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Undirected Graphs

In chapter C4 we only consider undirected graphs.
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Trees in Undirected Graphs

Definition
A tree is an acyclic connected graph.
A forest is an acyclic graph.
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Properties of Trees
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For every tree it holds that:

▶ Every pair of distinct vertices is connected by exactly one
simple path (simple = no vertex occurs more than once).

▶ If we remove an edge, the graph becomes disconnected with
two connected components.

▶ If we add an edge, we create a cycle.
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Subgraph

Definition

Graph G ′ = (V ′,E ′) is a subgraph of graph G = (V ,E )
if V ′ ⊆ V and E ′ ⊆ E .
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Spanning Tree

Definition
A spanning tree of a connected graph is a subgraph that contains
all vertices of the graph and is a tree.
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How many edges does a spanning tree have?

9 / 57



C4. Minimum Spanning Trees Minimum Spanning Trees

Weighted Graphs

Definition

An (edge-)weighted graph associates every edge e
with a weight (or cost) weight(e) ∈ R.
The weight of graph G = (V ,E ) is the sum
weight(G ) =

∑
e∈E weight(e) of its edge weights.

0

1

2

3

4

5

6

7

43.4

45

65.7

54.9

80
.3

86.1

52.2 59.4

73.9

10 / 57



C4. Minimum Spanning Trees Minimum Spanning Trees

Minimum Spanning Trees

Definition (Minimum Spanning Tree Problem, MST Problem)

Given: Connected weighted undirected graph
Objective: Spanning tree with minimum weight

(there is no spanning tree with a lower sum
of edge weights).
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Application: Clustering for Tumor Detection
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Application: Identity Recognition
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Application: Cell Nuclei Segmentation in Microscopy
Images
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Applications

▶ Network design
▶ e.g. telecommunication networks, power networks

▶ Segmentation
▶ e.g. of cell nuclei in microscopy images

▶ Cluster analysis
▶ e.g. of cell nuclei for cancer diagnosis

▶ Approximation of hard graph problems
▶ Steiner trees, Traveling Salesperson

▶ Many indirect applications
▶ LDPC error-correcting codes
▶ Features for face recognition
▶ Ethernet protocol for avoiding cycles in broadcasting
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C4.2 Generic Algorithm
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C4. Minimum Spanning Trees Generic Algorithm

Generic Algorithm

For a subset A of the edges of a MST, we call edge e safe for A
if A ∪ {e} is also a subset of the edges of a MST.

Input: Connected, undirected, weighted graph G = (V ,E )

1 A := ∅
2 While (V ,A) does not form a spanning tree of G :

▶ Find an edge e that is safe for A.
▶ A = A ∪ {e}

3 Return (V ,A)
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Cuts in Graphs

Definition

Let G = (V ,E ) be an undirected graph.
A cut (V ′,V \ V ′) partitions the vertices.

An edge crosses the cut if one of its endpoints is in V ′

and the other endpoint in V \ V ′.
The cut respects a set of edges A ⊂ E if no e ∈ A crosses the cut.
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Sufficient Criterion for Safe Edges

Theorem

Let G = (V ,E ) be a connected, undirected, weighted graph.

Let A ⊆ E be a subset of the edges of some minimum spanning
tree for G.

Let (S ,V \S) be any cut of G that respects A and let e be an edge
crossing the cut that has minimum weight among all such edges.

Then e is safe for A.
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Sufficient Criterion for Safe Edges

Proof
Let T be a MST that includes A. If it includes e, we are done.

Otherwise we construct from T a MST T ′ that includes A ∪ {e}.

Let u and v be the end points of e. The edge e forms a cycle with
the edges on the simple path p from u to v in T .

Since e crosses the cut, path p must contain at least one edge that
also crosses the cut. Let e ′ = {x , z} be such an edge. Edge e ′ is
not in A because the cut respects A.

Removing e ′ from T breaks it into two connected components.
Adding e reconnects them into a new spanning tree T ′. . . .
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Sufficient Criterion for Safe Edges

Proof (continued).

We still need to show that T ′ is a minimum spanning tree.

Since e is an edge of minimum weight among all edges that cross
the cut and e ′ also crosses the cut, it holds that
weight(e) ≤ weight(e ′). Therefore weight(T ′) ≤ weight(T ).

Since T is a minimum spanning tree this implies that also T ′ is a
minimum spanning tree.

The edges of T ′ include e and all edges from A (because e ′ ̸∈ A),
so overall we have shown that e is safe for A.
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Generic Algorithm

Input: Connected, undirected, weighted graph G = (V ,E )

1 A := ∅
2 While (V ,A) does not form a spanning tree of G :

▶ Find an edge e that is safe for A.
▶ A = A ∪ {e}

3 Return (V ,A)

▶ Why is there always a cut that respects A
(as required by criterion for safe edges)?

▶ Terminates after |V | − 1 iterations. Why?
▶ Open question: How can we efficiently determine a safe edge?

▶ Kruskal’s algorithm
▶ Prim’s algorithm

▶ First: How do we represent the weighted graph?
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C4.3 Graph Representation
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Representation of Weighted Edges

Can extend previous representations:
▶ Adjacency matrix: Weight instead of binary entries

▶ Can we support parallel edges?

