Algorithms and Data Structures C6. Shortest Paths: Algorithms

Gabriele Röger and Patrick Schnider

University of Basel

May 21, 2025

Edsger Dijkstra

Edsger Dijkstra

- Dutch mathematician, 1930–2002
- Advocate and co-developer of structured programming
 - Contributed to the development of programming language Algol 60
 - 1968: Essay "Go To Statement Considered Harmful"
- 1959: Shortest-path algorithm
- Winner of Turing Award (1972)

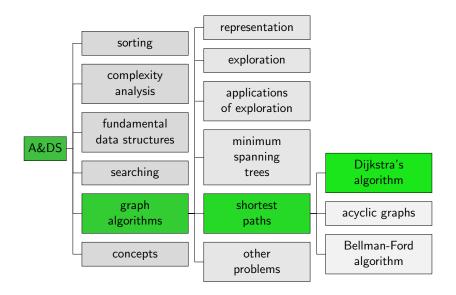
"Do only what only you can do."

Dijkstra's Algorithm

Dijkstra's Algorithm

Content of the Course

Dijkstra's Algorithm



Dijkstra's Algorithm

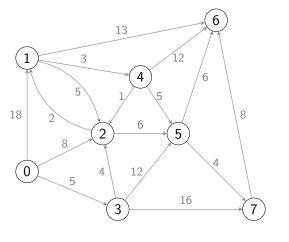
Dijkstra's Algorithm: High-Level Perspective

Dijkstra's algorithm (for non-negative edge weights)

Grow shortest-paths tree starting from vertex s:

- Consider vertices (that are not yet in the tree) in increasing order of their distance from s.
- Add the next vertex to the tree and relax its outgoing edges.

Dijkstra's Algorithm



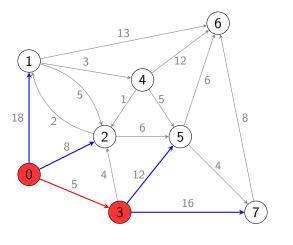
0	0
1	∞
2	\propto
3	\propto
4	∞
5	∞
6	\propto
7	\propto

Dijkstra's Algorithm

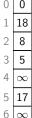


1	18
2	8
3	5
4	∞
5	∞
6	∞
7	∞

Dijkstra's Algorithm

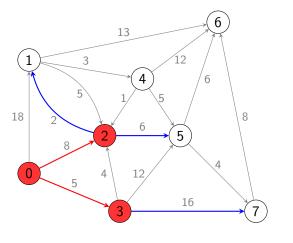


distance



Dijkstra's Algorithm

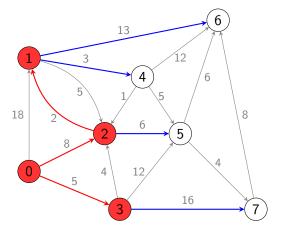
Dijkstra's Algorithm: Illustration



distance

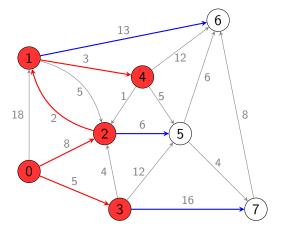
U	U
1	10
2	8
3	5
4	∞
5	14
6	\sim

Dijkstra's Algorithm



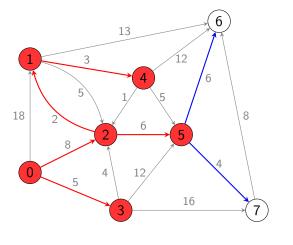
distance

Dijkstra's Algorithm

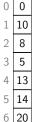


distance

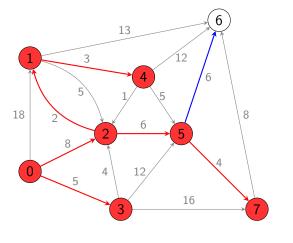
Dijkstra's Algorithm



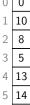
distance

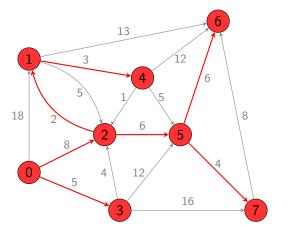


Dijkstra's Algorithm



distance





distance

Data Structures

Dijkstra's Algorithm

edge_to: vertex-indexed array, containing at position v the last edge of a shortest known path.

