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Undirected Graphs

In chapter C4 we only consider undirected graphs.

Minimum Spanning Trees
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Trees in Undirected Graphs

Definition
A tree is an acyclic connected graph.
A forest is an acyclic graph.
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Properties of Trees

For every tree it holds that:
> Every pair of distinct vertices is connected by exactly one
simple path (simple = no vertex occurs more than once).
> If we remove an edge, the graph becomes disconnected with
two connected components.

> If we add an edge, we create a cycle.



C4. Minimum Spanning Trees

Subgraph

Definition

Graph G’ = (V'  E’) is a subgraph of graph G = (V, E)
if V/CVand E' CE.

Minimum Spanning Trees

G/
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Spanning Tree

Definition
A spanning tree of a connected graph is a subgraph that contains
all vertices of the graph and is a tree.

How many edges does a spanning tree have?



C4. Minimum Spanning Trees Minimum Spanning Trees

Weighted Graphs

Definition

An (edge-)weighted graph associates every edge e
with a weight (or cost) weight(e) € R.

The weight of graph G = (V, E) is the sum
weight(G) = > . g weight(e) of its edge weights.
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Minimum Spanning Trees

Definition (Minimum Spanning Tree Problem, MST Problem)

Given: Connected weighted undirected graph
Objective: Spanning tree with minimum weight
(there is no spanning tree with a lower sum
of edge weights).
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Application: Clustering for Tumor Detection

O Analysis of soft tissue tumors by an attributed minimum spanning

tree.
Kayser K', Sandau K, Bshm G, Kunze KD, Paul J

Analytical and Quantitative Cytology and Histology [01 Oct 1991, 13(5):329-334]
Abstract

Histologic slides of 22 soft tissue tumors (9 malignant fibrous histiocytoma, 8
fibrosarcoma, 2 rhabdomyosarcoma, 2 osteosarcoma, 1 Askin tumor) were Feulgen
stained. Using an automated image analyzing system (Cambridge 570) at low
magnification (25x), the tumor cell nuclei were segmented. The geometrical center of the
nuclei was considered the vertex. A basic graph was constructed according to the
neighborhood condition of O'Callaghan. Neighboring tumor cell nuclei were visualized by
connecting edges. Several features of tumor cell nuclei were measured, including area,
surface, major and minor axis of best fitting ellipsis and extinction (DNA content). Nuclear
features are attributed to the vertices. The differences, or "distances," between features of
connected vertices are attributed to the corresponding edges, which are dependent on the
attributes. Thus, different minimum spanning trees (MST) result. Each MST can be
decomposed into clusters using a suitable decomposition function on the edges, which
rejects an edge if its attributes differ from the mean of the attributed values of
surrounding edges more than a neighbor dependent bound (lower limit). Taking into
account the length and other attributes of edges (e.g., differences in orientation of the
major axis), clusters of different nuclear orientation can be detected. A cluster tree can be
constructed by defining the geometric center of a cluster as a new vertex, and by
computing the neighborhood of the cluster vertices. The result is an attributed MST
containing characteristic structural properties of the image (in cases of sarcomatous
tumors, local orientation of tumor cell nuclei and local DNA abnormalities).
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Application: ldentity Recognition

Neurocomputing

Volume 72, Issues 7-9, March 2009, Pages 1859-1869

ELSEVIER

Minimum spanning tree based one-class classifier
Piotr Juszczak @ & &, David M.J. Tax 2, Elzbieta Pe kalska b, Robert P.W. Duin @
B Show more

https://doi.org/10.1016/j.neucom. 2008.05.003 Get rights and content

Abstract

In the problem of one-class classification one of the classes, called the target class, has to be distinguished from all other possible objects.
These are considered as non-targets. The need for solving such a task arises in many practical applications, e.g. in machine fault detection,
face recognition, authorship verification, fraud recognition or person identification based on biometric data.