▶ Adjacency list: Pairs of successor and weight in list.

But:

▶ Generic algorithm focuses on edges.

▶ Idea: Represent edges as objects.
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API for Weighted Edge

1 class Edge:

2 # edge between n1 and n2 with weight w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # weight of the edge

6 def weight() -> float

7

8 # one of the two nodes

9 def either_node() -> int

10

11 # the other node (not n)

12 def other_node(int n) -> int
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C4. Minimum Spanning Trees Graph Representation

Weighted Edge: Possible Implementation

1 class Edge:

2 def __init__(self, n1, n2, weight):

3 self.n1 = n1

4 self.n2 = n2

5 self.edge_weight = weight

6

7 def weight(self):

8 return self.edge_weight

9

10 def either_node(self):

11 return self.n1

12

13 def other_node(self, n):

14 if self.n1 == n:

15 return self.n2

16 return self.n1
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Representation of Weighted Graphs

Graph representation

▶ We still want to be able to quickly determine the incident
edges of a node.

▶ Store for every node references to the incident edges.

▶ Requires for every edge one object and two references to it.
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API for Weighted Graphs

1 class EdgeWeightedGraph:

2 # Graph with no_nodes nodes and no edges

3 def __init__(no_nodes: int) -> None

4

5 # add weighted edge

6 def add_edge(e: Edge) -> None

7

8 # number of nodes

9 def no_nodes() -> int

10

11 # number of edges

12 def no_edges() -> int

13

14 # all incident edges of node n

15 def incident_edges(n: int) -> Generator[Edge]

16

17 # all edges

18 def all_edges() -> Generator[Edge]
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Weighted Graph: Possible Implementation

1 class EdgeWeightedGraph:

2 def __init__(self, no_nodes):

3 self.nodes = no_nodes

4 self.edges = 0

5 self.incident= [[] for l in range(no_nodes)]

6

7 def add_edge(self, edge):

8 either = edge.either_node()

9 other = edge.other_node(either)

10 self.incident[either].append(edge)

11 self.incident[other].append(edge)

12 self.edges += 1

13

14 def no_nodes(self):

15 return self.nodes

16

17 def no_edges(self):

18 return self.edges
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Weighted Graph: Possible Implementation (Continued)

19

20 def incident_edges(self, node):

21 for edge in self.incident_edges[node]:

22 yield edge

23

24 def all_edges(self):

25 for node in range(self.nodes):

26 for edge in self.incident_edges[node]:

27 if edge.other_node(node) > node:

28 yield edge
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API for MST Implementations

The algorithms for minimum spanning trees should implement the
following interface:

1 class MST:

2 # initialization

3 def __init__(graph: EdgeWeightedGraph) -> None

4

5 # all edges of a minimum spanning tree

6 def edges() -> Generator[Edge]

7

8 # weight of the minimum spanning tree

9 def weight() -> float
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C4.4 Kruskal’s Algorithm
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C4. Minimum Spanning Trees Kruskal’s Algorithm

High-Level Perspective

Kruskal’s Algorithm
▶ Process the edges in increasing order of their weights.

▶ Include the edge if it does not form a cycle with the already
included edges. Otherwise, discard it.

▶ Terminate after including |V | − 1 edges.

Why is this an instantiation of the generic algorithm?
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Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42
.6

54.9

48
.9

79

52.9
43.1

73.9

75
.3

red: included
gray: discarded

36 / 57



C4. Minimum Spanning Trees Kruskal’s Algorithm

Kruskal’s Algorithm Conceptually

Conceptional Approach
▶ Start with a forest of |V | trees,

where each tree only consists of a single node.

▶ Every included edge connects two trees into a single one.

▶ After |V | − 1 steps the forest consists of a single tree.

Questions
▶ How can we detect whether an edge connects two trees or

whether both end points are in the same tree?

▶ Do we have to fully represent the individual trees?

→ We are only interested in the connected components
→ Disjoint sets to the rescue!
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Kruskal’s Algorithm: Implementation

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue

6 for edge in graph.all_edges():

7 candidates.insert(edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):

12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf.union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

How can methods
edges() and weight()

be implemented?
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Kruskal’s Algorithm: Running Time

▶ Assumption: Priority queue implemented as heap

▶ Initialization of priority queue with all edges: |E | comparisons
▶ Never more than |E | edges in the priority queue

▶ Cost per operation is O(log2 |E |)
▶ Total costs for priority queue operations is O(|E | log2 |E |)

▶ Dominates costs for union find structure.

In total: Running time O(|E | log2 |E |), Memory O(|E |)
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C4.5 Prim’s Algorithm
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C4. Minimum Spanning Trees Prim’s Algorithm

High-Level Perspective

Prim’s Algorithm
▶ Choose an arbitrary node as initial tree.

▶ Let the tree grow by one additional edge in each step.

▶ Always add an edge of minimal weight
that has exactly one end point in the tree.
→ safe edge

▶ Stop after adding |V | − 1 edges.
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Illustration

With start vertex 0
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Implementation

Challenge:

Find the edge of minimal weight that has exactly one end point
in the tree.

