Foundations of Artificial Intelligence A4. Introduction: Rational Agents

Malte Helmert

University of Basel

February 19, 2025

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

February 19, 2025 1 / 29

Foundations of Artificial Intelligence February 19, 2025 — A4. Introduction: Rational Agents

A4.1 Systematic AI Framework

A4.2 Example

A4.3 Rationality

A4.4 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Introduction: Overview

Chapter overview: introduction

- A1. Organizational Matters
- A2. What is Artificial Intelligence?
- A3. AI Past and Present
- A4. Rational Agents
- A5. Environments and Problem Solving Methods

A4.1 Systematic AI Framework

Systematic AI Framework

so far we have seen that:

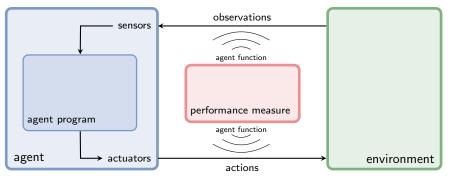
Al systems act rationally

now: describe a systematic framework that

- captures this diversity of challenges
- includes an entity that acts in the environment

determines if the agent acts rationally in the environment

M. Helmert (University of Basel)


Foundations of Artificial Intelligence

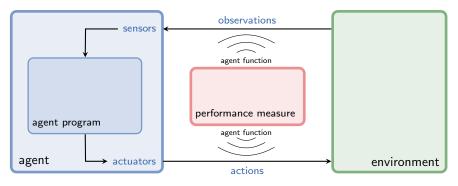
Systematic AI Framework

so far we have seen that:

Al systems act rationally

 Al systems applied to wide variety of challenges

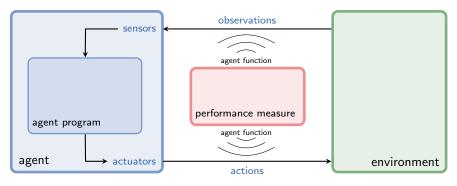
now: describe a systematic framework that


- captures this diversity of challenges
- includes an entity that acts in the environment

determines if the agent acts rationally in the environment

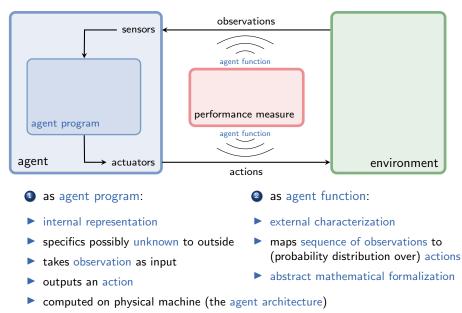
M. Helmert (University of Basel)

Foundations of Artificial Intelligence


Agent-Environment Interaction

sensors: physical entities that allow the agent to observe

- observation: data perceived by the agent's sensors
- actuators: physical entities that allow the agent to act
- action: abstract concept that affects the state of the environment


Agent-Environment Interaction

sensors and actuators are not relevant for the course (~> typically covered in courses on robotics)

 observations and actions describe the agent's capabilities (the agent model)

Formalizing an Agent's Behavior

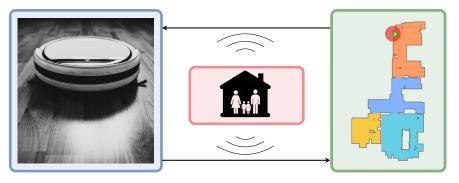
M. Helmert (University of Basel)

Foundations of Artificial Intelligence

A4.2 Example

Vacuum Domain

Vacuum Agent: Sensors and Actuators



sensors: cliff sensors, bump sensors, wall sensors, state of charge sensor, WiFi module

actuators: wheels, cleaning system

M. Helmert (University of Basel)

Vacuum Agent: Observations and Actions

 observations: current location, dirt level of current room, presence of humans, battery charge

actions: move-to-next-room, move-to-base, vacuum, wait

1 def vacuum-agent([location, dirt-level, owner-present, battery]):
if battery ≤ 10%: return move-to-base
else if owner-present = True: return move-to-next-room
else if dirt-level = dirty: return vacuum
else: return move-to-next-room

Vacuum Domain: Agent Function

observation sequence	action
$\langle [blue, clean, False, 100\%] \rangle$	move-to-next-room
$\langle [blue, dirty, False, 100\%] \rangle$	vacuum
$\langle [blue, clean, True, 100\%] \rangle$	move-to-next-room
\langle [blue, clean, False, 100%], [blue, clean, False, 90%] \rangle \langle [blue, clean, False, 100%], [blue, dirty, False, 90%] \rangle	 move-to-next-room vacuum

Vacuum Domain: Performance Measure

potential influences on performance measure:

- dirt levels
- noise levels

energy consumptionsafety

A4.3 Rationality

A4. Introduction: Rational Agents

Rationality

Evaluating Agent Functions

What is the right agent function?

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

February 19, 2025 18 / 29

Rationality

rationality of an agent depends on performance measure (often: utility, reward, cost) and environment

Perfect Rationality

- for each possible observation sequence
- select an action which maximizes
- expected value of future performance
- given available information on observation history
- and environment

Is our vacuum agent perfectly rational?

depends on performance measure and environment, e.g.:

- Do actions reliably have the desired effect?
- Do we know the initial situation?
- Can new dirt be produced while the agent is acting?

Performance Measure

- specified by designer
- sometimes clear, sometimes not so clear
- significant impact on
 - desired behavior
 - difficulty of problem

Rationality

Performance Measure

- specified by designer
- sometimes clear, sometimes not so clear
- significant impact on
 - desired behavior
 - difficulty of problem

consider performance measure:

 \blacktriangleright +1 utility for cleaning a dirty room

consider environment:

- actions and observations reliable
- world only changes through actions of the agent

our vacuum agent is perfectly rational

consider performance measure:

 \blacktriangleright -1 utility for each dirty room in each step

consider environment:

- actions and observations reliable
- world only changes through actions of the agent

our vacuum agent is not perfectly rational

consider performance measure:

 \blacktriangleright -1 utility for each dirty room in each step

consider environment:

- actions and observations reliable
- yellow room may spontaneously become dirty

our vacuum agent is not perfectly rational

Rationality: Discussion

• perfect rationality \neq omniscience

 incomplete information (due to limited observations) reduces achievable utility

• perfect rationality \neq perfect prediction of future

- uncertain behavior of environment (e.g., stochastic action effects) reduces achievable utility
- perfect rationality is rarely achievable
 - Iimited computational power ~> bounded rationality

A4.4 Summary

Summary (1)

common metaphor for AI systems: rational agents

agent interacts with environment:

- sensors perceive observations about state of the environment
- actuators perform actions modifying the environment
- formally: agent function maps observation sequences to actions

Summary (2)

rational agents:

- try to maximize performance measure (utility)
- perfect rationality: achieve maximal utility in expectation given available information
- for "interesting" problems rarely achievable or bounded rationality