Data Structures

Dijkstra's Algorithm 00000000

- edge_to: vertex-indexed array, containing at position v the last edge of a shortest known path.
- **distance**: vertex-indexed array, containing at position v the cost of the shortest known paths from the start vertex to v.

Data Structures

- edge_to: vertex-indexed array, containing at position v the last edge of a shortest known path.
- **distance**: vertex-indexed array, containing at position v the cost of the shortest known paths from the start vertex to v.
- pq: indexed priority queue of vertices
 - vertex not yet in the tree
 - some path to the vertex is known
 - sorted by the cost of the shortest known path to the vertex.

Dijkstra's Algorithm

```
1 class DijkstraSSSP:
      def __init__(self, graph, start_node):
2
           self.edge_to = [None] * graph.no_nodes()
3
           self.distance = [float('inf')] * graph.no_nodes()
4
           pq = IndexMinPQ()
5
           self.distance[start node] = 0
6
7
           pq.insert(start_node, 0)
           while not pq.empty():
8
               self.relax(graph, pq.del_min(), pq)
9
10
      def relax(self, graph, v, pq):
11
           for edge in graph.outgoing_edges(v):
12
               w = edge.to_node()
13
               if self.distance[v] + edge.weight() < self.distance[w]:
14
                   self.edge_to[w] = edge
15
                   self.distance[w] = self.distance[v] + edge.weight()
16
                   if pq.contains(w):
17
                       pq.change(w, self.distance[w])
18
                   else:
19
                       pq.insert(w, self.distance[w])
20
```

Dijkstra's Algorithm

$\mathsf{Theorem}$

Dijkstra's algorithm solves the single-source shortest path problem in digraphs with non-negative edge weights.

Proof.

- If v is reachable from the start vertex, every outgoing edge e = (v, w) will be relaxed exactly once (when v is relaxed).
- It then holds that $distance[w] \leq distance[v] + weight(e)$.
- Inequality stays satisfied:
 - distance[v] won't be changed because the value was minimal and there are no negative edge weights.
 - distance[w] can only become smaller.
- If all reachable edges have been relaxed, the optimality criterion is satisfied.

Comparison to Prim's Algorithm

Dijkstra's Algorithm

Dijkstra's algorithm is very similar to the eager variant of Prim's algorithm for minimum spanning trees.

- Both successively grow a tree.
- Prim's next vertex: minimal distance from the grown tree.
- Dijkstra's next vertex: minimal distance from the start vertex.

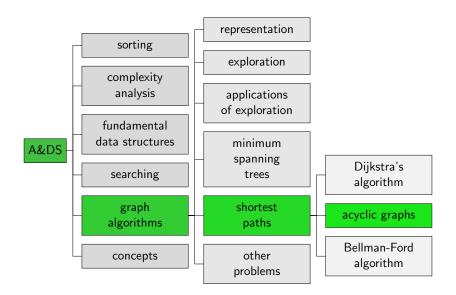
Dijkstra's algorithm is very similar to the eager variant of Prim's algorithm for minimum spanning trees.

- Both successively grow a tree.
- Prim's next vertex: minimal distance from the grown tree.
- Dijkstra's next vertex: minimal distance from the start vertex.

Running time $O(|E|\log|V|)$ and memory O(|V|) directly transfer.

