

rational agents:

try to maximize performance measure (utility)

perfect rationality: achieve maximal utility in expectation
given available information

for “interesting” problems rarely achievable
⇝ bounded rationality
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Introduction: Overview

Chapter overview: introduction

A1. Organizational Matters

A2. What is Artificial Intelligence?

A3. AI Past and Present

A4. Rational Agents

A5. Environments and Problem Solving Methods
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Environments of Rational Agents
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Environments of Rational Agents

agent

sensors

actuators

agent program

environment

performance measure

agent function

agent function

observations

actions

Which environment aspects are relevant for the agent?
How do the agent’s actions change the environment?
What does the agent observe?
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Properties of Environments

Environment properties determine character of AI problem.

fully observable vs. partially observable

single-agent vs. multi-agent

deterministic vs. nondeterministic vs. stochastic

static vs. dynamic

discrete vs. continuous
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Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.

https://www.youtube.com./watch?v=TDqzyd7fDRc
https://www.youtube.com./watch?v=kZzL2rDNSJk&t=22s
https://www.youtube.com./watch?v=bAdqazixuRY&t=86
https://www.youtube.com./watch?v=8zTCM6BV03Q
https://github.com/features/copilot
https://www.cs.cmu.edu/~noamb/papers/19-Science-Superhuman.pdf
https://www.nature.com/articles/nature24270/
https://inspirobot.me/
https://youtu.be/OeVzbGEFEyU
https://openai.com/blog/chatgpt/
https://www.youtube.com./watch?v=sRxaMDDMWQQ
https://www.youtube.com./channel/UCu0u7DbHJlvATLHjoANa3wQ
https://www.youtube.com./watch?v=FoyR1U7Y7Po&t=46s
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at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.



Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.



Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.



Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.



Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.



Environments Problem Solving Methods Classification of AI Topics Summary

Properties of Environments

fully observable vs. partially observable

Can the agent fully observe the state of the environment
at every decision step or not?

special case of partially observable: unobservable

single-agent vs. multi-agent

Are other agents relevant for own performance?
subcases of multi-agent: are the other agents
adversarial, cooperative, or selfish?

deterministic vs. nondeterministic vs. stochastic

Is the next state of the environment fully determined by the
current state and the next action? Are probabilities involved?

static vs. dynamic

Does the state of the environment remain the same
while the agent is contemplating its next action?

discrete vs. continuous

Is the state of the environment (and actions, observations, time)
given by discrete or by continuous quantities?

suitable problem-solving algorithms

Environments of different kinds (according to these criteria)
usually require different algorithms.

real world

The “real world” combines all unpleasant
(in the sense of: difficult to handle) properties.



Environments Problem Solving Methods Classification of AI Topics Summary

Problem Solving Methods



Environments Problem Solving Methods Classification of AI Topics Summary

Three Approaches to Solving AI Problems

We can solve a concrete AI problem (e.g., backgammon)
in several ways:

Problem Solving Methods

1 problem-specific: implement algorithm tailored to problem

2 general: create problem description as input for general solver

3 learning: learn (aspects of) algorithm from data

problem-specific algorithms:

designed to solve a specific problem

allow exploiting problem-specific knowledge

solve just one (type of) problem

general problem solvers:

user creates model of problem instance in formalism (“language”)

solver takes modeled instance as input

solver implements general algorithm to compute solution

learners:

general approach that learns to solve specific problem

adapts via experience instead of via reasoning

requires data and feedback instead of model of the AI problems

all three approaches have strengths and weaknesses

combinations are possible (and common in practice)

we will mostly focus on general algorithms,
but also consider other approaches
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Classification of AI Topics

Many areas of AI are essentially characterized by

the properties of environments they consider and

which of the three problem solving approaches they use.

We conclude the introduction by giving some examples

within this course and

beyond the course (“advanced topics”).
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Examples: Classification of AI Topics

Course Topic: Informed Search Algorithms

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning



Environments Problem Solving Methods Classification of AI Topics Summary

Examples: Classification of AI Topics

Course Topic: Constraint Satisfaction Problems

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning
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Examples: Classification of AI Topics

Course Topic: Board Games

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent (adversarial)

problem solving method:

problem-specific vs. general vs. learning
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Examples: Classification of AI Topics

Advanced Topic: General Game Playing

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. (stochastic)

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent (adversarial)

problem solving method:

problem-specific vs. general vs. learning
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Examples: Classification of AI Topics

Course Topic: Classical Planning

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning
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Examples: Classification of AI Topics

Course Topic: Acting under Uncertainty

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning
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Examples: Classification of AI Topics

Advanced Topic: Reinforcement Learning

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning
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Summary
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Summary (1)

AI problem: performance measure + agent model + environment

Properties of environment critical for choice of suitable algorithm:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent
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Summary (2)

Three problem solving methods:

problem-specific

general

learning

general problem solvers:

models characterize problem instances mathematically

formalisms/languages describe models compactly

algorithms use languages as problem description
and to exploit problem structure
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B1. State Spaces
B2. Representation of State Spaces
B3. Examples of State Spaces

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms
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State-Space Search Problems
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State-Space Search Applications

Mario AI competition route planning multi-agent path finding

scheduling software/hardware verification NPC behaviour

https://www.youtube.com./watch?v=0s3d1LfjWCI
https://youtu.be/H3wRCZf_Mrs
https://dl.acm.org/doi/10.1145/1592761.1592781
https://www.gamedevs.org/uploads/three-states-plan-ai-of-fear.pdf
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Classical Assumptions

“classical” assumptions considered in this part of the course:

no other agents in the environment (single-agent)

always knows state of the world (fully observable)

state only changed by the agent (static)

finite number of states/actions (in particular discrete)

actions have deterministic effect on the state

⇝ can all be generalized (but not in this part of the course)
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Classification

classification:

State-Space Search

environment:

static vs. dynamic

deterministic vs. nondeterministic vs. stochastic

fully observable vs. partially observable

discrete vs. continuous

single-agent vs. multi-agent

problem solving method:

problem-specific vs. general vs. learning
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Informal Description

State-space search problems are among the
“simplest” and most important classes of AI problems.

objective of the agent:

apply a sequence of actions

that reaches a goal state

from a given initial state

performance measure: minimize total action cost
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Motivating Example: 15-Puzzle

9 2 12 6

5 7 14 13

3 1 11

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15
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Formalization
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State Spaces

Definition (state space)

A state space or transition system is a
6-tuple S = ⟨S ,A, cost,T , sI, SG⟩ with

finite set of states S

finite set of actions A

action costs cost : A → R+
0

transition relation T ⊆ S × A× S that is
deterministic in ⟨s, a⟩ (see next slide)

initial state sI ∈ S

set of goal states SG ⊆ S

German: Zustandsraum, Transitionssystem, Zustände, Aktionen,
Aktionskosten, Transitions-/Übergangsrelation, deterministisch,
Anfangszustand, Zielzustände
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State Spaces: Terminology & Notation

Definition (transition, deterministic)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

The triples ⟨s, a, s ′⟩ ∈ T are called (state) transitions.

We say S has the transition ⟨s, a, s ′⟩ if ⟨s, a, s ′⟩ ∈ T .
We write this as s

a−→ s ′, or s → s ′ when a does not matter.

Transitions are deterministic in ⟨s, a⟩: it is forbidden to have
both s

a−→ s1 and s
a−→ s2 with s1 ̸= s2.
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State Space: Running Example

Consider the bounded inc-and-square search problem.

informal description:
find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions

on the natural numbers from 0 to 9

that reaches the number 6 or 7

starting from the number 1

assuming each action costs 1.

formal model:

S = {0, 1, . . . , 9}
A = {inc, sqr}
cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}
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Graph Interpretation

state spaces are often depicted as directed, labeled graphs

states: graph vertices

transitions: labeled arcs

(here: colors instead of labels)

initial state: incoming arrow

goal states: double circles

actions: the arc labels

action costs: described separately
(or implicitly = 1)

0

1

2

3

45

6

7

8

9
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State Spaces: More Terminology (1)

We use common terminology from graph theory.

Definition (predecessor, successor, applicable action)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

Let s, s ′ ∈ S be states with s → s ′.

s is a predecessor of s ′

s ′ is a successor of s

If s
a−→ s ′, then action a is applicable in s.

German: Vorgänger, Nachfolger, anwendbar
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State Spaces: More Terminology (2)

Definition (path)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

Let s0, . . . , sn ∈ S be states and a1, . . . , an ∈ A be actions
such that s0

a1−→ s1, . . . , s(n−1)
an−→ sn.

π = ⟨a1, . . . , an⟩ is a path from s0 to sn

length of π: |π| = n

cost of π: cost(π) =
∑n

i=1 cost(ai )

German: Pfad, Länge, Kosten

paths may have length 0

sometimes “path” is used for state sequence ⟨s0, . . . , sn⟩
or sequence ⟨s0, a1, s1, . . . , s(n−1), an, sn⟩
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State Spaces: More Terminology (3)

More terminology:

Definition (reachable, solution, optimal)

Let S = ⟨S ,A, cost,T , sI,SG⟩ be a state space.

state s is reachable if a path from sI to s exists

paths from s ∈ S to some state sG ∈ SG
are solutions for/from s

solutions for sI are called solutions for S
optimal solutions (for s) have minimal costs
among all solutions (for s)

German: erreichbar, Lösung für/von s, optimale Lösung
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State-Space Search
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Solving Search Problems

Consider again the running example.

informal description:

find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions

on the natural numbers from 0 to 9

that reaches the number 6 or 7

starting from the number 1

assuming each action costs 1.

How do you solve this?

What if I increment...?

...and then square...?

...or alternatively...?
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Solving Search Problems

Consider again the running example.

informal description:

find a sequence of

increment-mod10 (inc) and
square-mod10 (sqr) actions
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State-Space Search

State-Space Search

State-space search is the algorithmic problem
of finding solutions in state spaces
or proving that no solution exists.

In optimal state-space search, only optimal solutions
may be returned.

