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Abstract. Boolean Satisfiability (SAT) solving has dramatically evolved
in the past decade and a half. The outcome, today, is manifested in dozens
of high performance and relatively scalable SAT solvers. The significant
success of SAT solving technology, specially on practical problem in-
stances, is credited to the aggregation of different SAT enhancements. In
this paper, we revisit the organization of modern conflict-driven clause
learning (CDCL) solvers, focusing on the principal techniques that have
contributed to their impressive performance. We also examine the in-
teraction between input instances and SAT algorithms to better under-
stand the factors that contribute to the difficulty of SAT benchmarks. At
the end, the paper empirically evaluates different SAT techniques on a
comprehensive suite of benchmarks taken from a range of representative
applications. The diversity of our benchmarks enables us to make fair
conclusions on the relation between SAT algorithms and SAT instances.

1 Introduction

SAT solving, today, plays a significant role in modeling and solving real world
applications. Although first to be proved NP-complete, SAT gained significant
attention due to its practical importance, and managed to achieve major ad-
vancements in its algorithms and data structures, specially over the past 15
years. There are currently a number of highly scalable SAT solvers, all based
on the classic DPLL search framework. These solvers, known as conflict-driven
clause learning (CDCL) solvers, can generally handle problem instances with
several million variables and clauses.

Modern CDCL solvers differ in many aspects, but they all share four major
features. These features, proposed at different stages of SAT development, are:

– Conflict-driven clause learning [23, 24]
– Random search restarts [17]
– Boolean constraint propagation using lazy data structures [27]
– Conflict-based adaptive branching [27]

Centered around the above four features, and spurred in large part by SAT
competitions and races, a number of performance techniques have also been
incorporated in different solvers including:
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– Random branching combined with adaptive branching [14]
– Random initial scoring for conflict-based adaptive branching [14]
– Conflict clause minimization [36]
– Literal phase saving [31]
– Random restart strategies [1, 6, 34]

With the above enhancements, SAT solving has seen dramatic progress. However,
modern solvers still fail, unpredictably, on many practical problem instances.
Furthermore, even for cases where a solver manages to process an instance,
it is generally not obvious what features of the solver contributed most to the
instance’s tractability. And while most researchers in the field would acknowledge
that the above enhancements are generally helpful, there is still some debate
about their relative importance. Attempts at “dissecting” modern SAT solvers to
isolate the relative contribution to overall performance of the various components
of their intricate algorithms have been quite rare. An early attempt is reported
in [20], but to our knowledge very little has been reported in the open literature
since. In this paper, we review all the aforementioned features of modern CDCL
solvers, and experimentally characterize their contribution in solving a suite of
1000 benchmarks chosen from 12 diverse application areas. The diversity of our
benchmarks allows us to better understand the behavior of modern solvers and
their interaction with input instances. The immediate aim of this article is to
experimentally verify the validity of some of the widely-accepted “facts” in the
SAT community, and to report possible anomalies. As a larger goal, we hope
to raise enough incentive for the theoretical computer science community to
develop appropriate theoretical/analytical models that can better explain the
remarkable success and the unexpected failures of modern SAT solvers.

The remainder of this paper is organized as follows. Section 2 briefly recounts
the major developments in SAT technology, and discusses various performance
techniques. Section 3 presents the methodology of our study. Section 4 describes
our benchmark suite and articulates the rationale behind our choice. The results
of the experiments, obtained using a configurable version of MiniSAT, are pre-
sented and analyzed in Section 5. Finally, the paper ends with conclusions in
Section 6.

2 Major Features of CDCL Solvers

The pioneering techniques to solve the SAT problem, referred to as the DPLL
algorithm, go back to the early 1960s [12, 11]. DPLL is composed of three main
features: branching, unit propagation (or Boolean constraint propagation (BCP)),
and backtracking. Branching is essential to move forward in the search space, and
backtracking is used to return from futile portions of the space. Unit propagation
speeds up the search by deducing appropriate consequences, i.e. implications, of
branching choices. This basic framework was subsequently extended with several
algorithmic enhancements that greatly increased its performance and scalability.
In the remainder of this section, we review four of the major enhancements, and
highlight several of their extensions. The features discussed in this section have
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been shown, through extensive empirical evidence, to be critical for scalability
and performance. These features are presented in chronological order of their
appearance.