This paper proposes a new one-class classifier, the minimum spanning tree class descriptor (MST_CD). This classifier builds on the
structure of the minimum spanning tree constructed on the target training set only. The classification of test objects relies on their distances
to the closest edge of that tree, hence the proposed method is an ple of a dist: based one-class ifier. Our i show
that the MST_CD performs especially well in case of small sample size problems and in high-dimensional spaces.

13 / 57



C4. Minimum Spanning Trees Minimum Spanning Trees

Application: Cell Nuclei Segmentation in Microscopy
Images

Optimal cut in minimum spanning trees for 3-D cell
nuclei segmentation

7 v A Abreu ; v F.-X. Frenois ; v/ S. Valitutti ; v P. Brousset ; v P. Denéfle ; v B. Naegel ; v C. Wemmert View All Authors
Author(s)
Abstract Authors Figures References Citations Keywords Metrics Media
Abstract:

In biology and pathology immunofluorescence microscopy approaches are leading techniques for deciphering of the molecular
mechanisms of cell activation and disease progression. Although several commercial softwares for image analysis are presently
in the market, available solutions do not allow a totally non subjective image analysis. There is therefore strong need for new
methods that could allow a completely non-subjective image analysis procedure including for thresholding and for choice of
the objects of interest. To address this need, we describe a fully automatic segmentation of cell nuclei in 3-D confocal
immunofluorescence images. The method merges segments of the image to fit with a nuclei model learned by a trained
random forest classifier. The merging procedure explores efficiently the fusion configurations space of an over-segmented
image by using minimum spanning trees of its region adjacency graph.

Published in: Image and Signal Processing and Analysis (ISPA), 2017 10th International Symposium on
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Applications

» Network design
> e.g. telecommunication networks, power networks
> Segmentation
> e.g. of cell nuclei in microscopy images
» Cluster analysis
> e.g. of cell nuclei for cancer diagnosis
» Approximation of hard graph problems
> Steiner trees, Traveling Salesperson
» Many indirect applications

» LDPC error-correcting codes
» Features for face recognition
» Ethernet protocol for avoiding cycles in broadcasting
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C4.2 Generic Algorithm

Generic Algorithm
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Generic Algorithm

For a subset A of the edges of a MST, we call edge e safe for A
if AU {e} is also a subset of the edges of a MST.

Input: Connected, undirected, weighted graph G = (V, E)
Q@ A=10
@ While (V, A) does not form a spanning tree of G:

> Find an edge e that is safe for A.
> A=AU{e}

@ Return (V,A)
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Cuts in Graphs

Definition

Let G = (V, E) be an undirected graph.

A cut (V' V' \ V') partitions the vertices.

An edge crosses the cut if one of its endpoints is in V’

and the other endpoint in V'\ V'
The cut respects a set of edges A C E if no e € A crosses the cut.

= v.e
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Sufficient Criterion for Safe Edges

Generic Algorithm

Theorem
Let G = (V, E) be a connected, undirected, weighted graph.

Let A C E be a subset of the edges of some minimum spanning
tree for G.

Let (S, V'\'S) be any cut of G that respects A and let e be an edge
crossing the cut that has minimum weight among all such edges.

Then e is safe for A.
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Sufficient Criterion for Safe Edges

Proof
Let T be a MST that includes A. If it includes e, we are done.

Otherwise we construct from T a MST T’ that includes AU {e}.

Let v and v be the end points of e. The edge e forms a cycle with
the edges on the simple path p from uto vin T.

Since e crosses the cut, path p must contain at least one edge that
also crosses the cut. Let €' = {x, z} be such an edge. Edge €’ is
not in A because the cut respects A.

Removing €’ from T breaks it into two connected components.
Adding e reconnects them into a new spanning tree T'.
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Sufficient Criterion for Safe Edges

Proof (continued).
We still need to show that T’ is a minimum spanning tree.
Since e is an edge of minimum weight among all edges that cross

the cut and e’ also crosses the cut, it holds that
weight(e) < weight(e’). Therefore weight(T') < weight(T).