German: Zustandsraumsuche, optimale Zustandsraumsuche
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Learning Objectives for State-Space Search

Learning Objectives for the Topic of State-Space Search

understanding state-space search:
What is the problem and how can we formalize it?

evaluate search algorithms:
completeness, optimality, time/space complexity

get to know search algorithms:
uninformed vs. informed; tree and graph search

evaluate heuristics for search algorithms:
goal-awareness, safety, admissibility, consistency

efficient implementation of search algorithms

experimental evaluation of search algorithms

design and comparison of heuristics for search algorithms
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Summary
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Summary

state-space search problems:
find action sequence leading from initial state to a goal state

performance measure: sum of action costs

formalization via state spaces:

states, actions, action costs, transitions,
initial state, goal states

terminology for transitions, paths, solutions

definition of (optimal) state-space search
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B1. State Spaces
B2. Representation of State Spaces
B3. Examples of State Spaces

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms
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Representation of State Spaces
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Representation of State Spaces

practically interesting state spaces are often huge
(1010, 1020, 10100 states)

How do we represent them, so that we can
efficiently deal with them algorithmically?

three main options:

1 as explicit (directed) graphs

2 with declarative representations

3 as a black box

German: explizit, deklarativ, Black Box
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Example: 8-Puzzle

2 7

4 5 8

1 6 3

1 2 3

4 5 6

7 8
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Explicit Graphs
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State Spaces as Explicit Graphs

State Spaces as Explicit Graphs

represent state spaces as explicit directed graphs:

vertices = states

directed arcs = transitions

⇝ represented as adjacency list or adjacency matrix

German: Adjazenzliste, Adjazenzmatrix

Example (explicit graph for bounded inc-and-square)

ai-b02-bounded-inc-and-square.graph
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State Spaces as Explicit Graphs

State Spaces as Explicit Graphs

represent state spaces as explicit directed graphs:

vertices = states

directed arcs = transitions

⇝ represented as adjacency list or adjacency matrix

German: Adjazenzliste, Adjazenzmatrix

Example (explicit graph for 8-puzzle)

ai-b02-puzzle8.graph
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State Spaces as Explicit Graphs: Discussion

discussion:

impossible for large state spaces (too much space required)

if spaces small enough for explicit representations,
solutions easy to compute: Dijkstra’s algorithm
O(|S | log |S |+ |T |)
interesting for time-critical all-pairs-shortest-path queries
(examples: route planning, path planning in video games)
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Declarative Representations



Representation Explicit Graphs Declarative Representations Black Box Summary

State Spaces with Declarative Representations

State Spaces with Declarative Representations

represent state spaces declaratively:

compact description of state space as input to algorithms
⇝ state spaces exponentially larger than the input

algorithms directly operate on compact description

⇝ allows automatic reasoning about problem:
reformulation, simplification, abstraction, etc.

Example (declarative representation for 8-puzzle)

puzzle8-domain.pddl + puzzle8-problem.pddl
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Black Box
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State Spaces as Black Boxes

State Spaces as Black Boxes

Define an abstract interface for state spaces.

For state space S = ⟨S ,A, cost,T , sI, SG⟩
we need these methods:

init(): generate initial state
result: state sI

is goal(s): test if s is a goal state
result: true if s ∈ SG; false otherwise

succ(s): generate applicable actions and successors of s
result: sequence of pairs ⟨a, s ′⟩ with s

a−→ s ′

cost(a): gives cost of action a
result: cost(a) (∈ N0)

Remark: we will extend the interface later
in a small but important way
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State Spaces as Black Boxes: Example and Discussion

Example (Black Box Representation for 8-Puzzle)

demo: puzzle8.py

in the following: focus on black box model

explicit graphs only as illustrating examples

near end of semester: declarative state spaces
(classical planning)
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Summary
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Summary

state spaces often huge (> 1010 states)
⇝ how to represent?

explicit graphs: adjacency lists or matrices;
only suitable for small problems

declaratively: compact description as input
to search algorithms

black box: implement an abstract interface



Foundations of Artificial Intelligence
B3. State-Space Search: Examples of State Spaces

Malte Helmert

University of Basel

February 26, 2025



Route Planning in Romania Blocks World Missionaries and Cannibals Summary

State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B1. State Spaces
B2. Representation of State Spaces
B3. Examples of State Spaces

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms
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Three Examples

In this chapter we introduce three state spaces
that we will use as illustrating examples:

1 route planning in Romania

2 blocks world

3 missionaries and cannibals
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Route Planning in Romania
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Route Planning in Romania

Setting: Route Planning in Romania

We are on holiday in Romania and are currently located in Arad.
Our flight home leaves from Bucharest. How to get there?

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86



Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Romania Formally

State Space Route Planning in Romania

states S : {arad, bucharest, craiova, . . . , zerind}
actions A: movec,c ′ for any two cities c and c ′

connected by a single road segment

action costs cost: see figure,
e.g., cost(moveiasi,vaslui) = 92

transitions T : s
a−→ s ′ iff a = moves,s′

initial state: sI = arad

goal states: SG = {bucharest}
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Blocks World
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Blocks World

Blocks world is a traditional example problem in AI.

Setting: Blocks World

Colored blocks lie on a table.

They can be stacked into towers, moving one block at a time.

Our task is to create a given goal configuration.
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Example: Blocks World with Three Blocks

Action names omitted for readability. All actions cost 1.

Initial state and goal can be arbitrary.
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Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

states S :
partitions of {1, 2, . . . , n} into nonempty ordered lists

example n = 3:

{⟨1, 2, 3⟩}, {⟨1, 3, 2⟩}, {⟨2, 1, 3⟩},
{⟨2, 3, 1⟩}, {⟨3, 1, 2⟩}, {⟨3, 2, 1⟩}
{⟨1, 2⟩, ⟨3⟩}, {⟨2, 1⟩, ⟨3⟩}, {⟨1, 3⟩, ⟨2⟩},
{⟨3, 1⟩, ⟨2⟩}, {⟨2, 3⟩, ⟨1⟩}, {⟨3, 2⟩, ⟨1⟩}
{⟨1⟩, ⟨2⟩, ⟨3⟩}
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Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

actions A:

{moveu,v | u, v ∈ {1, . . . , n} with u ̸= v}
move block u onto block v .
both must be uppermost blocks in their towers

{to-tableu | u ∈ {1, . . . , n}}
move block u onto the table (⇝ forming a new tower)
must be uppermost block in its tower

action costs cost:
cost(a) = 1 for all actions a ∈ A
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Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

transitions:

transition s
a−→ s ′ with a = moveu,v exists iff

s = {⟨b1, . . . , bk , u⟩, ⟨c1, . . . , cm, v⟩} ∪ X and
if k > 0: s ′ = {⟨b1, . . . , bk⟩, ⟨c1, . . . , cm, v , u⟩} ∪ X
if k = 0: s ′ = {⟨c1, . . . , cm, v , u⟩} ∪ X

transition s
a−→ s ′ with a = to-tableu exists iff

s = {⟨b1, . . . , bk , u⟩} ∪ X with k > 0 and
s ′ = {⟨b1, . . . , bk⟩, ⟨u⟩} ∪ X
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Blocks World: Formal Definition

state space ⟨S ,A, cost,T , sI,SG⟩ for blocks world with n blocks

State Space Blocks World

initial state sI and goal states SG:

one possible scenario for n = 3:

sI = {⟨1, 3⟩, ⟨2⟩}
SG = {{⟨3, 2, 1⟩}}

(in general can have arbitrary scenarios)
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Blocks World: Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

For every given initial and goal state with n blocks,
simple algorithms find a solution in time O(n). (How?)

Finding optimal solutions is NP-complete
(with a compact problem description).
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Missionaries and Cannibals
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Missionaries and Cannibals

Setting: Missionaries and Cannibals

Six people must cross a river.

Their rowing boat can carry one or two
people across the river at a time.
(It is too small for three.)

Three people are missionaries,
three are cannibals.

Missionaries may never stay
with a majority of cannibals.
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Missionaries and Cannibals Formally

State Space Missionaries and Cannibals

states S :
triples of numbers ⟨m, c , b⟩ ∈ {0, 1, 2, 3} × {0, 1, 2, 3} × {0, 1}:

number of missionaries m,

cannibals c and

boats b

on the left river bank

initial state: sI = ⟨3, 3, 1⟩

goal: SG = {⟨0, 0, 0⟩, ⟨0, 0, 1⟩}

actions, action costs, transitions: ?
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Summary



Route Planning in Romania Blocks World Missionaries and Cannibals Summary

Summary

illustrating examples for state spaces:

route planning in Romania:

small example of explicitly representable state space

blocks world:

family of tasks where n blocks on a table must be rearranged
traditional example problem in AI
number of states explodes quickly as n grows

missionaries and cannibals:

traditional brain teaser with small state space
(32 states, of which many unreachable)
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms
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Introduction
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Finding Solutions in State Spaces

How can we systematically find a solution?
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Search Algorithms

We now move to search algorithms.

As everywhere in computer science, suitable data structures
are a key to good performance.

⇝ common operations must be fast

Well-implemented search algorithms process
up to ∼30,000,000 states/second on a single CPU core.

⇝ bonus materials (Burns et al. paper)

this chapter: some fundamental data structures for search
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Preview: Search Algorithms

next chapter: we introduce search algorithms

now: short preview to motivate data structures for search
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Running Example: Reminder

bounded inc-and-square:

S = {0, 1, . . . , 9}

A = {inc, sqr}

cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}

0

1

2

3

45

6

7

8

9
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Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen
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Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen
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Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen
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Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen
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Search Algorithms: Idea

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

German: expandieren, erzeugen
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Fundamental Data Structures for Search

We consider three abstract data structures for search:

search node: stores a state that has been reached,
how it was reached, and at which cost

⇝ nodes of the example search tree

open list: efficiently organizes leaves of search tree

⇝ set of leaves of example search tree

closed list: remembers expanded states
to avoid duplicated expansions of the same state

⇝ inner nodes of a search tree

German: Suchknoten, Open-Liste, Closed-Liste

Not all algorithms use all three data structures,
and they are sometimes implicit (e.g., on the CPU stack)
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Search Nodes
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Search Nodes

Search Node

A search node (node for short) stores a state
that has been reached, how it was reached, and at which cost.