▶ Priority queue candidates that prioritizes edges by weight.
▶ Two variants:

▶ eager: only edges that have exactly one endpoint are in the
tree.

▶ lazy: edges that have at least one end point in the tree
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Main Loop of Lazy Variant

Invariant
Priority queue candidate

▶ contains all edges with exactly one endpoint in the tree

▶ and possibly edges with both endpoints in the tree.

While there are fewer than |V | − 1 added edges:

▶ Remove edge e with minimal weight from the priority queue.

▶ Discard e, if both end points in the tree.
▶ Otherwise, let v be the end point that is not yet in the tree.

▶ Add all edges that are incident to v and whose other end point
is not in the tree to candidates.

▶ Add e and v to the tree.
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Lazy Variant of Prim’s Algorithm

1 class LazyPrim:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5

6 # node-indexed list: True if node already in tree

7 included_nodes = [False] * graph.no_nodes()

8 candidates = minPQ()

9

10 # include an arbitrary node (we use 0) in tree

11 included_nodes[0] = True

12 for edge in graph.incident_edges(0):

13 candidates.insert(edge)
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Lazy Variant of Prim’s Algorithm (Continued)

14

15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):

17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 v, w = w, v

24 # v is in tree, w is not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for incident in graph.incident_edges(w):

29 if not included_nodes[incident.other_node(w)]:

30 candidates.insert(incident)
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Running Time and Memory

▶ Bottleneck is the number of comparisons of edge weights in
methods insert and del min of the priority queue.

▶ At most |E | edges in priority queue

▶ Insertion and removal of minimum each take timeO(log |E |)
▶ At most |E | insertions and |E | removals

→ Running time O(|E | log |E |)
▶ Memory O(|E |)
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Eager Variant

Considerations

▶ We can remove edges from the priority queue if they already
have both end points in the tree.

▶ If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

▶ It is sufficient to always only consider one such edge.

▶ Idea: Remember one such edge for every node.

▶ The priority queue contains nodes, where the priority is the
weight of the corresponding edge.

Problem: How can we efficiently update the priority queue?
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Indexed Priority Queues

1 class IndexMinPQ:

2 # Add key with priority val

3 def insert(entry: Object, val: int) -> None

4

5 # Remove and return entry with smallest priority

6 def del_min() -> Object

7

8 # Is the priority queue empty?

9 def empty() -> bool

10

11 # Does the priority queue contain the entry?

12 def contains(entry: Object) -> bool

13

14 # Change the priority of entry to val

15 def change(entry: Object, val: int) -> None

16

17 ...
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Indexed Priority Queues

Priority queue implementation can easily be extended accordingly.

With a heap-based implementation we get running times

▶ O(log n) for insert, change and del min

▶ O(1) for contains and empty
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Eager Variant of Prim’s Algorithm: Data Structures

Do not use (indexed) priority queue of edges but

▶ edge to: node-indexed array, containing at position v the
edge (Edge) that connects v (in the direction of the start
node) with the tree or could do so with the lowest weight.

▶ dist to: Array containing at position v the weight
of edge edge to[v].

▶ pq: indexed priority queue of nodes
▶ Nodes are not yet in the tree.
▶ Can be connected by an edge with the existing tree.
▶ Sorted by the weight of such an edge of lowest weight.
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Eager Variant of Prim’s Algorithm

1 class EagerPrim:

2 def __init__(self, graph):

3 self.edge_to = [None] * graph.no_nodes()

4 self.total_weight = 0

5 self.dist_to = [float('inf')] * graph.no_nodes()

6 self.included_nodes = [False] * graph.no_nodes()

7

8 self.pq = IndexMinPQ()

9

10 self.dist_to[0] = 0

11 self.pq.insert(0, 0)

12 while not self.pq.empty():

13 self.visit(graph, self.pq.del_min())
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Eager Prim-Algorithmus (Continued)

14

15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.incident_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes[w]:

20 continue

21 if edge.weight() < self.dist_to[w]:

22 # update cheapest edge between tree and w

23 self.edge_to[w] = edge

24 self.dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())

27 else:

28 self.pq.insert(w, edge.weight())
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Running Time and Memory

▶ Three node-indexed arrays

▶ At most |V | nodes in the priority queue

▶ Memory O(|V |)
▶ Priority queue: need |V | insertions,

|V | operations removing the minimum and
at most |E | changes of priority.

▶ Each operation possible in time O(log |V |).
▶ Running time O(|E | log |V |)
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C4.6 Outlook
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C4. Minimum Spanning Trees Outlook

Is there a MST Algorithm with Linear Running Time?

Algorithm Memory Running time

Kruskal |E | |E | log |E |
Lazy Prim |E | |E | log |E |
Eager Prim |V | |E | log |V |
Fredman-Tarjan |V | |E |+ |V | log |V |
Chazelle |V | |E |α(|V |) (almost |E |)
impossible? |V | |E |?

There is a randomized approach with expected linear running time
[Karger, Klein, Tarjan, 1995].
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