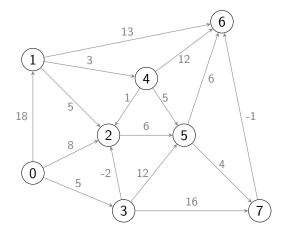
Acyclic Graphs

Content of the Course



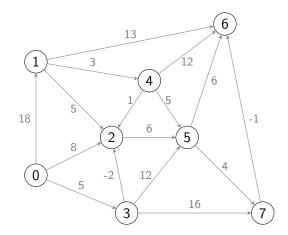
Exploiting Acyclicity

Given: acyclic weighted digraph



Can we exploit acylicity during the computation of shortest paths?

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6

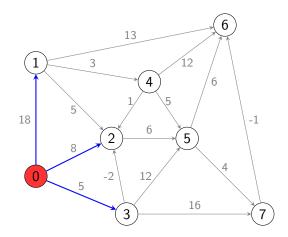


distance

0	0	
1	∞	
2	∞	
3	∞	
4	∞	
5	∞	

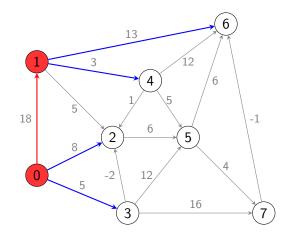
 ∞ ∞

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



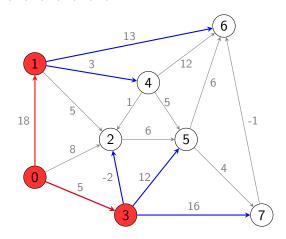
distan		
0	0	
1	18	
2	8	
3	5	
4	∞	
5	∞	
6	∞	
7	\sim	

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



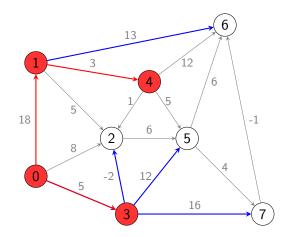
uistan		
0	0	
1	18	
2	8	
3	5	
4	21	
5	∞	
6	31	
7	∞	

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



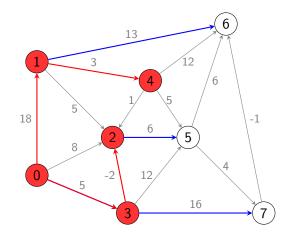
arboan		
0	0	
1	18	
2	3	
3	5	
4	21	
5	17	
6	31	
7	21	

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



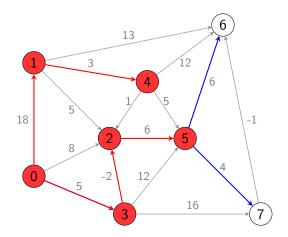
uistan		
0	0	
1	18	
2	3	
3	5	
4	21	
5	17	
6	31	
7	21	

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



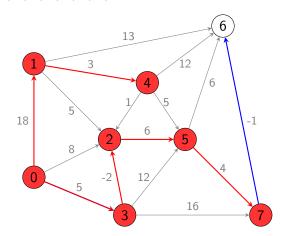
distant		
0	0	
1	18	
2	3	
3	5	
4	21	
5	9	
6	31	
7	21	

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



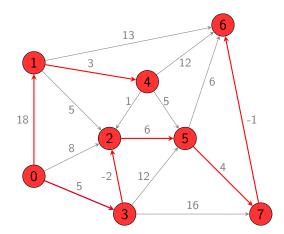
		- '
0	0	
1	18	
2	3	
3	5	
4	21	
5	9	
6	15	
7	13	

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



arstand		
0	0	
1	18	
2	3	
3	5	
4	21	
5	9	
6	12	
7	13	

Idea: Relax vertices in topological order e.g. 0, 1, 3, 4, 2, 5, 7, 6



0	0	
1	18	
2	3	
3	5	
4	21	
5	9	
6	12	
7	13	

Theorem

Theorem

Relaxing the vertices in topological order, we can solve the single-source shortest path problem for weighted acyclic digraphs in time O(|E| + |V|).