Collectively they form the so-called search tree (Suchbaum).
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Data Structure: Search Nodes

1
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attributes of search node n:

n.state state associated with n
n.parent search node that generated n

(none for the root node)
n.action action leading from n.parent to n

(none for the root node)
n.path cost cost of path from sI to n.state that

results from following parent references
(traditionally denoted by g(n))

. . . and sometimes additional attributes

n.state: 4

n.parent:

n.action: sqr

xxxxx

n.path cost: 2

. . . : . . .

2
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Data Structure: Search Nodes
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attributes of search node n:

n.state state associated with n
n.parent search node that generated n

(none for the root node)
n.action action leading from n.parent to n

(none for the root node)
n.path cost cost of path from sI to n.state that

results from following parent references
(traditionally denoted by g(n))

. . . and sometimes additional attributes

n.state: 4

n.parent:

n.action: sqr

xxxxx

n.path cost: 2

. . . : . . .

2
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Search Nodes: Java

Search Nodes (Java Syntax)

public interface State {

}

public interface Action {

}

public class SearchNode {

State state;

SearchNode parent;

Action action;

int pathCost;

}
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Implementing Search Nodes

reasonable implementation of search nodes is easy

advanced aspects:

Do we need explicit nodes at all?
Can we use lazy evaluation?
Should we manually manage memory?
Can we compress information?
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Operations on Search Nodes: make root node

Generate root node of a search tree:

function make root node()

node := new SearchNode
node.state := init()
node.parent := none
node.action := none
node.path cost := 0
return node
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Operations on Search Nodes: make node

Generate child node of a search node:

function make node(parent, action, state)

node := new SearchNode
node.state := state
node.parent := parent
node.action := action
node.path cost := parent.path cost + cost(action)
return node
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Operations on Search Nodes: extract path

Extract the path to a search node:

function extract path(node)

path := ⟨⟩
while node.parent ̸= none:

path.append(node.action)
node := node.parent

path.reverse()
return path
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Open Lists
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Open Lists

Open List

The open list (also: frontier) organizes the leaves of a search tree.

It must support two operations efficiently:

determine and remove the next node to expand

insert a new node that is a candidate node for expansion

Remark: despite the name, it is usually a very bad idea
to implement open lists as simple lists.
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Open Lists: Modify Entries

Some implementations support modifying an open list entry
when a shorter path to the corresponding state is found.

This complicates the implementation.

⇝ We do not consider such modifications
and instead use delayed duplicate elimination (⇝ later).
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Interface of Open Lists

op
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open list open organizes leaves of search tree with the methods:

open.is empty() test if the open list is empty
open.pop() remove and return the next node to expand

open.insert(n) insert node n into the open list

open determines strategy which node to expand next
(depends on algorithm)

underlying data structure choice depends on this strategy

examples: deque, min-heap
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Interface of Open Lists
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open list open organizes leaves of search tree with the methods:

open.is empty() test if the open list is empty
open.pop() remove and return the next node to expand

open.insert(n) insert node n into the open list

open determines strategy which node to expand next
(depends on algorithm)

underlying data structure choice depends on this strategy

examples: deque, min-heap
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Closed Lists
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Closed Lists

Closed List

The closed list remembers expanded states
to avoid duplicated expansions of the same state.

It must support two operations efficiently:

insert a node whose state is not yet in the closed list

test if a node with a given state is in the closed list;
if yes, return it

Remark: despite the name, it is usually a very bad idea
to implement closed lists as simple lists. (Why?)
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Interface and Implementation of Closed Lists
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closed list closed keeps track of expanded states with the methods:

closed.insert(n) insert node n into closed;
if a node with this state already exists in closed, replace it

closed.lookup(s) test if a node with state s exists in the closed list;
if yes, return it; otherwise, return none

efficient implementation often as hash table with states as keys
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Summary
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Summary

search node:
represents states reached during search
and associated information

node expansion:
generate successor nodes of a node by applying all actions
applicable in the state belonging to the node

open list or frontier:
set of nodes that are currently candidates for expansion

closed list:
set of already expanded nodes (and their states)
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms
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Introduction
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Search Algorithms

General Search Algorithm

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

In this chapter, we study two essential classes of search algorithms:

tree search

graph search

Each class consists of a large number of concrete algorithms.

German: expandieren, erzeugen, Baumsuche, Graphensuche
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Search Algorithms

General Search Algorithm

iteratively create a search tree:

starting with the initial state,

repeatedly expand a state by generating its successors
(which state depends on the used search algorithm)

stop when a goal state is expanded (sometimes: generated)

or all reachable states have been considered

In this chapter, we study two essential classes of search algorithms:

tree search

graph search

Each class consists of a large number of concrete algorithms.

German: expandieren, erzeugen, Baumsuche, Graphensuche
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Tree Search
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Tree Search: General Idea
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possible paths to be explored
organized in a tree (search tree)

search nodes correspond 1:1 to paths
from initial state

duplicates a.k.a. transpositions (i.e.,
multiple nodes with identical state)
possible

search tree can have unbounded depth

German: Suchbaum, Duplikate,

German:

Transpositionen
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Tree Search: General Idea
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Tree Search: General Idea
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Generic Tree Search Algorithm

Generic Tree Search Algorithm

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Generic Tree Search Algorithm: Discussion

discussion:

generic template for tree search algorithms

⇝ for concrete algorithm, we must (at least) decide
how to implement the open list

concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons
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Graph Search
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Graph Search

differences to tree search:

recognize duplicates: when a state is reached
on multiple paths, only keep one search node

search nodes correspond 1:1 to reachable states

depth of search tree bounded
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remarks:
some graph search algorithms do
not immediately eliminate all
duplicates (⇝ later)

one possible reason: find optimal
solutions when a path to state s
found later is cheaper than one
found earlier
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Generic Graph Search Algorithm

Generic Graph Search Algorithm

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Generic Graph Search Algorithm: Discussion

discussion:

same comments as for generic tree search apply

in “pure” algorithm, closed list does not actually
need to store the search nodes

sufficient to implement closed as set of states
advanced algorithms often need access to the nodes,
hence we show this more general version here

some variants perform goal and duplicate tests elsewhere
(earlier) ⇝ following chapters
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Evaluating Search Algorithms
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Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete

German: Vollständigkeit, semi-vollständig, vollständig
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Criteria: Optimality

four criteria for evaluating search algorithms:

Optimality

Are the solutions returned by the algorithm always optimal?

German: Optimalität
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Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?

usually worst case analysis

usually measured in generated nodes

often a function of the following quantities:

b: (branching factor) of state space
(max. number of successors of a state)

d : search depth
(length of longest path in generated search tree)

German: Zeitaufwand, Verzweigungsgrad, Suchtiefe
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Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?

usually worst case analysis

usually measured in (concurrently) stored nodes

often a function of the following quantities:

b: (branching factor) of state space
(max. number of successors of a state)

d : search depth
(length of longest path in generated search tree)

German: Speicheraufwand
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Analyzing the Generic Search Algorithms

Generic Tree Search Algorithm

Is it complete? Is it semi-complete?

Is it optimal?

What is its worst-case time complexity?

What is its worst-case space complexity?

Generic Graph Search Algorithm

Is it complete? Is it semi-complete?

Is it optimal?

What is its worst-case time complexity?

What is its worst-case space complexity?
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Summary
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Summary (1)

tree search:

search nodes correspond 1:1 to paths from initial state

graph search:

search nodes correspond 1:1 to reachable states

⇝ duplicate elimination

generic methods with many possible variants
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Summary (2)

evaluating search algorithms:

completeness and semi-completeness

optimality

time complexity and space complexity
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
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B7. Uniform Cost Search
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Blind Search
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Blind Search

In Chapters B6–B8 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (Chapters B9–B15)
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Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search

(⇝ this chapter)

uniform cost search

(⇝ Chapter B7)

depth-first search

(⇝ Chapter B8)

depth-limited search

(⇝ Chapter B8)

iterative deepening search

(⇝ Chapter B8)
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Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search

(⇝ Chapter B7)

depth-first search

(⇝ Chapter B8)

depth-limited search

(⇝ Chapter B8)

iterative deepening search

(⇝ Chapter B8)
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Blind Search Algorithms: Examples

examples of blind search algorithms:

breadth-first search (⇝ this chapter)

uniform cost search (⇝ Chapter B7)

depth-first search (⇝ Chapter B8)

depth-limited search (⇝ Chapter B8)

iterative deepening search (⇝ Chapter B8)
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Breadth-first Search: Introduction
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Running Example: Reminder

bounded inc-and-square:

S = {0, 1, . . . , 9}

A = {inc, sqr}

cost(inc) = cost(sqr) = 1

T s.t. for i = 0, . . . , 9:

⟨i , inc, (i + 1) mod 10⟩ ∈ T
⟨i , sqr, i2 mod 10⟩ ∈ T

sI = 1

SG = {6, 7}

0

1

2

3

45

6

7

8

9
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Idea

breadth-first search:

expand nodes in order of generation (FIFO)

⇝ open list is linked list or deque

we start with an example using graph search

German: Breitensuche
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Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[ ]

{ }

2 1[ ]

{1}
1 3 4[ ]

{1, 2}
3 4[ ]

{1, 2}
4 4 9[ ]

{1, 2, 3}
4 9 5 6[ ]

{1, 2, 3, 4}
9 5 6[ ]

{1, 2, 3, 4}
5 6 0 1[ ]

{1, 2, 3, 4, 9}
6 0 1 6 5[ ]

{1, 2, 3, 4, 5, 9}
0 1 6 5[ ]

{1, 2, 3, 4, 5, 6, 9}
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111222
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33

4

in
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4
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4
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sqr

9
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9
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0

inc

1

sq
r
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sqrinc
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6
in
c

5

sqr

6

in
c

sqr
6

in
c

sqr



Blind Search BFS: Introduction BFS-Tree BFS-Graph BFS Properties Summary

Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[ ]