Since T is a minimum spanning tree this implies that also T’ is a
minimum spanning tree.

The edges of T’ include e and all edges from A (because €' ¢ A),
so overall we have shown that e is safe for A. 0l
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Generic Algorithm

Input: Connected, undirected, weighted graph G = (V, E)
Q A=10
@ While (V, A) does not form a spanning tree of G:

» Find an edge e that is safe for A.
> A=AU{e}

@ Return (V,A)

> Why is there always a cut that respects A
(as required by criterion for safe edges)?

» Terminates after |V/| — 1 iterations. Why?
» Open question: How can we efficiently determine a safe edge?

» Kruskal's algorithm
» Prim’s algorithm

> First: How do we represent the weighted graph?
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C4.3 Graph Representation

Graph Representation
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Representation of Weighted Edges

Can extend previous representations:
> Adjacency matrix: Weight instead of binary entries
» Can we support parallel edges?

» Adjacency list: Pairs of successor and weight in list.

But:
» Generic algorithm focuses on edges.

> |dea: Represent edges as objects.

25/
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API for Weighted Edge

1 class Edge:

2 # edge between nl and n2 with weight w
3 def __init__(nl: int, n2: int, w: float) -> None
4

5 # weight of the edge

6 def weight() -> float

7

8 # one of the two nodes

9 def either_node() -> int

10

11 # the other node (not n)

12 def other_node(int n) -> int

26 / 57
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Weighted Edge: Possible Implementation

© w0 N s W N

e e e
U W NN = O

class Edge:

def

def

def

def

__init__(self, nl, n2, weight):
self.nl = nl

self.n2 = n2

self.edge_weight = weight

weight (self):
return self.edge_weight

either_node(self):
return self.nl

other_node(self, n):

if self.nl == n:
return self.n2

return self.nl

27 / 57
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Representation of Weighted Graphs

Graph Representation

Graph representation

> We still want to be able to quickly determine the incident
edges of a node.

> Store for every node references to the incident edges.

» Requires for every edge one object and two references to it.
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API for Weighted Graphs

1 class EdgeWeightedGraph:

2 # Graph with no_nodes nodes and no edges
3 def __init__(no_nodes: int) -> None

4

5 # add weighted edge

6 def add_edge(e: Edge) -> None

7

8 # number of nodes

9 def no_nodes() -> int

10

11 # number of edges

12 def no_edges() -> int

13

14 # all incident edges of node n

15 def incident_edges(n: int) -> Generator[Edgel
16

17 # all edges

18 def all_edges() -> Generator[Edgel
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Weighted Graph: Possible Implementation

© W N e W N

e e T e =
w N e W N = O

Graph Representation

def

def

def

def

class EdgeWeightedGraph:

__init__(self, no_nodes):

self.nodes = no_nodes

self.edges = O

self .incident= [[] for 1 in range(no_nodes)]

add_edge(self, edge):

either = edge.either_node()

other = edge.other_node(either)
self.incident [either] .append(edge)
self.incident [other] . append (edge)
self.edges += 1

no_nodes(self):
return self.nodes

no_edges(self):
return self.edges

30/
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Weighted Graph: Possible Implementation (Continued)

19
20
21
22
23
24
25
26
27
28

def incident_edges(self, node):
for edge in self.incident_edges[node]:
yield edge

def all_edges(self):
for node in range(self.nodes):
for edge in self.incident_edges[node]:
if edge.other_node(node) > node:
yield edge

31

Graph Representation
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API for MST Implementations

The algorithms for minimum spanning trees should implement the
following interface:

1 class MST:

2 # inttialization

3 def __init__(graph: EdgeWeightedGraph) -> None
4

5 # all edges of a minimum spanning tree

6 def edges() -> Generator [Edge]

7

8 # weight of the minimum spanning tree

9 def weight() -> float
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C4.4 Kruskal's Algorithm

Kruskal's Algorithm
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High-Level Perspective

Kruskal's Algorithm
> Process the edges in increasing order of their weights.