Theorem

$\mathsf{Theorem}$

Relaxing the vertices in topological order, we can solve the single-source shortest path problem for weighted acyclic digraphs in time O(|E| + |V|).

Proof.

- Every edge e = (v, w) gets relaxed exactly once. Directly afterwards it holds that $distance[w] \leq distance[v] + weight(e)$.
- Inequality satisfied until termination
 - distance[w] never becomes larger.
 - distance[v] does not get changed anymore because all incoming edges have already been relaxed.
- Optimality criterion is satisfied at termination.

Related Problems: Longest Path

Definition (Longest paths in acyclic graphs)

Given: weighted acyclic digraph, start vertex s

Question: Is there a path from s to vertex v?

If yes, return such a path with maximum weight.

Related Problems: Longest Path

Definition (Longest paths in acyclic graphs)

Given: weighted acyclic digraph, start vertex s

Question: Is there a path from s to vertex v?

If yes, return such a path with maximum weight.

Multiply all weights with -1 and use shortest-path algorithm.

Given:

- Set of jobs a, each requires time t_a
- Constraints $a \rightarrow a'$, requiring that a must have been finished before a' can be started (in solvable problems acyclic).

Given:

- Set of jobs a, each requires time t_a
- Constraints $a \rightarrow a'$, requiring that a must have been finished before a' can be started (in solvable problems acyclic).

Question:

- Assumption: We can do arbitrarily many jobs in parallel.
- How long do we need for getting all jobs done?

Create a weighted digraph:

- Vertices s, e + for every job a two vertices a_s and a_e
- for all a:
 - \blacksquare edge (s, a_s) with weight 0
 - \blacksquare edge (a_e, e) with weight 0
 - \blacksquare edge (a_s, a_e) with weight t_a
- for every constraint $a \to a'$ edge (a_e, a'_s) with weight 0

Create a weighted digraph:

- Vertices s, e + for every job a two vertices a_s and a_e
- for all a:
 - edge (s, a_s) with weight 0
 - edge (a_e, e) with weight 0
 - edge (a_s, a_e) with weight t_a
- for every constraint $a \to a'$ edge $(a_{\mathsf{e}}, a'_{\mathsf{s}})$ with weight 0

Critical path for job a is longest path from s to a_s . Define start time for a as weight of a critical path.

Create a weighted digraph:

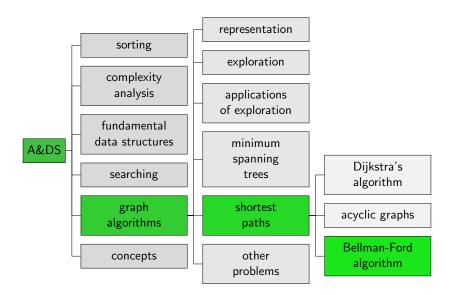
- Vertices s, e + for every job a two vertices a_s and a_e
- for all a.
 - \blacksquare edge (s, a_s) with weight 0
 - \blacksquare edge (a_e, e) with weight 0
 - \blacksquare edge (a_s, a_e) with weight t_a
- for every constraint $a \to a'$ edge (a_e, a'_s) with weight 0

Critical path for job a is longest path from s to a_s .

- Define start time for a as weight of a critical path.
- → Results in optimal total execution time (= weight of longest path from s to e)

Bellman-Ford Algorithm

Content of the Course



Problem

- With negative edge weights there can be negative cycles, i.e. cycles, where the sum of edge weights is negative.
- If a vertex of such a cycle is on a path from s to v, we can find paths whose weight is lower than any given value.
 - \rightarrow not a well-defined problem
- Alternative question: Find a shortest simple path?
 - → NP-hard (= very hard) problem

Question

In many practical applications, negative cycles indicate a modeling error.

New Questions

Given: Weighted digraph, start vertex s

Question: Is there a negative cycle that is reachable from s?

If not, compute the shortest-path tree

to all reachable vertices.