{ }

2 1[ ]

{1}

1 3 4[ ]

{1, 2}
3 4[ ]

{1, 2}
4 4 9[ ]

{1, 2, 3}
4 9 5 6[ ]

{1, 2, 3, 4}
9 5 6[ ]

{1, 2, 3, 4}
5 6 0 1[ ]

{1, 2, 3, 4, 9}
6 0 1 6 5[ ]

{1, 2, 3, 4, 5, 9}
0 1 6 5[ ]

{1, 2, 3, 4, 5, 6, 9}
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Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[ ]

{ }
2 1[ ]

{1}

1 3 4[ ]

{1, 2}

3 4[ ]

{1, 2}
4 4 9[ ]

{1, 2, 3}
4 9 5 6[ ]

{1, 2, 3, 4}
9 5 6[ ]

{1, 2, 3, 4}
5 6 0 1[ ]

{1, 2, 3, 4, 9}
6 0 1 6 5[ ]

{1, 2, 3, 4, 5, 9}
0 1 6 5[ ]

{1, 2, 3, 4, 5, 6, 9}
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Example: Generic Graph Search with FIFO Expansion

open:

next

closed:

1[ ]
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2 1[ ]

{1}
1 3 4[ ]

{1, 2}

3 4[ ]

{1, 2}
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Example: Generic Graph Search with FIFO Expansion

open:

next

closed:
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Example: Generic Graph Search with FIFO Expansion

open:

next

closed:
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Example: Generic Graph Search with FIFO Expansion

open:

next

closed:
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Example: Generic Graph Search with FIFO Expansion
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next
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Example: Generic Graph Search with FIFO Expansion
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next
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Example: Generic Graph Search with FIFO Expansion

open:

next

closed:
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Observations from Example

breadth-first search behaviour:

state space is searched layer by layer

⇝ shallowest goal node is always found first
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Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

without duplicate elimination (as a tree search)
⇝ BFS-Tree

or with duplicate elimination (as a graph search)
⇝ BFS-Graph

(BFS = breadth-first search).

⇝ We consider both variants.
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BFS-Tree
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Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable
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BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable
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Running Example: BFS-Tree (1st Attempt)

1
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2 1

3 4 2 1
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Opportunities for Improvement

In a BFS, the first generated goal node
is always the first expanded goal node. (Why?)

⇝ It is more efficient to perform the goal test
upon generating a node (rather than upon expanding it).

⇝ How much effort does this save?
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BFS-Tree without Early Goal Tests
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BFS-Tree with Early Goal Tests
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BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable
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BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable
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BFS-Tree (2nd Attempt): Discussion

Where is the bug?
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BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable
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BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable
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BFS-Graph
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Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

similar adaptations to BFS-Tree
(deque as open list, early goal tests)

as closed list does not need to manage node information,
a set data structure suffices

for the same reasons why early goal tests are a good idea,
we should perform duplicate tests against the closed list
and updates of the closed lists as early as possible
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BFS-Graph (Breadth-First Search with Duplicate Elim.)

BFS-Graph

if is goal(init()):
return ⟨⟩

open := new Deque
open.push back(make root node())
closed := new HashSet
closed.insert(init())
while not open.is empty():

n := open.pop front()
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
if s ′ /∈ closed:

closed.insert(s ′)
open.push back(n′)

return unsolvable
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BFS-Graph: Example

open:

next

closed:

1[ ]

{1}

2[ ]

{1,2}
3 4[ ]

{1, 2, 3, 4}
4 9[ ]
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9 5[ ]

{1, 2, 3, 4, 5, 6, 9}
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BFS-Graph: Example
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BFS-Graph: Example
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BFS-Graph: Example
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BFS-Graph: Example
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Properties of Breadth-first Search

Properties of Breadth-first Search:

BFS-Tree is semi-complete, but not complete. (Why?)

BFS-Graph is complete. (Why?)

BFS (both variants) is optimal
if all actions have the same cost (Why?),
but not in general (Why not?).

complexity: next slides
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Breadth-first Search: Complexity

The following result applies to both BFS variants:

Theorem (time complexity of breadth-first search)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of breadth-first search is

1 + b + b2 + b3 + · · ·+ bd = O(bd)

Reminder: we measure time complexity in generated nodes.

It follows that the space complexity of both BFS variants
also is O(bd) (if b ≥ 2). (Why?)
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Breadth-first Search: Example of Complexity

Realistic numbers?

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

example: b = 13; 100 000 nodes/second; 32 bytes/node

d nodes time memory

4 30 940 0.3 s 966KiB

6 5.2 · 106 52 s 159MiB

8 8.8 · 108 147min 26GiB

10 1011 17 days 4.3TiB

12 1013 8 years 734TiB

14 1015 1 352 years 121PiB

16 1017 2.2 · 105 years 20 EiB

18 1020 38 · 106 years 3.3 ZiB
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BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete

much (!) more efficient if there are many duplicates

advantages of BFS-Tree:

simpler

less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.
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BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:

complete
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advantages of BFS-Tree:

simpler
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Summary

blind search algorithm: use no information
except black box interface of state space

breadth-first search: expand nodes in order of generation

search state space layer by layer
can be tree search or graph search
complexity O(bd) with branching factor b,
minimal solution length d (if b ≥ 2)
complete as a graph search; semi-complete as a tree search
optimal with uniform action costs
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms
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Uniform Cost Search

breadth-first search optimal if all action costs equal

otherwise no optimality guarantee ⇝ example:

0

1

2

3

45

6

7

8

9 consider bounded inc-and-square problem
with cost(inc) = 1, cost(sqr) = 3

solution of breadth-first search still
⟨inc, sqr, sqr⟩ (cost: 7)
but: ⟨inc, inc, inc, inc, inc⟩ (cost: 5) is cheaper!

remedy: uniform cost search

always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

implementation: priority queue (min-heap) for open list
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Reminder: Generic Graph Search Algorithm

reminder from Chapter B5:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Uniform Cost Search

reminder from Chapter B5:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

as in BFS-Graph, a set is sufficient for the closed list

a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (Why not?)

Remarks:

identical to Dijkstra’s algorithm for shortest paths

for both: variants with/without delayed duplicate elimination
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Example

open:

next

closed:

1 :0[ ]

{ }

2 :1 1 :3[ ]
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3 :2 1 :3 4 :4[ ]
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4 :3 4 :4 9 :5[ ]

{1, 2, 3}
4 :4 5 :4 9 :5 6 :6[ ]

{1, 2, 3, 4}
5 :4 9 :5 6 :6[ ]

{1, 2, 3, 4}
9 :5 6 :5 6 :6 5 :7[ ]

{1, 2, 3, 4, 5}
6 :5 6 :6 0 :6 5 :7 1 :8[ ]

{1, 2, 3, 4, 5}
6 :6 0 :6 5 :7 1 :8[ ]

{1, 2, 3, 4, 5}

bounded inc-and-square variant: cost(sqr) = 3
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Uniform Cost Search: Improvements

possible improvements:

if action costs are small integers,
bucket heaps often more efficient

additional early duplicate tests for generated nodes
can reduce memory requirements

can be beneficial or detrimental for runtime
must be careful to keep shorter path to duplicate state
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Completeness and Optimality

properties of uniform cost search:

uniform cost search is complete (Why?)

uniform cost search is optimal (Why?)
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Time and Space Complexity

properties of uniform cost search:

Time complexity depends on distribution of action costs
(no simple and accurate bounds).

Let ε := mina∈A cost(a) and consider the case ε > 0.
Let c∗ be the optimal solution cost.
Let b be the branching factor and consider the case b ≥ 2.
Then the time complexity is at most O(b⌊c

∗/ε⌋+1). (Why?)
often a very weak upper bound

space complexity = time complexity
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Summary

uniform cost search: expand nodes in order of ascending path costs

usually as a graph search

then corresponds to Dijkstra’s algorithm

complete and optimal
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B4. Data Structures for Search Algorithms
B5. Tree Search and Graph Search
B6. Breadth-first Search
B7. Uniform Cost Search
B8. Depth-first Search and Iterative Deepening

B9–B15. Heuristic Algorithms
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Depth-first Search
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Idea of Depth-first Search

depth-first search:

expands nodes in opposite order of generation (LIFO)

open list implemented as stack

⇝ deepest node expanded first

German: Tiefensuche
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Depth-first Search Example

open: 1[ ]
next

1 2[ ]
next

1 4 3[ ]
next

1 4 9 4[ ]
next

1 4 9 6 5[ ]
next

1 4 9 6 5 6[ ]
next

1 4 9 6 5[ ]
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Depth-first Search: Some Properties

almost always implemented as a tree search (we will see why)

not complete, not semi-complete, not optimal (Why?)

complete for acyclic state spaces,
e.g., if state space directed tree
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Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push back(make root node())
while not open.is empty():

n := open.pop back()
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable



Depth-first Search Iterative Deepening Summary

Non-recursive Depth-first Search: Discussion

discussion:

there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

however, depth-first search as a recursive algorithm
is simpler and more efficient

⇝ CPU stack as implicit open list

⇝ no search node data structure needed
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Depth-first Search (Recursive Version)

function depth first search(s)

if is goal(s):
return ⟨⟩

for each ⟨a, s ′⟩ ∈ succ(s):
solution := depth first search(s ′)
if solution ̸= none:

solution.push front(a)
return solution

return none

main function:

Depth-first Search (Recursive Version)

return depth first search(init())
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Depth-first Search: Complexity

time complexity:

If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

On the other hand: in the best case, solutions of length ℓ
can be found with O(bℓ) generated nodes. (Why?)

improvable to O(ℓ) with incremental successor generation

space complexity:

only need to store nodes along currently explored path
(“along”: nodes on path and their children)

⇝ space complexity O(bm) if m maximal search depth reached

low memory complexity main reason why depth-first search
interesting despite its disadvantages
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Iterative Deepening
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Idea of Depth-limited Search

depth-limited search:

parameterized with depth limit ℓ ∈ N0

behaves like depth-first search, but prunes (does not expand)
search nodes at depth ℓ

not very useful on its own, but important ingredient
of more useful algorithms

German: tiefenbeschränkte Suche
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Depth-limited Search Example

Consider depth limit ℓ = 2.