2.1 Conflict-Driven Clause Learning

The first major enhancement to DPLL came in 1996 with the debut of the
GRASP solver [23, 24]. GRASP introduced a new learning mechanism from
conflicting assignments. The learning procedure in GRASP consists of the fol-
lowing steps:

– Analyzing the conflict and deriving an effective learned clause
– Attaching the newly derived learned clause to the original formula clauses
– Performing non-chronological backtracking

Instead of simply negating all the literals of a conflicting assignment, GRASP
identifies a small set of assignments that are sufficient to expose the conflict by
building an implication graph. When this so-called effective learning is complete,
GRASP attaches the new learned clause to the original formula clauses, and
backtracks non-chronologically to the decision level where the conflict is resolved.

Recent solvers, such as MiniSAT 2.2.0 [13, 14], perform learning by follow-
ing the exact same steps as proposed in GRASP, but also employ additional
enhancements in conflict analysis. One such enhancement is conflict clause mini-
mization [36] which aims at eliminating redundant literals from a conflict clause.
There are two types of conflict minimization implemented in MiniSAT: local
and recursive. In local, self-subsuming resolution is applied in reverse assignment
order, using antecedents marked in the implication graph. In recursive, the con-
flict clause is recursively minimized by deleting the literals whose antecedents
are dominated by other literals of the clause in the implication graph.

2.2 Random Restarts

In 1998, an experimental study [16], conducted by Gomes et al., revealed that
the running times of complete search algorithms, such as SAT, often show a
non-negligible amount of unpredictability; there always exists a probability of en-
countering a problem that takes exponentially more time to solve than any other
problems encountered before. They explained this behavior by a phenomenon
called heavy-tailed cost distribution. To avoid heavy tails (mitigate against ex-
ponential run times), Gomes et al. suggested the use of a controlled amount of
randomization in search algorithms [17]. This allows search procedures to escape
from regions of the space that contain no solutions. In SAT solving, randomiza-
tion takes place in the form of restarts. When a SAT solver encounters a certain
number of conflicts, it restarts the search by backtracking to the root level of the
search tree. The limit on the number of conflicts varies in different solvers, but
one common policy, also adopted in MiniSAT, is to use the Luby [1] sequence.
Other restarting strategies, such as adaptive [6] and problem-specific [34], are
also addressed in more recent publications.
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2.3 Boolean Constraint Propagation Using Lazy Data Structures

Triggered by the observation that the run time of constraint solvers was mostly
dominated by Boolean constraint propagation, a new efficient and highly scalable
data structure and related algorithms were introduced by the Chaff solver [27]
in 2001. The new scheme, referred to as two-literal watching, asserts that the
status of a clause, required for the propagation process, can be maintained by
watching just two of the literals of the clause that are not assigned to 0. The
status is updated only when one of the watched literals is assigned to 0. Using
this scheme, the clause becomes unit when no non-0-assigned literal other than
the other currently watched literal is found. This scheme was in contrast to
earlier mechanisms which determined the status of a clause by monitoring a
counter that kept track of assignments to the clause’s literals. The two-literal
watching scheme enabled the status of clauses to be updated lazily and led to a
significant reduction in the overhead of BCP.

2.4 Conflict-based Adaptive Branching

Branching heuristics can have a significant effect on the performance of SAT
solvers. Ranging from random decision strategies to complicated cost optimiza-
tion functions, branching heuristics aim to minimize the number of decision
steps, while imposing a minimal computational overhead. One effective heuris-
tic, introduced in GRASP, is dynamic largest individual sum (DLIS) [22]. DLIS
maintains counts of literals in unresolved clauses, and selects the literal with the
highest count as its next branching decision. A more recent and more effective de-
cision strategy, however, is Variable State Independent Decaying Sum (VSIDS),
introduced in Chaff [27]. Unlike previous strategies, VSIDS is highly coupled
with the clause learning procedure. It attempts to satisfy conflict clauses (par-
ticularly, more recent ones) by keeping a counter for each literal, incrementing
the counters at the time of a conflict for the literals that appear in the con-
flict, and choosing the literal with the highest counter at each round of decision.
Since VSIDS updates counters only when a conflict is encountered, it has the
advantage of incurring very low overhead.