» Include the edge if it does not form a cycle with the already
included edges. Otherwise, discard it.

» Terminate after including |V| — 1 edges.

Why is this an instantiation of the generic algorithm?

35/
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[llustration

red: included
discarded
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Kruskal's Algorithm Conceptually

Conceptional Approach
» Start with a forest of |V/| trees,
where each tree only consists of a single node.

» Every included edge connects two trees into a single one.

> After |V| — 1 steps the forest consists of a single tree.

Questions
> How can we detect whether an edge connects two trees or
whether both end points are in the same tree?

» Do we have to fully represent the individual trees?

— We are only interested in the connected components
— Disjoint sets to the rescue!

37
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Kruskal's Algorithm: Implementation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

def

class MSTKruskal:

__init__(self, graph):

self.included_edges = []

self.total_weight = 0

candidates = minPQ() # priority queue

for edge in graph.all_edges():
candidates.insert (edge)

uf = UnionFind(graph.no_nodes())

while (not candidates.empty() and
len(self.included_edges) < graph.no_nodes() - 1):
edge = candidates.del_min()
v = edge.either_node()
w = edge.other_node(v)
if uf.connected(v, w):
continue

How can methods
edges() and weight ()

i ?
uf union (v,w) be implemented?

self.included_edges.append(edge)
self.total_weight += edge.weight ()

38

Kruskal's Algorithm
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Kruskal's Algorithm: Running Time

> Assumption: Priority queue implemented as heap

» Initialization of priority queue with all edges: |E| comparisons
» Never more than |E| edges in the priority queue

» Cost per operation is O(log, |E|)
» Total costs for priority queue operations is O(|E|log, | E|)

» Dominates costs for union find structure.

In total: Running time O(|E|log, |E|), Memory O(|E|)
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C4.5 Prim’s Algorithm

Prim’s Algorithm
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High-Level Perspective

Prim’'s Algorithm
» Choose an arbitrary node as initial tree.

> Let the tree grow by one additional edge in each step.

> Always add an edge of minimal weight
that has exactly one end point in the tree.
— safe edge

» Stop after adding |V| — 1 edges.

42

Prim’s Algorithm
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[llustration

With start vertex 0

red: included
blue: potential next edge
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Implementation

Challenge:
Find the edge of minimal weight that has exactly one end point
in the tree.

» Priority queue candidates that prioritizes edges by weight.
> Two variants:

> eager: only edges that have exactly one endpoint are in the
tree.
> lazy: edges that have at least one end point in the tree

44
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Main Loop of Lazy Variant

Invariant
Priority queue candidate

P contains all edges with exactly one endpoint in the tree

P and possibly edges with both endpoints in the tree.

While there are fewer than |V/| — 1 added edges:
> Remove edge e with minimal weight from the priority queue.
» Discard e, if both end points in the tree.

» Otherwise, let v be the end point that is not yet in the tree.

» Add all edges that are incident to v and whose other end point
is not in the tree to candidates.
» Add e and v to the tree.
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Lazy Variant of Prim's Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13

Prim's Algorithm

def

class LazyPrim:

__init__(self, graph):
self.included_edges = []
self.total_weight = 0

# node-indexzed list: True if node already in tree
included_nodes = [False] * graph.no_nodes()
candidates = minPQ()

# include an arbitrary node (we use 0) in tree

included_nodes[0] = True

for edge in graph.incident_edges(0):
candidates.insert (edge)
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Prim’s Algorithm

Lazy Variant of Prim's Algorithm (Continued)

14
15 whil
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

e (not candidates.empty() and

len(self.included_edges) < graph.no_nodes() - 1):

edge = candidates.del_min()
v = edge.either_node()
w = edge.other_node(v)
if included_nodes[v] and included_nodes[w]:
continue
if included_nodes[w]:
VvV, W=W, V
# v 1s in tree, w is not
included_nodes[w] = True
self.included_edges.append(edge)
self.total_weight += edge.weight()
for incident in graph.incident_edges(w):
if not included_nodes[incident.other_node(w)]:
candidates.insert (incident)

47
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Running Time and Memory

> Bottleneck is the number of comparisons of edge weights in
methods insert and del_min of the priority queue.

v

At most |E| edges in priority queue

v

Insertion and removal of minimum each take timeO(log |E|)

v

At most |E| insertions and |E| removals
— Running time O(|E]|log |E|)
Memory O(|E|)

v
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Eager Variant

Considerations

» We can remove edges from the priority queue if they already
have both end points in the tree.

