
Algorithms and Data Structures
C8. Concepts

Gabriele Röger and Patrick Schnider

University of Basel

May 28, 2025

Divide and Conquer Dynamic Programming Greedy Algorithms

Divide and Conquer

Divide and Conquer Dynamic Programming Greedy Algorithms

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

Divide and Conquer Dynamic Programming Greedy Algorithms

Recap: Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly.

Recursive case: Otherwise

Divide the problem into disjoint subproblems
that are smaller instances of the same
problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

Examples: Strassen’s algorithm for multiplying square matrices,
merge sort

Divide and Conquer Dynamic Programming Greedy Algorithms

Dynamic Programming

Divide and Conquer Dynamic Programming Greedy Algorithms

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

Divide and Conquer Dynamic Programming Greedy Algorithms

Dynamic Programming

Dynamic programming solves a problem by solving overlapping
subproblems and combining their solutions.

Requirements:

optimal substructure: (optimal) solutions of subproblems can
be combined to (optimal) solutions of original problem

overlapping subproblems: solving the subproblems requires
solving common subsubproblems.

Solve each subsubproblem only once and store its solution.

Divide and Conquer Dynamic Programming Greedy Algorithms

Dynamic Programming

Dynamic programming solves a problem by solving overlapping
subproblems and combining their solutions.

Requirements:

optimal substructure: (optimal) solutions of subproblems can
be combined to (optimal) solutions of original problem

overlapping subproblems: solving the subproblems requires
solving common subsubproblems.

Solve each subsubproblem only once and store its solution.

Divide and Conquer Dynamic Programming Greedy Algorithms

Dynamic Programming

Dynamic programming solves a problem by solving overlapping
subproblems and combining their solutions.

Requirements:

optimal substructure: (optimal) solutions of subproblems can
be combined to (optimal) solutions of original problem

overlapping subproblems: solving the subproblems requires
solving common subsubproblems.

Solve each subsubproblem only once and store its solution.

Divide and Conquer Dynamic Programming Greedy Algorithms

Two Variants

Top-down: Recursively call the algorithm for subproblems. If
there already is a stored solution for the subproblem, use it.
Otherwise solve it (recursively) and memoize its solution.

Bottom-up: Solve the smallest subproblems first and combine
their solutions into solutions of larger and larger subproblems.

Divide and Conquer Dynamic Programming Greedy Algorithms

Example: Fibonacci Numbers

The n-th Fibonacci number is

Fib(n) =


0 if n = 0

1 if n = 1

Fib(n − 1) + Fib(n − 2) otherwise.

We want to compute the n-th Fibonacci number.

Divide and Conquer Dynamic Programming Greedy Algorithms

Naive Implementation

def fibonacci(n):

if n <= 1:

return n

else:

return fibonacci(n-1) + fibonacci(n-2)

Exponential running time!

Divide and Conquer Dynamic Programming Greedy Algorithms

Dynamic Programming: Top-Down Variant

values = {0 : 0, 1 : 1}

def fibonacci(n):

if n not in values:

values[n] = fibonacci(n-1) + fibonacci(n-2)

return values[n]

Linear running time

Divide and Conquer Dynamic Programming Greedy Algorithms

Dynamic Programming: Bottom-up Variant

def fibonacci(n):

if n <= 1:

return n

prev_fib = 0

curr_fib = 1

for i in range(2, n+1):

next_fib = prev_fib + curr_fib

prev_fib = curr_fib

curr_fib = next_fib

return curr_fib

Linear running time

Divide and Conquer Dynamic Programming Greedy Algorithms

Greedy Algorithms

Divide and Conquer Dynamic Programming Greedy Algorithms

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

Divide and Conquer Dynamic Programming Greedy Algorithms

Greedy Algorithms

A greedy algorithm always makes the choice that looks best at
the moment (locally optimal choice).

Some problems can be solved optimally with a greedy
algorithm, but in general they lead to suboptimal solutions.

Divide and Conquer Dynamic Programming Greedy Algorithms

Example: Prim’s Algorithm for Minimum Spanning Trees

Prim’s Algorithm

Choose a random node as initial tree.

Let the tree grow by one additional edge in each step.

Always add an edge of minimal weight
that has exactly one end point in the tree.
→ locally optimal choice of edge

Stop after adding |V | − 1 edges.

Divide and Conquer Dynamic Programming Greedy Algorithms

Knapsack Problem

A burglar wants to steal items from a house and
can carry at most K kilos.

There are n items, where the ith items is worth vi CHF and
weights wi kilos.

The burglar wants to maximize the value of the stolen items.

Divide and Conquer Dynamic Programming Greedy Algorithms

Knapsack Problem: Greedy Strategy

Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .

Not guaranteed to lead to an optimal solution
e.g. K = 30,w1 = 20, v1 = 20,w2 = w3 = 15.v2 = v3 = 12

Divide and Conquer Dynamic Programming Greedy Algorithms

Variant: Fractional Knapsack Problem

In the fractional variant, the burglar can take away fractional
amounts of an item.
Think of the items as bags of gold dust.

Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .
If at the end there is room for a fraction of the next best
item, take that fraction.

Greedy strategy solves the problem optimally.

	Divide and Conquer
	

	Dynamic Programming
	

	Greedy Algorithms
	