The original VSIDS, as introduced in Chaff, kept a counter for each literal.
In MiniSAT, counters, called activities, are associated with variables. Further-
more, MiniSAT takes advantage of literal phase saving [31] to avoid solving
independent subproblems multiple times, when non-chronological backtracking
occurs. First introduced by RSat [30], phase saving caches the literals that are
erased from the list of assignments during backtracking, and uses them to de-
cide on the phase of the variable that the branching heuristic suggests next.
Using this strategy, SAT solvers maintain the information of the variables that
are not related to the current conflict, but forced to be erased from the list of
assignments by backtracking.
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3 MiniSAT Configurations

For the experiments in our study, we chose MiniSAT 2.2.0 as the constraint
solver. By default, MiniSAT performs conflict-driven clause learning and pro-
vides the following user-specified options:

– rnd-freq: This option applies a controlled amount of random decisions (0%
to 100%) to VSIDS. 0 is default.

– rnd-init: When enabled, the activities of variables are initialized randomly.
By default, all activities are initialized to 0.

– ccmin-mode: This is used to set the level of conflict minimization, (0) none,
(1) basic (local) and (2) deep (recursive). Deep minimization is default.

– phase-saving: This option controls the level of phase saving, (0) none, (1)
limited, and (2) full. In full, all the literals erased from the list of assignments
during backtracking are cached. In limited, only the literals assigned in the
latest decision level are saved. Full phase saving is default.

– luby: If deactivated, a power of 2 function (i.e., 2x) with a base interval of
100 is applied as the restarting sequence. Luby is default.

We will refer to the default configuration of MiniSAT as CDCL. To assess the
contribution of the four major enhancements to DPLL described in Section 2,
we instrumented MiniSAT with the following additional options:

– Disable clause learning (dis-learn): When activated, MiniSAT reverts
to DPLL-style search, i.e, it no longer performs clause learning, or non-
chronological backtracking. In our implementation, we still account for con-
flict analysis, since VSIDS requires this procedure to correctly update vari-
able counts. Note that, since learning is disabled, we discard the result of
conflict analysis (i.e., the derived learned clause).

– Disable restarts (dis-restart): MiniSAT applies a Luby restart mech-
anism with a base interval of 100. In other words, it restarts the search
whenever the number of conflicts reaches 100, 100, 200, 100, 100, 200, 400,
.... By using this option, restarting is disabled during search.

– Disable two-watched-literals (dis-2WL): Enabling this option forces Min-
iSAT to perform counter-based BCP.

– Disable VSIDS (DLIS): When activated, MiniSAT applies the DLIS branch-
ing heuristic; otherwise it defaults to the VSIDS heuristic.

In our study, we conducted two sets of experiments. In the first set, we
measured the relative contribution of each of the four major CDCL features by
disabling them one at a time to determine the impact of a feature’s absence on
performance. These configurations of MiniSAT are denoted by ¬CL (no clause
learning), ¬RST (no restarts), ¬2WL (counter-based BCP), and ¬VSIDS) (DLIS
branching). Our reference for comparison was the default CDCL configuration
which enables all of these features. In the second set of experiments, we started
with CDCL under default settings for all options and explored the effect of a)
adding randomness to VSIDS branching, b) adding randomness to the initial
variable activities, c) adjusting the amount of conflict clause minimization, d)
changing the level of phase saving, and e) modifying the restart policy.
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Table 1: Benchmark families

Family Instances SAT UNS UNK Description

atpg 100 28 72 0 Circuit testing
bioinf 30 8 12 10 Bioinformatics
config 50 15 35 0 Product configuration
crypto 30 26 3 1 Cryptanalysis
equiv 30 5 25 0 Equivalence checking
fpga 50 25 22 3 FPGA routing
hbmc 250 88 146 16 Hardware bounded model checking
hverif 200 125 75 0 Hardware verification
netcfg 10 7 2 1 Network configuration
plan 80 51 24 5 Planning
sverif 120 57 52 11 Software verification
termrw 50 26 22 2 Term rewriting

Total: 1000 461 490 49

4 Benchmarks

We assembled a suite of 1000 CNF instances from 12 diverse application areas.
The list of benchmark families, along with the total number of instances (column
“Instances”), and the number of satisfiable, unsatisfiable and unknown instances
(columns “SAT”, “UNS” and “UNK”, respectively) are shown in Table 11. These
benchmarks were chosen based on a number of factors including:

– Representation of real-world problem domains where SAT had been success-
fully applied over the last decade and a half.