1

11

222 111

inc
sqr

333 444
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sqr

222 111

inc
sqr
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Depth-limited Search: Pseudo-Code

function depth limited search(s, depth limit):

if is goal(s):
return ⟨⟩

if depth limit > 0:
for each ⟨a, s ′⟩ ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution ̸= none:

solution.push front(a)
return solution

return none
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Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):

idea: perform a sequence of depth-limited searches
with increasing depth limit

sounds wasteful (each iteration repeats all the useful work
of all previous iterations)

in fact overhead acceptable (⇝ analysis follows)

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution ̸= none:

return solution

German: iterative Tiefensuche
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Example

depth limit: 0
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generated nodes: 1

generated nodes: 1+3generated nodes: 1+3+3generated nodes: 1+3+5generated nodes: 1+3+7generated nodes: 1+3+7+3generated nodes: 1+3+7+5generated nodes: 1+3+7+7generated nodes: 1+3+7+9=20
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Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:

(almost) like BFS: semi-complete (however, not complete)

like BFS: optimal if all actions have same cost

like DFS: only need to store nodes along one path
⇝ space complexity O(bd), where d minimal solution length

time complexity only slightly higher than BFS
(⇝ analysis soon)
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Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search 1 + b + b2 + · · ·+ bd−1 + bd

iterative deepening DFS (d + 1) + db + (d − 1)b2 + · · ·+ 2bd−1 + 1bd

example: b = 10, d = 5

breadth-first search 1 + 10 + 100 + 1000 + 10000 + 100000

= 111111

iterative deepening DFS 6 + 50 + 400 + 3000 + 20000 + 100000

= 123456

for b = 10, only 11% more nodes than breadth-first search
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Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of iterative deepening DFS is

(d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · ·+ 1bd = O(bd)

and the memory complexity is

O(bd).
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Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if

tree search is adequate (no duplicate elimination necessary),

all action costs are identical, and

the solution depth is unknown.
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Summary
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Summary

depth-first search: expand nodes in LIFO order

usually as a tree search

easy to implement recursively

very memory-efficient

can be combined with iterative deepening
to combine many of the good aspects
of breadth-first and depth-first search
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Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity

search algorithm

criterion breadth- uniform depth- depth- iterative

first cost first limited deepening

complete? yes* yes no no semi

optimal? yes** yes no no yes**

time O(bd ) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd )

space O(bd ) O(b⌊c
∗/ε⌋+1) O(bm) O(bℓ) O(bd)

b ≥ 2 branching factor
d minimal solution depth
m maximal search depth
ℓ depth limit

c∗ optimal solution cost
ε > 0 minimal action cost

remarks:
* for BFS-Tree: semi-complete
** only with uniform action costs
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
B12. Greedy Best-first Search, A∗, Weighted A∗

B13. IDA∗

B14. Properties of A∗, Part I
B15. Properties of A∗, Part II
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Introduction
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Informed Search Algorithms

search algorithms considered so far:

uninformed (“blind”): use no information
besides formal definition to solve a problem

scale poorly: prohibitive time (and space)
requirements for seemingly simple problems
(time complexity usually O(bd))

Rubik’s cube:

branching factor: ≈ 13

typical solution length: 18

Richard Korf, Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases (AAAI, 1997)

example: b = 13; 105 nodes/second

d nodes time

4 30 940 0.3 s

6 5.2 · 106 52 s

8 8.8 · 108 147min

10 1011 17 days

12 1013 8 years

14 1015 1 352 years

16 1017 2.2 · 105 years

18 1020 38 · 106 years

search algorithms considered now:

idea: try to find (problem-specific) criteria
to distinguish good and bad states

heuristic (“informed”) search algorithms
prefer good states
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Heuristics
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Heuristics

Definition (heuristic)

Let S be a state space with states S .
A heuristic function or heuristic for S is a function

h : S → R+
0 ∪ {∞},

mapping each state to a nonnegative number (or ∞).
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Heuristics: Intuition

idea: h(s) estimates distance (= cost of cheapest path)

idea:

from s to closest goal state

heuristics can be arbitrary functions

intuition:
1 the closer h is to true goal distance,

the more efficient the search using h
2 the better h separates states that are close to the goal from

states that are far, the more efficient the search using h
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Why “Heuristic”?

What does “heuristic” mean?

from ancient Greek ἑυρισκω (= I find)

same origin as ἑυρηκα!

popularized by George Pólya:
How to Solve It (1945)

in computer science often used for:
rule of thumb, inexact algorithm

in state-space search technical term
for goal distance estimator

https://youtu.be/ijj58xD5fDI?t=27
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Representation of Heuristics

In our black box model, heuristics are an additional element
of the state space interface:

State Spaces as Black Boxes (Extended)

init()

is goal(s)

succ(s)

cost(a)

h(s): heuristic value for state s
result: nonnegative integer or ∞
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Examples
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Bounded Inc-and-Square

bounded inc-and-square:

h1(s) =

{
0 if s = 7

(16− s) mod 10 otherwise

⇝ number of inc actions to goal

possible heuristics:

How accurate is this heuristic?

“far”

“m
ed
iu
m
”

“close”

“goal”

h2(s) =


0 if s is a “goal”

1 s is “close”

2 s is “medium”

3 s is “far”

⇝ categorize states

0

1

2

3

45

6

7

8

9



Introduction Heuristics Examples Summary

Bounded Inc-and-Square

bounded inc-and-square:

h1(s) =

{
0 if s = 7

(16− s) mod 10 otherwise

⇝ number of inc actions to goal

possible heuristics:

How accurate is this heuristic?

“far”

“m
ed
iu
m
”

“close”

“goal”

h2(s) =


0 if s is a “goal”

1 s is “close”

2 s is “medium”

3 s is “far”

⇝ categorize states

0

1

2

3

45

6

7

8

9



Introduction Heuristics Examples Summary

Example: Blocks World

possible heuristic:

count blocks x that currently lie on y
and must lie on z ̸= y in the goal
(including case where y or z is the table)

How accurate is this heuristic?
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Example: Route Planning in Romania

possible heuristic: straight-line distance to Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374
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Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

Six people must cross a river.

Their rowing boat can carry one or two people
across the river at a time (it is too small for three).

Three people are missionaries, three are cannibals.

Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

⇝ with our formulation of states as triples ⟨m, c , b⟩:
h(⟨m, c , b⟩) = m + c
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possible heuristic: number of people on the wrong river bank

⇝ with our formulation of states as triples ⟨m, c , b⟩:
h(⟨m, c , b⟩) = m + c
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Summary
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Summary

heuristics estimate distance of a state to the goal

can be used to focus search on promising states

⇝ soon: search algorithms that use heuristics
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Reminder: Heuristics

Definition (heuristic)

Let S be a state space with states S .
A heuristic function or heuristic for S is a function

h : S → R+
0 ∪ {∞},

mapping each state to a nonnegative number (or ∞).
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Properties of Heuristics
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Perfect Heuristic

Definition (perfect heuristic)

Let S be a state space with states S .

The perfect heuristic for S, written h∗, maps each state s ∈ S

to the cost of an optimal solution for s, or

to ∞ if no solution for s exists.

German: perfekte Heuristik
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Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S .

A heuristic h for S is called

safe if h∗(s) = ∞ for all s ∈ S with h(s) = ∞
goal-aware if h(s) = 0 for all goal states s

admissible if h(s) ≤ h∗(s) for all states s ∈ S

consistent if h(s) ≤ cost(a) + h(s ′) for all transitions s
a−→ s ′

German: sicher, zielerkennend, zulässig, konsistent

s

s ′

SG

cos
t(a

)

h(s)

h(s ′)
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Properties of Heuristics

Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S .

A heuristic h for S is called

safe if h∗(s) = ∞ for all s ∈ S with h(s) = ∞
goal-aware if h(s) = 0 for all goal states s

admissible if h(s) ≤ h∗(s) for all states s ∈ S

consistent if h(s) ≤ cost(a) + h(s ′) for all transitions s
a−→ s ′

German: sicher, zielerkennend, zulässig, konsistent

s

s ′
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cos
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h(s)
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Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Route Planning in Romania

straight-line distance:

safe

goal-aware

admissible

consistent

Why?
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Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Blocks World

misplaced blocks:

safe?

goal-aware?

admissible?

consistent?
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Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Missionaries and Cannibals

people on wrong river bank:

safe?

goal-aware?

admissible?

consistent?
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Properties of Heuristics: Connections (1)

Theorem (admissible =⇒ safe + goal-aware)

Let h be an admissible heuristic.

Then h is safe and goal-aware.

Why?
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Properties of Heuristics: Connections (2)

Theorem (goal-aware + consistent =⇒ admissible)

Let h be a goal-aware and consistent heuristic.

Then h is admissible.

Why?
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Showing All Four Properties

How can one show most easily that a heuristic
has all four properties?
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Summary
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Summary

perfect heuristic h∗: true cost to the goal

important properties: safe, goal-aware, admissible, consistent

connections between these properties

admissible =⇒ safe and goal-aware
goal-aware and consistent =⇒ admissible
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Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

this chapter: short introduction

next chapters: more thorough analysis
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Best-first Search
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Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

decision which node is most promising uses heuristics. . .