> If there are several edges that could connect a new node with
the tree, we only can choose those of minimum weight.

> It is sufficient to always only consider one such edge.

v

Idea: Remember one such edge for every node.

» The priority queue contains nodes, where the priority is the
weight of the corresponding edge.

Problem: How can we efficiently update the priority queue?

49
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Indexed Priority Queues

1 class IndexMinPQ:

2 # Add key with priority wval

3 def insert(entry: Object, val: int) -> None
4

5 # Remove and return entry with smallest priority
6 def del_min() -> Object

7

8 # Is the priority queue empty?

9 def empty() -> bool

10

11 # Does the priority queue contain the entry?
12 def contains(entry: Object) -> bool

13

14 # Change the priority of entry to wval

15 def change(entry: Object, val: int) -> None
16

17
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Indexed Priority Queues

Priority queue implementation can easily be extended accordingly.

With a heap-based implementation we get running times
» O(log n) for insert, change and del_min
» O(1) for contains and empty

51
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Eager Variant of Prim's Algorithm: Data Structures

Do not use (indexed) priority queue of edges but

P> edge_to: node-indexed array, containing at position v the
edge (Edge) that connects v (in the direction of the start
node) with the tree or could do so with the lowest weight.

> dist_to: Array containing at position v the weight
of edge edge_to[v].
> pq: indexed priority queue of nodes

» Nodes are not yet in the tree.
» Can be connected by an edge with the existing tree.
> Sorted by the weight of such an edge of lowest weight.
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Eager Variant of Prim's Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13

Prim's Algorithm

class EagerPrim:
def __init__(self, graph):

self.

self

self

self.

self

edge_to = [None] #* graph.no_nodes()

.total_weight = 0
self.
self.

dist_to = [float('inf')] * graph.no_nodes()
included_nodes = [False] * graph.no_nodes()

.pq = IndexMinPQ()

dist_to[0] = 0

.pq.insert (0, 0)

while not self.pq.empty():

self.visit(graph, self.pq.del_min())

53/
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Eager Prim-Algorithmus (Continued)

14

16
17
18
19
20
21
22
23
24
25
26
27
28

def visit(self, graph, v):
self.included_nodes[v] = True
for edge in graph.incident_edges(v):
w = edge.other_node(v)
if self.included_nodes[w]:
continue
if edge.weight() < self.dist_tol[w]:
# update cheapest edge between tree and w
self.edge_to[w] edge
self .dist_to[w] = edge.weight()
if self.pq.contains(w):
self.pq.change(w, edge.weight())
else:
self.pq.insert(w, edge.weight())

Prim’s Algorithm

54 /
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Running Time and Memory

vvyyypy

v

Three node-indexed arrays
At most |V| nodes in the priority queue
Memory O(|V|)

Priority queue: need |V/| insertions,
|V| operations removing the minimum and
at most |E| changes of priority.

Each operation possible in time O(log |V|).

Running time O(|E|log |V|)

Prim’s Algorithm
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C4.6 Outlook

Outlook
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Is there a MST Algorithm with Linear Running Time?

Algorithm Memory Running time

Kruskal |E| |E| log |E|

Lazy Prim |E| |E|log |E|

Eager Prim V] |E|log|V|
Fredman-Tarjan |V/| |E| +|V]|log | V|
Chazelle 4 |E|la(|V]) (almost |E|)
impossible? |V |E|?

There is a randomized approach with expected linear running time
[Karger, Klein, Tarjan, 1995].
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