– Representation of benchmark archives that are used to rank solvers in SAT
Competitions (http://www.satcompetition.org/) and SAT Races (http:
//baldur.iti.uka.de/sat-race-2010/).

– Inclusion of a reasonable number of easy problem instances to enable all
solver configurations to finish on at least some instances.

– Weighting the participation of each family (in terms of the number of in-
stances representing it) by the relative success of applying SAT solving tech-
nology to that family in the recent past.

Our suite consists of benchmarks dated from the early 1990s to today. The
oldest benchmarks are from the atpg, plan, equiv and fpga families [19, 33,
28]. Of these, atpg has seen the most progress in the processing time of its
instances. Other families, such as config [35], hbmc [7], hverif [37, 21] and
sverif [4], represent application areas where SAT was extensively applied over
the years. The remaining benchmarks, netcfg [29], termrw [15], crypto [25], and
bioinf [8, 10], correspond to more recent application domains. The majority of

1 The status of each instance was determined by consulting publicly-available data at
various benchmark archives. We were unable to determine the status of 28 instances
and tagged them with UNK even though they may be known to be SAT or UNS.
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Fig. 1: Benchmark Statistics.

the instances in our suite have also appeared in SAT competitions. Note that
we did not include random benchmarks since a) such benchmarks, especially
random 3-SAT, have been studied extensively [26], and b) real-world applications
are rarely random.

Figures 1 and 2 provide a variety of statistics for the benchmark families. The
benchmarks cover a wide range with the smallest instance (50 variables and 159
clauses) coming from hbmc and the largest (2,270,930 variables and 8,901,845)
from netcfg. For the clause size distributions in Figure 2, we did not include
the percentage of 1-literal clauses, since they are eliminated prior to the search.

5 Experimental Evaluation

Our experiments were conducted on a cluster of servers at University College
Dublin (UCD) consisting of 3GHz CPUs with 32GB memory and running the
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Table 2: Number of instances solved by disabling major CDCL features

Family Runs ¬CL ¬VSIDS ¬2WL ¬RST CDCL

atpg 1000 965 1000 1000 1000 1000
bioinf 300 19 34 88 141 150
config 500 472 500 500 500 500
crypto 300 52 22 113 235 237
equiv 300 50 92 187 224 231
fpga 500 325 403 444 441 470
hbmc 2500 762 1872 2241 2307 2333

hverif 2000 1413 1700 1934 1967 1984
netcfg 100 0 20 60 74 87
plan 800 327 449 559 564 650

sverif 1200 336 592 937 754 1006
termrw 500 116 248 346 446 420

Total: 10000 4837 6932 8409 8653 9068

64-bit Linux operating system. To obtain meaningful statistical data, we used a
script that re-orders the variables and clauses in a CNF instance using a random
seed2 to create ten different versions of each benchmark. We then applied fifteen
different configurations of MiniSAT to each benchmark version for a total of
150,000 separate runs. Each run was allowed a maximum of 1000 CPU seconds.