. . . but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

implementation essentially like uniform cost search

different choices of f ⇝ different search algorithms
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
⇝ only the heuristic counts

f (n) = g(n) + h(n.state): A∗

⇝ combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

⇝ interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

⇝ properties: next chapters

What do we obtain with f (n) := g(n)?
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Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

now: graph search (i.e., with duplicate elimination),
which is the more common case

Chapter B13: a tree search variant
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Algorithm Details
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Reminder: Uniform Cost Search

reminder from Chapter B7:

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Best-first Search without Reopening (1st Attempt)

reminder from Chapter B7:

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by f
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

discard states considered unsolvable by the heuristic
⇝ saves memory in open

if multiple search nodes have identical f values,
use h to break ties (preferring low h)

not always a good idea, but often
obviously unnecessary if f = h (greedy best-first search)
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Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

discard states considered unsolvable by the heuristic
⇝ saves memory in open

if multiple search nodes have identical f values,
use h to break ties (preferring low h)

not always a good idea, but often
obviously unnecessary if f = h (greedy best-first search)
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Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n.state)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Best-first Search: Properties

properties:

complete if h is safe (Why?)

optimality depends on f ⇝ next chapters



Introduction Best-first Search Algorithm Details Reopening Summary

Reopening
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Reopening

reminder: uniform cost search expands nodes
in order of increasing g values

⇝ guarantees that cheapest path to state of a node
has been found when the node is expanded

with arbitrary evaluation functions f in best-first search
this does not hold in general

⇝ in order to find solutions of low cost,
we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening
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Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
distances := new HashMap
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

⇝ distances controls reopening and replaces closed
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Summary
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Summary

best-first search: expand node with minimal value
of evaluation function f

f = h: greedy best-first search
f = g + h: A∗

f = g + w · h with parameter w ∈ R+
0 : weighted A∗

here: best-first search as a graph search

reopening: expand duplicates with lower path costs
to find cheaper solutions
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Introduction
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What Is It About?

In this chapter we study last chapter’s algorithms in more detail:

greedy best-first search

A∗

weighted A∗
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Greedy Best-first Search
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Greedy Best-first Search

Greedy Best-first Search

only consider the heuristic: f (n) = h(n.state)

Note: usually without reopening (for reasons of efficiency)
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Example: Greedy Best-first Search for Route Planning
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Greedy Best-first Search: Properties

complete with safe heuristics
(like all variants of best-first graph search)

suboptimal: solutions can be arbitrarily bad

often very fast: one of the fastest search algorithms in practice

monotonic transformations of h (e.g. scaling, additive
constants) do not affect behaviour (Why is this interesting?)



Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗



Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

A∗

A∗

combine greedy best-first search with uniform cost search:
f (n) = g(n) + h(n.state)

trade-off between path cost and proximity to goal

f (n) estimates overall cost of cheapest solution
from initial state via n to the goal
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A∗: Citations
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A∗: Citations
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Example: A∗ for Route Planning
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Example A∗ for Route Planning
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A∗: Properties

complete with safe heuristics
(like all variants of best-first graph search)

with reopening: optimal with admissible heuristics

without reopening: optimal with heuristics
that are admissible and consistent

⇝ proofs: Chapters B14 and B15
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A∗: Implementation Aspects

some practical remarks on implementing A∗:

common bug: reopening not implemented
although heuristic is not consistent

common bug: duplicate test “too early”
(upon generation of search nodes)

common bug: goal test “too early”
(upon generation of search nodes)

all these bugs lead to loss of optimality
and can remain undetected for a long time
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Weighted A∗
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Weighted A∗

Weighted A∗

A∗ with more heavily weighted heuristic:
f (n) = g(n) + w · h(n.state),
where weight w ∈ R+

0 with w ≥ 1 is a freely choosable parameter

Note: w < 1 is conceivable, but usually not a good idea
(Why not?)
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Weighted A∗: Properties

weight parameter controls “greediness” of search:

w = 0: like uniform cost search

w = 1: like A∗

w → ∞: like greedy best-first search

with w ≥ 1 properties analogous to A∗:

h admissible:
found solution guaranteed to be at most w times
as expensive as optimum when reopening is used

h admissible and consistent:
found solution guaranteed to be at most w times
as expensive as optimum; no reopening needed

(without proof)



Introduction Greedy Best-first Search A∗ Weighted A∗ Summary

Summary
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Summary

best-first graph search with evaluation function f :

f = h: greedy best-first search
suboptimal, often very fast

f = g + h: A∗

optimal if h admissible and consistent
or if h admissible and reopening is used

f = g + w · h: weighted A∗

for w ≥ 1 suboptimality factor at most w
under same conditions as for optimality of A∗
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State-Space Search: Overview

Chapter overview: state-space search
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IDA∗: Idea
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IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

depth-limited search with increasing limits

instead of depth we limit f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

⇝ IDA∗ (iterative-deepening A∗)

tree search, unlike the previous best-first search algorithms
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IDA∗
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IDA∗: Algorithm
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Reminder: Iterative Deepening Depth-first Search

reminder from Chapter B8: iterative deepening depth-first search

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution ̸= none:

return solution

function depth limited search(s, depth limit):

if is goal(s):
return ⟨⟩

if depth limit > 0:
for each ⟨a, s ′⟩ ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution ̸= none:

solution.push front(a)
return solution

return none
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First Attempt: IDA∗ Main Function

first attempt: iterative deepening A∗ (IDA∗)

IDA∗ (First Attempt)

for f limit ∈ {0, 1, 2, . . . }:
solution := f limited search(init(), 0, f limit)
if solution ̸= none:

return solution
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First Attempt: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return none

if is goal(s):
return ⟨⟩

for each ⟨a, s ′⟩ ∈ succ(s):
solution := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return solution

return none
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IDA∗ First Attempt: Discussion

The pseudo-code can be rewritten to be even more similar
to our IDDFS pseudo-code. However, this would make
our next modification more complicated.

The algorithm follows the same principles as IDDFS,
but takes path costs and heuristic information into account.

For unit-cost state spaces and the trivial heuristic h : s 7→ 0
for all states s, it behaves identically to IDDFS.

For general state spaces, there is a problem
with this first attempt, however.
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Growing the f Limit

In IDDFS, we grow the limit from the smallest limit
that gives a non-empty search tree (0) by 1 at a time.

This usually leads to exponential growth of the tree
between rounds, so that re-exploration work can be amortized.

In our first attempt at IDA*, there is no guarantee that
increasing the f limit by 1 will lead to a larger search tree
than in the previous round.

This problem becomes worse if we also allow non-integer
(fractional) costs, where increasing the limit by 1 would be
very arbitrary.
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Setting the Next f Limit

idea: let the f -limited search compute the next sensible f limit

Start with h(init()), the smallest f limit
that results in a non-empty search tree.

In every round, increase the f limit to the smallest value
that ensures that in the next round at least one
additional path will be considered by the search.

⇝ f limited search now returns two values:

the next f limit that would include at least one new node
in the search tree (∞ if no such limit exists;
none if a solution was found), and
the solution that was found (or none).
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Final Algorithm: IDA∗ Main Function

final algorithm: iterative deepening A∗ (IDA∗)

IDA∗

f limit = h(init())
while f limit ̸= ∞:

⟨f limit, solution⟩ := f limited search(init(), 0, f limit)
if solution ̸= none:

return solution
return unsolvable
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Final Algorithm: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return ⟨g + h(s),none⟩

if is goal(s):
return ⟨none, ⟨⟩⟩

new limit := ∞
for each ⟨a, s ′⟩ ∈ succ(s):

⟨child limit, solution⟩ := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return ⟨none, solution⟩

new limit := min(new limit, child limit)
return ⟨new limit,none⟩
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Final Algorithm: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return ⟨g + h(s),none⟩

if is goal(s):
return ⟨none, ⟨⟩⟩

new limit := ∞
for each ⟨a, s ′⟩ ∈ succ(s):

⟨child limit, solution⟩ := f limited search(s ′, g + cost(a), f limit)
if solution ̸= none:

solution.push front(a)
return ⟨none, solution⟩

new limit := min(new limit, child limit)
return ⟨new limit,none⟩
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IDA∗: Properties
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IDA∗: Properties

Inherits important properties of A∗ and depth-first search:

semi-complete if h safe and cost(a) > 0 for all actions a

optimal if h admissible

space complexity O(ℓb), where

ℓ: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
b: branching factor

We state these without proof.
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IDA∗: Discussion

compared to A∗ potentially considerable overhead
because no duplicates are detected

⇝ exponentially slower in many state spaces
⇝ often combined with partial duplicate elimination

(cycle detection, transposition tables)

overhead due to iterative increases of f limit
often negligible, but not always

especially problematic if action costs vary a lot:
then it can easily happen that each new f limit
only considers a small number of new paths
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Summary
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Summary

IDA∗ is a tree search variant of A∗

based on iterative deepening depth-first search

main advantage: low space complexity

disadvantage: repeated work can be significant

most useful when there are few duplicates
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Introduction
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Optimality of A∗

advantage of A∗ over greedy search:
optimal for heuristics with suitable properties

very important result!

⇝ next chapters: a closer look at A∗

A∗ with reopening ⇝ this chapter

A∗ without reopening ⇝ next chapter
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Optimality of A∗ with Reopening

In this chapter, we prove that A∗ with reopening is optimal
when using admissible heuristics.

For this purpose, we

give some basic definitions

prove two lemmas regarding the behaviour of A∗

use these to prove the main result
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Reminder: A∗ with Reopening

reminder from Chapter B11/B12: A∗ with reopening

A∗ with Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
distances := new HashMap
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Solvable States

Definition (solvable)

A state s of a state space is called solvable if h∗(s) < ∞.

German: lösbar
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Optimal Paths to States

Definition (g∗)

Let s be a state of a state space with initial state sI.

We write g∗(s) for the cost of an optimal (cheapest) path
from sI to s (∞ if s is unreachable).

Remarks:

g is defined for nodes, g∗ for states (Why?)

g∗(n.state) ≤ g(n) for all nodes n
generated by a search algorithm (Why?)
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Settled States in A∗

Definition (settled)

A state s is called settled at a given point
during the execution of A∗ (with or without reopening)
if s is included in distances and distances[s] = g∗(s).

German: erledigt
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Optimal Continuation Lemma
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Optimal Continuation Lemma

We now show the first important result for A∗ with reopening:

Lemma (optimal continuation lemma)

Consider A∗ with reopening using a safe heuristic
at the beginning of any iteration of the while loop.

If

state s is settled,

state s ′ is a solvable successor of s, and

an optimal path from sI to s ′ of the form ⟨sI, . . . , s, s ′⟩ exists,
then

s ′ is settled or

open contains a node n′ with n′.state = s ′ and g(n′) = g∗(s ′).

