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Recap: Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly.

Recursive case: Otherwise

Divide the problem into disjoint subproblems
that are smaller instances of the same
problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

Examples: Strassen’s algorithm for multiplying square matrices,
merge sort
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Dynamic Programming

Dynamic programming solves a problem by solving overlapping
subproblems and combining their solutions.

Requirements:

optimal substructure: (optimal) solutions of subproblems can
be combined to (optimal) solutions of original problem

overlapping subproblems: solving the subproblems requires
solving common subsubproblems.

Solve each subsubproblem only once and store its solution.
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Two Variants

Top-down: Recursively call the algorithm for subproblems. If
there already is a stored solution for the subproblem, use it.
Otherwise solve it (recursively) and memoize its solution.

Bottom-up: Solve the smallest subproblems first and combine
their solutions into solutions of larger and larger subproblems.
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Example: Fibonacci Numbers

The n-th Fibonacci number is

Fib(n) =


0 if n = 0

1 if n = 1

Fib(n − 1) + Fib(n − 2) otherwise.

We want to compute the n-th Fibonacci number.
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Naive Implementation

def fibonacci(n):

if n <= 1:

return n

else:

return fibonacci(n-1) + fibonacci(n-2)

Exponential running time!
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Dynamic Programming: Top-Down Variant

values = {0 : 0, 1 : 1}

def fibonacci(n):

if n not in values:

values[n] = fibonacci(n-1) + fibonacci(n-2)

return values[n]

Linear running time
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Dynamic Programming: Bottom-up Variant

def fibonacci(n):

if n <= 1:

return n

prev_fib = 0

curr_fib = 1

for i in range(2, n+1):

next_fib = prev_fib + curr_fib

prev_fib = curr_fib

curr_fib = next_fib

return curr_fib

Linear running time
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Greedy Algorithms

A greedy algorithm always makes the choice that looks best at
the moment (locally optimal choice).

Some problems can be solved optimally with a greedy
algorithm, but in general they lead to suboptimal solutions.



Divide and Conquer Dynamic Programming Greedy Algorithms

Example: Prim’s Algorithm for Minimum Spanning Trees

Prim’s Algorithm

Choose a random node as initial tree.

Let the tree grow by one additional edge in each step.

Always add an edge of minimal weight
that has exactly one end point in the tree.
→ locally optimal choice of edge

Stop after adding |V | − 1 edges.
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Knapsack Problem

A burglar wants to steal items from a house and
can carry at most K kilos.

There are n items, where the ith items is worth vi CHF and
weights wi kilos.

The burglar wants to maximize the value of the stolen items.
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Knapsack Problem: Greedy Strategy

Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .

Not guaranteed to lead to an optimal solution
e.g. K = 30,w1 = 20, v1 = 20,w2 = w3 = 15.v2 = v3 = 12
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Variant: Fractional Knapsack Problem

In the fractional variant, the burglar can take away fractional
amounts of an item.
Think of the items as bags of gold dust.

Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .
If at the end there is room for a fraction of the next best
item, take that fraction.

Greedy strategy solves the problem optimally.
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