5.1 Relative Contribution of Major CDCL Features

Table 2 and Figure 3 summarize the results of the first set of experiments. The
goal here was to determine the relative contribution to overall performance,
measured by the number of solved instances within the 1000-second time-out, of
each of the four CDCL features. This goal was achieved indirectly by disabling
the features one at a time as described earlier. Examination of these results leads
to the following conclusions:

– The number of instances solved by disabling each of the features suggests
the following ordering of their relative importance to solver performance: CL
> VSIDS > 2WL > RST. Specifically, disabling clause learning yields the
worst performance (finishing on only 4837 instances) followed by disabling
VSIDS (6932 instances solved), two-watched-literals (8409 instances solved)
and restarts (8653 instances solved). Another way of stating this is to note
that the solver configurations that include clause learning (namely, ¬VSIDS,
¬2WL, and ¬RST) dominate the configuration that excludes it. This is not
true of the other configurations, i.e., including a feature does not always yield
improved performance over excluding that feature. A more direct measure
of the relative importance of these features is to compare the configurations

2 We obtained the reorder.c script and a seed generator from Laurent Simon. The script
was originally written by Edward Hirsh and later modified by Simon to handle large
benchmarks.
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Fig. 3: The run time distribution of the four major CDCL features (data points for
timed-out runs are not shown to reduce clutter). These run times are averages over 10
runs per benchmark, and account for time-outs using maximum likelihood estimation
(MLE) [32]. With a 90% confidence level, 71% of those averages are accurate to within
25%. Higher accuracy can always be obtained by increasing the number of runs.

in which they are disabled against the CDCL configuration in which they
are all enabled. Using this measure, we see that enabling CL, VSIDS, 2WL,
and RST leads, respectively, to the solution of 4231, 2136, 659, and 415
additional instances.

– Configurations ¬VSIDS and CDCL differ only in the branching heuristic
and allow a direct comparison between DLIS and VSIDS. The number of
instances solved with VSIDS (9068 in configuration CDCL) is significantly
higher than the number solved with DLIS (6932 in configuration ¬VSIDS).
Two factors contribute to this performance advantage: a) the much lower
overhead of VSIDS compared to DLIS since it only updates activities when-
ever conflicts arise whereas DLIS updates literal counters every time a literal
is assigned/unassigned, b) the selection of literals occurring in the most re-
cent conflicts as opposed to literals occurring the most in unresolved clauses.

– Configurations ¬2WL and CDCL differ only in the implementation of BCP
and allow a direct comparison between counter-based and two-watched-
literal unit propagation. The number of instances solved with 2WL (9068
in configuration CDCL) is higher than the number solved with the counter-
based approach (8409 in configuration ¬2WL). This performance improve-
ment is also due to two factors: a) unlike the counter-based approach which
requires updating clause status during branching and backtracking, 2WL
propagation needs to update clause status only during branching, and b)
2WL propagation only needs to perform status updates when watched liter-
als are assigned to 0.

– Configurations ¬RST and CDCL differ only in whether restarts are disabled
or enabled (using the Luby strategy) and show that the impact of restarts,
compared with the other major features, is rather modest. Enabling Luby
restarts allows 9068 instances to be solved compared to 8653 instances solved
when restarts are disabled. To better understand the behavior of random
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Table 3: Number of instances solved under different MiniSAT options

Family CDCL rnd-freq rnd- ccmin-mode phase-saving no-

25 50 75 100 init none basic none limited luby

atpg 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
bioinf 150 133 107 72 46 150 139 149 150 150 148
config 500 500 500 500 50 500 500 500 500 500 500
crypto 237 67 63 49 35 228 214 223 219 234 243
equiv 231 221 216 181 162 231 220 222 224 235 224
fpga 470 456 453 444 421 470 471 468 454 463 462
hbmc 2333 2328 2322 2225 2057 2328 2328 2333 2318 2326 2315

hverif 1984 1989 1993 1997 1949 1984 1993 1991 1971 1997 1960
netcfg 87 76 75 60 72 80 76 77 74 74 67
plan 650 619 593 526 490 647 637 640 606 636 586

sverif 1006 915 858 762 302 1004 1003 996 976 967 944
termrw 420 416 407 378 291 420 416 417 426 424 444

Total: 9068 8720 8587 8194 7325 9042 8997 9016 8918 9006 8893

restarts, we examined their effect separately on the SAT and UNS instances.
Of the 10000 instances, Luby restarts (configuration CDCL) solved 4533
SAT instances and 4535 UNS instances and timed out on the remaining
932. When restarts were disabled, 4230 SAT and 4423 UNS instances were
solved and 1347 instances timed out. These results suggest that, surprisingly,
restarts do help for both SAT and UNS instances, but that they are more
helpful for SAT instances. However, additional analysis shows that the effect
of restarts is not always predictable. For instances, only 420 instances (250
SAT and 170 UNS) of the termrw family were solved with restarts whereas
446 (252 SAT and 194 UNS) were solved when restarts were disabled.