German: Optimale-Fortsetzungs-Lemma
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Optimal Continuation Lemma: Intuition

(Proof follows on the next slides.)

Intuitively, the lemma states:
If no optimal path to a given state has been found yet,
open must contain a “good” node that contributes
to finding an optimal path to that state.

(This potentially requires multiple applications of the lemma
along an optimal path to the state.)
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Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s ′ with the given properties
at the start of some iteration (“iteration A”) of A∗.

Because s is settled, an earlier iteration (“iteration B”)
set distances[s] := g∗(s).

Thus iteration B removed a node n
with n.state = s and g(n) = g∗(s) from open.

A∗ did not terminate in iteration B.
(Otherwise iteration A would not exist.)
Hence n was expanded in iteration B. . . .
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Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s ′ of s.
Because s ′ is solvable, we have h∗(s ′) < ∞.
Because h is safe, this implies h(s ′) < ∞.
Hence a successor node n′ was generated for s ′.

This node n′ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s ′

after iteration B.

To complete the proof, we show: if the consequence
of the lemma is satisfied at the beginning of an iteration,
it is also satisfied at the beginning of the next iteration. . . .
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Optimal Continuation Lemma: Proof (2)
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Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s ′ of s.
Because s ′ is solvable, we have h∗(s ′) < ∞.
Because h is safe, this implies h(s ′) < ∞.
Hence a successor node n′ was generated for s ′.

This node n′ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s ′

after iteration B.

To complete the proof, we show: if the consequence
of the lemma is satisfied at the beginning of an iteration,
it is also satisfied at the beginning of the next iteration. . . .
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Optimal Continuation Lemma: Proof (3)

Proof (continued).

If s ′ is settled at the beginning of an iteration,
it remains settled until termination.

If s ′ is not yet settled and open contains a node n′

with n′.state = s ′ and g(n′) = g∗(s ′)
at the beginning of an iteration, then either
the node remains in open during the iteration,
or n′ is removed during the iteration and s ′ becomes settled.
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Optimal Continuation Lemma: Proof (3)

Proof (continued).

If s ′ is settled at the beginning of an iteration,
it remains settled until termination.

If s ′ is not yet settled and open contains a node n′

with n′.state = s ′ and g(n′) = g∗(s ′)
at the beginning of an iteration, then either
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f -Bound Lemma

We need a second lemma:

Lemma (f -bound lemma)

Consider A∗ with reopening and an admissible heuristic
applied to a solvable state space with optimal solution cost c∗.

Then open contains a node n with f (n) ≤ c∗

at the beginning of each iteration of the while loop.

German: f -Schranken-Lemma
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f -Bound Lemma: Proof (1)

Proof.

Consider the situation at the beginning of any iteration
of the while loop.

Let ⟨s0, . . . , sn⟩ with s0 := sI be an optimal solution.
(Here we use that the state space is solvable.)

Let si be the first state in the sequence that is not settled.

(Not all states in the sequence can be settled:
sn is a goal state, and when a goal state is inserted
into distances, A∗ terminates.) . . .
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Let ⟨s0, . . . , sn⟩ with s0 := sI be an optimal solution.
(Here we use that the state space is solvable.)
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f -Bound Lemma: Proof (2)

Proof (continued).

Case 1: i = 0

Because s0 = sI is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(s0) < ∞.

Hence open contains the root n0.

We obtain: f (n0) = g(n0) + h(s0) = 0 + h(s0) ≤ h∗(s0) = c∗,
where “≤” uses the admissibility of h.

This concludes the proof for this case. . . .
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f -Bound Lemma: Proof (2)

Proof (continued).

Case 1: i = 0

Because s0 = sI is not settled yet, we are at the first iteration
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Because the state space is solvable and h is admissible,
we have h(s0) < ∞.
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f -Bound Lemma: Proof (3)

Proof (continued).

Case 2: i > 0

Then si−1 is settled and si is not settled.
Moreover, si is a solvable successor of si−1 and ⟨s0, . . . , si−1, si ⟩
is an optimal path from s0 to si .

We can hence apply the optimal continuation lemma
(with s = si−1 and s ′ = si ) and obtain:

(A) si is settled, or

(B) open contains n′ with n′.state = si and g(n′) = g∗(si ).

Because (A) is false, (B) must be true.

We conclude: open contains n′ with
f (n′) = g(n′) + h(si ) = g∗(si ) + h(si ) ≤ g∗(si ) + h∗(si ) = c∗,
where “≤” uses the admissibility of h.
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f -Bound Lemma: Proof (3)
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f -Bound Lemma: Proof (3)

Proof (continued).
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Optimality of A∗ with Reopening
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Optimality of A∗ with Reopening

We can now show the main result of this chapter:

Theorem (optimality of A∗ with reopening)

A∗ with reopening is optimal when using an admissible heuristic.
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Optimality of A∗ with Reopening: Proof

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c∗

where A∗ with reopening and an admissible heuristic
returns a solution with cost c > c∗.

This means that in the last iteration, the algorithm
removes a node n with g(n) = c > c∗ from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f (n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c∗.

A∗ always removes a node n with minimal f value from open.
With f (n) > c∗, we get a contradiction to the f -bound lemma,
which completes the proof.
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Proof.
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This means that in the last iteration, the algorithm
removes a node n with g(n) = c > c∗ from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f (n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c∗.

A∗ always removes a node n with minimal f value from open.
With f (n) > c∗, we get a contradiction to the f -bound lemma,
which completes the proof.
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Summary

A∗ with reopening using an admissible heuristic is optimal.

The proof is based on the following lemmas
that hold for solvable state spaces and admissible heuristics:

optimal continuation lemma: The open list always contains
nodes that make progress towards an optimal solution.
f -bound lemma: The minimum f value in the open list
at the beginning of each A∗ iteration is a lower bound
on the optimal solution cost.
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State-Space Search: Overview

Chapter overview: state-space search

B1–B3. Foundations

B4–B8. Basic Algorithms

B9–B15. Heuristic Algorithms

B9. Heuristics
B10. Analysis of Heuristics
B11. Best-first Graph Search
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Introduction
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Optimality of A∗ without Reopening

We now study A∗ without reopening.

For A∗ without reopening, admissibility and consistency
together guarantee optimality.

We prove this on the following slides,
again beginning with a basic lemma.

Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)
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Reminder: A∗ without Reopening

reminder from Chapter B11/B12: A∗ without reopening

A∗ without Reopening

open := new MinHeap ordered by ⟨f , h⟩
if h(init()) < ∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each ⟨a, s ′⟩ ∈ succ(n.state):

if h(s ′) < ∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Monotonicity Lemma
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A∗: Monotonicity Lemma (1)

Lemma (monotonicity of A∗ with consistent heuristics)

Consider A∗ with a consistent heuristic.

Then:

1 If n′ is a child node of n, then f (n′) ≥ f (n).

2 On all paths generated by A∗, f values are non-decreasing.

3 The sequence of f values of the nodes expanded by A∗

is non-decreasing.

German: Monotonielemma
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A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

⇝ f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .
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A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

to show: at the end of the iteration
the minimal f value in open is at least fb.

We must consider the operations modifying open:
open.pop min and open.insert.

open.pop min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.
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Optimality of A∗ without Reopening

Theorem (optimality of A∗ without reopening)

A∗ without reopening is optimal when using
an admissible and consistent heuristic.

Proof.

From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

⇝ If multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

⇝ If we allowed reopening, it would never happen.

⇝ With consistent heuristics, A∗ without reopening
behaves the same way as A∗ with reopening.

The result follows because A∗ with reopening
and admissible heuristics is optimal.
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Time Complexity of A∗
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Time Complexity of A∗ (1)

What is the time complexity of A∗?

depends strongly on the quality of the heuristic

an extreme case: h = 0 for all states

⇝ A∗ identical to uniform cost search

another extreme case: h = h∗ and cost(a) > 0
for all actions a

⇝ A∗ only expands nodes along an optimal solution
⇝ O(ℓ∗) expanded nodes, O(ℓ∗b) generated nodes, where

ℓ∗: length of the found optimal solution
b: branching factor
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Time Complexity of A∗ (2)

more precise analysis:

dependency of the runtime of A∗ on heuristic error

example:

unit cost problems with

constant branching factor and

constant absolute error: |h∗(s)− h(s)| ≤ c for all s ∈ S

time complexity:

if state space is a tree: time complexity of A∗ grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

general search spaces: runtime of A∗ grows
exponentially in solution length (Helmert & Röger 2008)
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Overhead of Reopening

How does reopening affect runtime?

For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A∗.
(⇝ exponentially worse than uniform cost search)
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Practical Evaluation of A∗ (1)

9 2 12 6

5 7 14 13

3 1 11

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

h1: number of tiles in wrong cell (misplaced tiles)
h2: sum of distances of tiles to their goal cell (Manhattan distance)
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Practical Evaluation of A∗ (2)

experiments with random initial states,
generated by random walk from goal state

entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph A∗ with h1 A∗ with h2

10 63 15 15

20 1,052 28 27

30 7,546 77 42

40 72,768 227 64

50 359,298 422 83

60 > 1,000,000 7,100 307

70 > 1,000,000 12,769 377

80 > 1,000,000 62,583 849

90 > 1,000,000 162,035 1,522

100 > 1,000,000 690,497 4,964
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Summary
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Summary

A∗ without reopening using an admissible and consistent
heuristic is optimal

key property monotonicity lemma (with consistent heuristics):

f values never decrease along paths considered by A∗

sequence of f values of expanded nodes is non-decreasing

time complexity depends on heuristic and shape of state space

precise details complex and depend on many aspects
reopening increases runtime exponentially in degenerate cases,
but usually negligible overhead
small improvements in heuristic values often
lead to exponential improvements in runtime
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Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization
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C2. Advanced Techniques
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Combinatorial Optimization
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Introduction

previous chapters: classical state-space search

find action sequence (path) from initial to goal state

difficulty: large number of states (“state explosion”)

next chapters: combinatorial optimization
⇝ similar scenario, but:

no actions or transitions

don’t search for path, but for configuration (“state”)
with low cost/high quality

German: Zustandsraumexplosion, kombinatorische Optimierung,
Konfiguration
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Combinatorial Optimization: Example

Example: Nurse Scheduling Problem

find a schedule for a hospital

satisfy hard constraints

labor laws, hospital policies, . . .
nurses working night shifts should not work early next day
have enough nurses with required skills present at all times

maximize satisfaction of soft constraints

individual preferences, reduce overtime, fair distribution, . . .

