
Algorithms and Data Structures
C6. Shortest Paths: Algorithms

Gabriele Röger and Patrick Schnider

University of Basel

May 21, 2025

1 / 31

Algorithms and Data Structures
May 21, 2025 — C6. Shortest Paths: Algorithms

C6.1 Dijkstra’s Algorithm

C6.2 Acyclic Graphs

C6.3 Bellman-Ford Algorithm

C6.4 Summary

2 / 31

Edsger Dijkstra

Edsger Dijkstra

▶ Dutch mathematician, 1930–2002
▶ Advocate and co-developer of structured

programming
▶ Contributed to the development of

programming language Algol 60
▶ 1968: Essay “Go To Statement

Considered Harmful”

▶ 1959: Shortest-path algorithm

▶ Winner of Turing Award (1972)

“Do only what only you can do.”

3 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

C6.1 Dijkstra’s Algorithm

4 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

shortest
paths

Dijkstra’s
algorithm

acyclic graphs

Bellman-Ford
algorithm

other
problems

concepts

5 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

Dijkstra’s Algorithm: High-Level Perspective

Dijkstra’s algorithm (for non-negative edge weights)

Grow shortest-paths tree starting from vertex s:

▶ Consider vertices (that are not yet in the tree) in increasing
order of their distance from s.

▶ Add the next vertex to the tree and relax its outgoing edges.

6 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

Dijkstra’s Algorithm: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 13

5 14

6 20

7 18

7 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

Data Structures

▶ edge to: vertex-indexed array, containing at position v
the last edge of a shortest known path.

▶ distance: vertex-indexed array, containing at position v the
cost of the shortest known paths from the start vertex to v .

▶ pq: indexed priority queue of vertices
▶ vertex not yet in the tree
▶ some path to the vertex is known
▶ sorted by the cost of the shortest known path to the vertex.

8 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

Dijkstra’s Algorithm

1 class DijkstraSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 pq = IndexMinPQ()

6 self.distance[start_node] = 0

7 pq.insert(start_node, 0)

8 while not pq.empty():

9 self.relax(graph, pq.del_min(), pq)

10

11 def relax(self, graph, v, pq):

12 for edge in graph.outgoing_edges(v):

13 w = edge.to_node()

14 if self.distance[v] + edge.weight() < self.distance[w]:

15 self.edge_to[w] = edge

16 self.distance[w] = self.distance[v] + edge.weight()

17 if pq.contains(w):

18 pq.change(w, self.distance[w])

19 else:

20 pq.insert(w, self.distance[w])

9 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

Correctness

Theorem
Dijkstra’s algorithm solves the single-source shortest path
problem in digraphs with non-negative edge weights.

Proof.
▶ If v is reachable from the start vertex, every outgoing edge

e = (v ,w) will be relaxed exactly once (when v is relaxed).

▶ It then holds that distance[w] ≤ distance[v] + weight(e).
▶ Inequality stays satisfied:

▶ distance[v] won’t be changed because the value was minimal
and there are no negative edge weights.

▶ distance[w] can only become smaller.

▶ If all reachable edges have been relaxed, the optimality
criterion is satisfied.

10 / 31

C6. Shortest Paths: Algorithms Dijkstra’s Algorithm

Comparison to Prim’s Algorithm

Dijkstra’s algorithm is very similar to the eager variant of Prim’s
algorithm for minimum spanning trees.

▶ Both successively grow a tree.

▶ Prim’s next vertex: minimal distance from the grown tree.

▶ Dijkstra’s next vertex: minimal distance from the start vertex.

Running time O(|E | log |V |) and memory O(|V |) directly transfer.

11 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

C6.2 Acyclic Graphs

12 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

shortest
paths

Dijkstra’s
algorithm

acyclic graphs

Bellman-Ford
algorithm

other
problems

concepts

13 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

Exploiting Acyclicity

Given: acyclic weighted digraph

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

Can we exploit acylicity during the computation of shortest paths?

14 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

Example

Idea: Relax vertices in topological order
Idea: e.g. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 9

6 12

7 13

15 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

Theorem

Theorem
Relaxing the vertices in topological order, we can solve the
single-source shortest path problem for weighted acyclic digraphs
in time O(|E |+ |V |).

Proof.
▶ Every edge e = (v ,w) gets relaxed exactly once.

Directly afterwards it holds that
distance[w] ≤ distance[v] + weight(e).

▶ Inequality satisfied until termination
▶ distance[w] never becomes larger.
▶ distance[v] does not get changed anymore

because all incoming edges have already been relaxed.

→ Optimality criterion is satisfied at termination.

16 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

Related Problems: Longest Path

Definition (Longest paths in acyclic graphs)

Given: weighted acyclic digraph, start vertex s
Question: Is there a path from s to vertex v?

If yes, return such a path with maximum weight.

Multiply all weights with −1 and use shortest-path algorithm.

17 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

Related Problems: Critical Path

Given:

▶ Set of jobs a, each requires time ta
▶ Constraints a → a′, requiring that a must have been finished

before a′ can be started (in solvable problems acyclic).

Question:

▶ Assumption: We can do arbitrarily many jobs in parallel.