Bellman-Ford Algorithm: High-Level Perspective

In graphs without negative cycles (but with negative weights);

Bellman-Ford Algorithm

- Initialize distance[s] = 0 for start vertex s, $distance[n] = \infty$ for all other vertices.
- Afterwards |V| iterations, each relaxing all edges.

Bellman-Ford Algorithm: High-Level Perspective

In graphs without negative cycles (but with negative weights);

Bellman-Ford Algorithm

- Initialize distance[s] = 0 for start vertex s, $distance[n] = \infty$ for all other vertices.
- Afterwards |V| iterations, each relaxing all edges.

Proposition

The approach solves the single-source shortest path problem for graphs without negative cycles in time O(|E||V|) and with additional memory O(|V|).

Proof idea: After i iterations, every found path to ν has at most the weight as any path to v with at most i edges.

More Efficient Variant

- If distance[v] did not change in iteration i, relaxing an outgoing edge of v in iteration i + 1 has no effect.
- Idea: Remember the vertices with a changed distance in a queue.
- Does not improve the worst-case behavior but in practice much faster.

What about Negative Cycles?

- If no negative cycles is reachable from s, then in the |V|-th iteration no vertex distance will get updated anymore.
- If there is a reachable negative cycle, this will lead to a cycle in the edges stored in edge_to.
- In practice, we test this after relaxing the outgoing edges of certain number of vertices (e.g. |V| many).

Bellman-Ford Algorithm

```
1 class BellmanFordSSSP:
      def __init__(self, graph, start_node):
           self.edge_to = [None] * graph.no_nodes()
3
           self.distance = [float('inf')] * graph.no_nodes()
4
           self.in_queue = [False] * graph.no_nodes()
5
           self.queue = deque()
6
           self.calls_to_relax = 0
           self.cycle = None
8
9
           self.distance[start_node] = 0
10
           self.queue.append(start_node)
11
           self.in_queue[start_node] = True
12
           while (not self.has_negative_cycle() and
13
                  self.queue): # queue not empty
14
               node = self.queue.popleft()
15
               self.in_queue[node] = False
16
               self.relax(graph, node)
17
18
```

Bellman-Ford Algorithm (Continued)

```
def relax(self, graph, v):
19
           for edge in graph.outgoing_edges(v):
20
               w = edge.to_node()
21
               if self.distance[v] + edge.weight() < self.distance[w]:</pre>
22
                    self.edge_to[w] = edge
23
                    self.distance[w] = self.distance[v] + edge.weight()
24
                    if not self.in_queue[w]:
25
                        self.queue.append(w)
26
                        self.in_queue[w] = True
27
           self.calls_to_relax += 1
28
           if self.calls_to_relax % graph.no_nodes() == 0:
29
               self.find_negative_cycle()
30
31
```

Bellman-Ford Algorithm (Continued)

```
def has_negative_cycle(self):
32
           return self.cycle is not None
33
34
      def find_negative_cycle(self):
35
           no nodes = len(self.distance)
36
           graph = EdgeWeightedDigraph(no_nodes)
37
           for edge in self.edge_to:
38
               if edge is not None:
39
                   graph.add_edge(edge)
40
41
           cycle_finder = WeightedDirectedCycle(graph)
42
           self.cycle = cycle_finder.get_cycle()
43
```

WeightedDirectedCycle detects directed cycles in weighted graphs.

→ Sequence of depth-first searches as in DirectedCycle (C2)

Summary

Summary

- Non-negative weights
 - Very common problem.
 - Dijkstra's Algorithm with running time $O(|E| \log |V|)$
- Acyclic Graphs
 - Should be exploited if it occurs in an application.
 - With topological order in linear time O(|E| + |V|)
- Negative weights or negative cycles
 - If there is no negative cycle, the Bellman-Ford algorithm finds shortest paths.
 - Otherwise it identifies a negative cycle.