We are interested in a (high-quality) schedule, not a path to a goal.
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Combinatorial Optimization Problems

Definition (combinatorial optimization problem)

A combinatorial optimization problem (COP)
is given by a tuple ⟨C ,S , opt, v⟩ consisting of:

a finite set of (solution) candidates C

a finite set of solutions S ⊆ C

an objective sense opt ∈ {min,max}
an objective function v : S → R

German: kombinatorisches Optimierungsproblem, Kandidaten,
Lösungen, Optimierungsrichtung, Zielfunktion

Remarks:

“problem” here in another sense (= “instance”)
than commonly used in computer science

practically interesting COPs usually have
too many candidates to enumerate explicitly
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Optimal Solutions

Definition (optimal)

Let O = ⟨C , S , opt, v⟩ be a COP.

The optimal solution quality v∗ of O is defined as

v∗ =

{
minc∈S v(c) if opt = min

maxc∈S v(c) if opt = max

(v∗ is undefined if S = ∅.)
A solution s of O is called optimal if v(s) = v∗.

German: optimale Lösungsqualität, optimal
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Combinatorial Optimization

The basic algorithmic problem we want to solve:

Combinatorial Optimization

Find a solution of good (ideally, optimal) quality
for a combinatorial optimization problem O
or prove that no solution exists.

Good here means close to v∗ (the closer, the better).
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Relevance and Hardness

There is a huge number of practically important
combinatorial optimization problems.

Solving these is a central focus of operations research.

Many important combinatorial optimization problems
are NP-complete.

Most “classical” NP-complete problems can be formulated
as combinatorial optimization problems.

⇝ Examples: TSP, VertexCover, Clique, BinPacking,
Partition

German: Unternehmensforschung, NP-vollständig
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Search vs. Optimization

Combinatorial optimization problems have

a search aspect (among all candidates C ,
find a solution from the set S) and

an optimization aspect (among all solutions in S ,
find one of high quality).
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Pure Search/Optimization Problems

Important special cases arise when one of the two aspects is trivial:

pure search problems:

all solutions are of equal quality
difficulty is in finding a solution at all
formally: v is a constant function (e.g., constant 0);
opt can be chosen arbitrarily (does not matter)

pure optimization problems:

all candidates are solutions
difficulty is in finding solutions of high quality
formally: S = C
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Example
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Example: 8 Queens Problem

8 Queens Problem

How can we

place 8 queens on a chess board

such that no two queens threaten each other?

German: 8-Damen-Problem

originally proposed in 1848

variants: board size; other pieces; higher dimension

There are 92 solutions, or 12 solutions if we do not count
symmetric solutions (under rotation or reflection) as distinct.
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Example: 8 Queens Problem

Problem: Place 8 queens on a chess board

Problem:

such that no two queens threaten each other.

Is this candidate a solution?
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Formally: 8 Queens Problem

How can we formalize the problem?

idea:

obviously there must be exactly one queen in each file
(“column”)

describe candidates as 8-tuples, where the i-th entry
denotes the rank (“row”) of the queen in the i-th file

formally: O = ⟨C ,S , opt, v⟩ with
C = {1, . . . , 8}8

S = {⟨r1, . . . , r8⟩ | ∀1 ≤ i < j ≤ 8 : ri ̸= rj ∧ |ri − rj | ≠ |i − j |}
v constant, opt irrelevant (pure search problem)
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Local Search: Hill Climbing
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Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?

formulation as classical state-space search

⇝ Part B

formulation as constraint network

⇝ Part D

formulation as logical satisfiability problem

⇝ Part E

formulation as mathematical optimization problem (LP/IP)

⇝ not in this course

local search

⇝ today (Part C)
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Algorithms for Combinatorial Optimization Problems

How can we algorithmically solve COPs?

formulation as classical state-space search
⇝ Part B

formulation as constraint network ⇝ Part D

formulation as logical satisfiability problem ⇝ Part E

formulation as mathematical optimization problem (LP/IP)
⇝ not in this course

local search ⇝ today (Part C)
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Search Methods for Combinatorial Optimization

main ideas of heuristic search applicable for COPs
⇝ states ≈ candidates

main difference: no “actions” in problem definition

instead, we (as algorithm designers) can choose
which candidates to consider neighbors
definition of neighborhood critical aspect
of designing good algorithms for a given COP

“path to goal” irrelevant to the user

no path costs, parents or generating actions
⇝ no search nodes needed
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Local Search: Idea

main ideas of local search algorithms for COPs:

heuristic h estimates quality of candidates

for pure optimization: often objective function v itself
for pure search: often distance estimate to closest solution
(as in state-space search)

do not remember paths, only candidates

often only one current candidate ⇝ very memory-efficient
(however, not complete or optimal)

often initialization with random candidate

iterative improvement by hill climbing
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Hill Climbing

Hill Climbing (for Maximization Problems)

current := a random candidate
repeat:

next := a neighbor of current with maximum h value
if h(next) ≤ h(current):

return current
current := next

Remarks:

search as walk “uphill” in a landscape
defined by the neighborhood relation

heuristic values define “height” of terrain

analogous algorithm for minimization problems
also traditionally called “hill climbing”
even though the metaphor does not fully fit
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Properties of Hill Climbing

always terminates (Why?)

no guarantee that result is a solution

if result is a solution, it is locally optimal w.r.t. h,
but no global quality guarantees
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Example: 8 Queens Problem

Problem: Place 8 queens on a chess board

Problem:

such that no two queens threaten each other.
possible heuristic: no. of pairs of queens threatening each other

possible heuristic:

(formalization as minimization problem)
possible neighborhood: move one queen within its file
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Performance of Hill Climbing for 8 Queens Problem

problem has 88 ≈ 17 million candidates
(reminder: 92 solutions among these)

after random initialization, hill climbing finds a solution
in around 14% of the cases

only around 3–4 steps on average!
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Summary
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Summary

combinatorial optimization problems:

find solution of good quality (objective value)
among many candidates

special cases:

pure search problems
pure optimization problems

differences to state-space search:
no actions, paths etc.; only “state” matters

often solved via local search:

consider one candidate (or a few) at a time;
try to improve it iteratively
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Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization

C1. Introduction and Hill-Climbing

C2. Advanced Techniques
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Dealing with Local Optima
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Example: Local Minimum in the 8 Queens Problem

local minimum:

candidate has 1 conflict

all neighbors have at least 2
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Weaknesses of Local Search Algorithms

difficult situations for hill climbing:

local optima: all neighbors worse than current candidate

plateaus: many neighbors equally good as current candidate;
none better

German: lokale Optima, Plateaus

consequence:

algorithm gets stuck at current candidate
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Combating Local Optima

possible remedies to combat local optima:

allow stagnation (steps without improvement)

include random aspects in the search neighborhood

(sometimes) make random steps

breadth-first search to better candidate

restarts (with new random initial candidate)
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Allowing Stagnation

allowing stagnation:

do not terminate when no neighbor is an improvement

limit number of steps to guarantee termination

at end, return best visited candidate

pure search problems: terminate as soon as solution found

Example 8 queens problem:

with a bound of 100 steps solution found in 96% of the cases

on average 22 steps until solution found

⇝ works very well for this problem;
for more difficult problems often not good enough
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Random Aspects in the Search Neighborhood

a possible variation of hill climbing for 8 queens:
Randomly select a file; move queen in this file
to square with minimal number of conflicts (null move possible).
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⇝ Good local search approaches often combine

⇝

randomness (exploration) with heuristic guidance (exploitation).

German: Exploration, Exploitation
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Outlook: Simulated Annealing
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Simulated Annealing

Simulated annealing is a local search algorithm that systematically
injects noise, beginning with high noise, then lowering it over time.

walk with fixed number of steps N (variations possible)

initially it is “hot”, and the walk is mostly random

over time temperature drops (controlled by a schedule)

as it gets colder, moves to worse neighbors become less likely

very successful in some applications, e.g., VLSI layout

German: simulierte Abkühlung, Rauschen
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Simulated Annealing: Pseudo-Code

Simulated Annealing (for Maximization Problems)

curr := a random candidate
best := none
for each t ∈ {1, . . . ,N}:

if is solution(curr) and (best is none or v(curr) > v(best)):
best := curr

T := schedule(t)
next := a random neighbor of curr
∆E := h(next)− h(curr)

if ∆E ≥ 0 or with probability e
∆E
T :

curr := next
return best
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Outlook: Genetic Algorithms



Dealing with Local Optima Outlook: Simulated Annealing Outlook: Genetic Algorithms Summary

Genetic Algorithms

Evolution often finds good solutions.

idea: simulate evolution by selection, crossover and mutation

idea:

of individuals

ingredients:

encode each candidate as a string of symbols (genome)

fitness function: evaluates strength of candidates (= heuristic)

population of k (e.g. 10–1000) individuals (candidates)

German: Evolution, Selektion, Kreuzung, Mutation, Genom,
Fitnessfunktion, Population, Individuen
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Genetic Algorithm: Example

example 8 queens problem:

genome: encode candidate as string of 8 numbers

fitness: number of non-attacking queen pairs

use population of 100 candidates
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Selection, Mutation and Crossover

many variants:
How to select?
How to perform crossover?
How to mutate?

select according to fitness function,
followed by pairing

determine crossover points,
then recombine

mutation: randomly modify
each string position with
a certain probability
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Summary
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Summary

weakness of local search: local optima and plateaus

remedy: balance exploration against exploitation
(e.g., with randomness and restarts)

simulated annealing and genetic algorithms
are more complex search algorithms
using the typical ideas of local search
(randomization, keeping promising candidates)