▶ How long do we need for getting all jobs done?

18 / 31

C6. Shortest Paths: Algorithms Acyclic Graphs

Related Problems: Critical Path

Create a weighted digraph:

▶ Vertices s, e + for every job a two vertices as and ae
▶ for all a:

▶ edge (s, as) with weight 0
▶ edge (ae, e) with weight 0
▶ edge (as, ae) with weight ta

▶ for every constraint a → a′ edge (ae, a
′
s) with weight 0

Critical path for job a is longest path from s to as.
Define start time for a as weight of a critical path.
→ Results in optimal total execution time

(= weight of longest path from s to e)

19 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

C6.3 Bellman-Ford Algorithm

20 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

shortest
paths

Dijkstra’s
algorithm

acyclic graphs

Bellman-Ford
algorithm

other
problems

concepts

21 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

Problem

▶ With negative edge weights there can be negative cycles, i.e.
cycles, where the sum of edge weights is negative.

▶ If a vertex of such a cycle is on a path from s to v , we can
find paths whose weight is lower than any given value.
→ not a well-defined problem

▶ Alternative question: Find a shortest simple path?
→ NP-hard (= very hard) problem

22 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

Question

In many practical applications, negative cycles indicate a modeling
error.

New Questions

Given: Weighted digraph, start vertex s

Question: Is there a negative cycle that is reachable from s?
If not, compute the shortest-path tree
to all reachable vertices.

23 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

Bellman-Ford Algorithm: High-Level Perspective

In graphs without negative cycles (but with negative weights);

Bellman-Ford Algorithm
▶ Initialize distance[s] = 0 for start vertex s,

distance[n] = ∞ for all other vertices.

▶ Afterwards |V | iterations, each relaxing all edges.

Proposition

The approach solves the single-source shortest path problem for
graphs without negative cycles in time O(|E ||V |) and with
additional memory O(|V |).

Proof idea: After i iterations, every found path to v has at most
the weight as any path to v with at most i edges.

24 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

More Efficient Variant

▶ If distance[v] did not change in iteration i , relaxing an
outgoing edge of v in iteration i + 1 has no effect.

▶ Idea: Remember the vertices with a changed distance
in a queue.

▶ Does not improve the worst-case behavior but in practice
much faster.

25 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

What about Negative Cycles?

▶ If no negative cycles is reachable from s, then in the |V |-th
iteration no vertex distance will get updated anymore.

▶ If there is a reachable negative cycle, this will lead to a cycle
in the edges stored in edge to.

▶ In practice, we test this after relaxing the outgoing edges of
certain number of vertices (e.g. |V | many).

26 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

Bellman-Ford Algorithm

1 class BellmanFordSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 self.in_queue = [False] * graph.no_nodes()

6 self.queue = deque()

7 self.calls_to_relax = 0

8 self.cycle = None

9

10 self.distance[start_node] = 0

11 self.queue.append(start_node)

12 self.in_queue[start_node] = True

13 while (not self.has_negative_cycle() and

14 self.queue): # queue not empty

15 node = self.queue.popleft()

16 self.in_queue[node] = False

17 self.relax(graph, node)

18

27 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

Bellman-Ford Algorithm (Continued)

19 def relax(self, graph, v):

20 for edge in graph.outgoing_edges(v):

21 w = edge.to_node()

22 if self.distance[v] + edge.weight() < self.distance[w]:

23 self.edge_to[w] = edge

24 self.distance[w] = self.distance[v] + edge.weight()

25 if not self.in_queue[w]:

26 self.queue.append(w)

27 self.in_queue[w] = True

28 self.calls_to_relax += 1

29 if self.calls_to_relax % graph.no_nodes() == 0:

30 self.find_negative_cycle()

31

28 / 31

C6. Shortest Paths: Algorithms Bellman-Ford Algorithm

Bellman-Ford Algorithm (Continued)

32 def has_negative_cycle(self):

33 return self.cycle is not None

34

35 def find_negative_cycle(self):

36 no_nodes = len(self.distance)

37 graph = EdgeWeightedDigraph(no_nodes)

38 for edge in self.edge_to:

39 if edge is not None:

40 graph.add_edge(edge)

41

42 cycle_finder = WeightedDirectedCycle(graph)

43 self.cycle = cycle_finder.get_cycle()

WeightedDirectedCycle detects directed cycles in weighted
graphs.
→ Sequence of depth-first searches as in DirectedCycle (C2)

29 / 31

C6. Shortest Paths: Algorithms Summary

C6.4 Summary

30 / 31

C6. Shortest Paths: Algorithms Summary

Summary

▶ Non-negative weights
▶ Very common problem.
▶ Dijkstra’s Algorithm with running time O(|E | log |V |)

▶ Acyclic Graphs
▶ Should be exploited if it occurs in an application.
▶ With topological order in linear time O(|E |+ |V |)

▶ Negative weights or negative cycles
▶ If there is no negative cycle, the Bellman-Ford algorithm finds

shortest paths.
▶ Otherwise it identifies a negative cycle.

31 / 31

	Dijkstra's Algorithm
	

	Acyclic Graphs
	

	Bellman-Ford Algorithm
	

	Summary
	