– Of the four features, CL and 2WL showed consistent improvement across all
instances when they were enabled. In contrast, the performance of VSIDS
and RST was more variable. On reflection, this is to be expected as VSIDS
and RST are heuristics whereas CL and 2WL are algorithmic optimizations.

As expected, enabling these four features (the CDCL configuration) yields the
best performance and explains why most competitive SAT solvers include them
in their implementations.

5.2 The Impact of Additional Options in CDCL Solvers

Table 3 reports the number of instances solved by MiniSAT (configuration
CDCL) when several of its options deviate from their default settings. Bolded
entries in the table indicate option settings that led to better performance than
the default. These results show that, overall, MiniSAT performs best under the
default settings. In some cases, however, changing a default setting yields slightly
improved performance. For example, adding some randomness to VSIDS helped
solve up to 13 more instances of the hverif family. Similarly, relaxing conflict
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clause minimization helped solve up to 9 more instances of the same family.
Relaxing phase saving was modestly helpful for the equiv, hverif and termrw
families. Finally, applying a power of 2 rather than the Luby restart strategy
helps solve more instances in the crypto and termrw families. Still, Luby is
generally more effective, confirming the earlier results reported by Huang [18].

One surprising anomaly in these experiments is the observation that a com-
pletely random branching strategy (option rnd-freq=100) solved more instances
(7325) than the DLIS heuristic (6932). However, DLIS branching solved 477 in-
stances that random branching failed to process! Such mixed results are hard to
explain without further detailed analysis of the specific instances involved and
any particular attributes they may have.

Finally, unlike the first set of experiments, it is not possible to draw general
conclusions from these results as it seems that the optimal values of such settings
need to be determined by trial and error. The options analyzed here are best
viewed as refinements added on top of the four major features of CDCL. This is
partly justified by noting that, unlike CL, VSIDS, 2WL and RST, the inclusion
or exclusion of these refinements has, at best, a modest impact on performance.

6 Conclusions

Much effort has been devoted over the past fifteen years to improve the capacity
and performance of SAT solvers that are architected around the CDCL frame-
work. On the other hand, few researchers have explored the interactions among
the various algorithmic and heuristic components of a modern CDCL solver to
determine their relative importance. And while such solvers are successful in pro-
cessing many practical instances, they still fail, unpredictably, on many others.
The question of why CDCL works well on certain instances and not so well on
others is rarely addressed in the literature. One of the few attempts to provide
a theoretical explanation for the success of clause learning is due to Beame et
al. [5] who show that, as a proof system, clause learning is more powerful than
regular and therefore DP resolution.

This paper should be viewed as a preliminary attempt to understand the
impact on performance of the primary and secondary features of a modern CDCL
solver. The ultimate goal should be the development of analytical/theoretical
models that relate the performance of a CDCL solver to key attributes of its
input SAT instances. Such attributes include the symmetries of CNF formulas
[2], the cut width of graph representations of CNF instances [9], and the scale-free
graph structure of industrial instances [3]. This will help spur further algorithmic
improvements as well as the development of customized SAT solvers that can
take advantage of such structural attributes.

Acknowledgement

This work was partially supported by SFI grant BEACON (09/PI/12618) and
by the United States National Science Foundation under Grant No. 0705103.



Empirical Study of Modern SAT Solver’s Anatomy 13

This paper is partly based on, and further extends, the article “Anatomy and
Empirical Evaluation of Modern SAT Solvers,” in Bull. of Euro. Assoc. for Theor.
Computer Science, vol. 103, pp. 96-121, February 2011.

References

1. M. L. Alistair, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas
algorithms. Information Processing Letters, 47:173–180, 1993.

2. F. Aloul, K. Sakallah, and I. Markov. Efficient symmetry breaking for boolean
satisfiability. Computers, IEEE Transactions on, 55(5):549 – 558, May 2006.
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