
Algorithms and Data Structures
C3. Disjoint-set Data Structure/Union-Find

Gabriele Röger and Patrick Schnider

University of Basel

May 7, 2025



Union-Find Connected Components and Equivalence Classes Summary

Union-Find



Union-Find Connected Components and Equivalence Classes Summary

Questions

Are the red vertices connected?
How many connected components does the graph have?



Union-Find Connected Components and Equivalence Classes Summary

Connected Components as Disjoint Sets

Set of conn. components as collection of disjoint sets of objects.

One set for all vertices of one connected component.

Operations:

Union: Given two objects, merge the sets that contain them
into one.
Introduce a new edge between the given vertices, connecting
their connected components.
Find: Given an object, return a representative of the set that
contains it.
Given a vertex, return a representative vertex for its connected
component.

Must return the same representative for all objects in the set.
The representative may only change if set gets merged.
Two objects are in the same set (two vertices are connected)
if find returns the same representative for them.

Count: Return the number of sets
Return the number of connected components.



Union-Find Connected Components and Equivalence Classes Summary

Union-Find Data Type

1 class UnionFind:

2 # Initialization for n objects (with names 0, ..., n-1).

3 def __init__(n: int) -> None

4

5 # Merge the sets containing objects v and w.

6 def union(v: int, w: int) -> None

7

8 # Representative for set containing v.

9 # May change if set is merged by call of union,

10 # but not otherwise.

11 def find(v: int) -> int

12

13 # Number of sets.

14 def count() -> int



Union-Find Connected Components and Equivalence Classes Summary

(Somewhat) Naive Algorithm: Quick-Find

For n objects: Array representative of length n.

Entry at position i is representative of the set containing i .

Initially, every object is (alone) in its own set, and thus its
representative.

Update the array in every call of union.



Union-Find Connected Components and Equivalence Classes Summary

(Somewhat) Naive Algorithm: Quick-Find

For n objects: Array representative of length n.

Entry at position i is representative of the set containing i .

Initially, every object is (alone) in its own set, and thus its
representative.

Update the array in every call of union.



Union-Find Connected Components and Equivalence Classes Summary

(Somewhat) Naive Algorithm: Quick-Find

For n objects: Array representative of length n.

Entry at position i is representative of the set containing i .

Initially, every object is (alone) in its own set, and thus its
representative.

Update the array in every call of union.



Union-Find Connected Components and Equivalence Classes Summary

Quick-Find Data Structure

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.components = no_nodes

4 self.representative = list(range(no_nodes))

5

6 def count(self):

7 return self.components

8

9 def find(self, v):

10 return self.representative[v]

[0, 1, ..., no nodes-1]



Union-Find Connected Components and Equivalence Classes Summary

Quick-Find Data Structure (Continued)

20 def union(self, v, w):

21 repr_v = self.find(v)

22 repr_w = self.find(w)

23 if repr_v == repr_w: # already in same component

24 return

25 # replace all occurrences of repr_v in

26 # self.representative with repr_w

27 for i in range(len(self.representative)):

28 if self.representative[i] == repr_v:

29 self.representative[i] = repr_w

30 self.components -= 1 # we merged two components

Running time?

Cost model = number of array accesses

one access for every call of find

between

n + 3

and

2n + 1

accesses
for every call of union that merges two components



Union-Find Connected Components and Equivalence Classes Summary

Quick-Find Data Structure (Continued)

20 def union(self, v, w):

21 repr_v = self.find(v)

22 repr_w = self.find(w)

23 if repr_v == repr_w: # already in same component

24 return

25 # replace all occurrences of repr_v in

26 # self.representative with repr_w

27 for i in range(len(self.representative)):

28 if self.representative[i] == repr_v:

29 self.representative[i] = repr_w

30 self.components -= 1 # we merged two components

Running time?

Cost model = number of array accesses

one access for every call of find

between n + 3 and 2n + 1 accesses
for every call of union that merges two components



Union-Find Connected Components and Equivalence Classes Summary

Better: Quick-Union aka Disjoint-set Forest

(implicit) tree for representing each set

represented as array with parent nodes as entries
(root: reference to itself)

0 1 2 3 4 5 6 7 8

3 5 0 3 6 5 3 6 5
3

6

4 7

0

2

5

8 1

Root node serves as representative of the set.



Union-Find Connected Components and Equivalence Classes Summary

Better: Quick-Union aka Disjoint-set Forest

(implicit) tree for representing each set

represented as array with parent nodes as entries
(root: reference to itself)

0 1 2 3 4 5 6 7 8

3 5 0 3 6 5 3 6 5
3

6

4 7

0

2

5

8 1

Root node serves as representative of the set.



Union-Find Connected Components and Equivalence Classes Summary

Quick-Union Data Structure

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] != v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 repr_v = self.find(v)

13 repr_w = self.find(w)

14 if repr_v == repr_w: # already in same component

15 return

16 self.parent[repr_v] = repr_w

17 self.components -= 1

18

19 # count as in QuickFind



Union-Find Connected Components and Equivalence Classes Summary

First Improvement

Problem with Quick-Union: Trees can degenerate into chains.
→ find requires linear time in the size of the set.

Idea: In union the root of the tree with lower height becomes
Idea: a child of the root of the higher tree.



Union-Find Connected Components and Equivalence Classes Summary

Ranked Quick-Union Algorithm

1 class RankedQuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def union(self, v, w):

8 repr_v = self.find(v)

9 repr_w = self.find(w)

10 if repr_v == repr_w:

11 return

12 if self.rank[repr_w] < self.rank[repr_v]:

13 self.parent[repr_w] = repr_v

14 else:

15 self.parent[repr_v] = repr_w

16 if self.rank[repr_v] == self.rank[repr_w]:

17 self.rank[repr_w] += 1

18 self.components -= 1

19

20 # connected, count and find as in QuickUnion



Union-Find Connected Components and Equivalence Classes Summary

Second Improvement

Path Compression

Idea: During find, reconnect all traversed nodes to the root.

We do not update the height of the tree during path
compression.

Value of rank can deviate from the actual height.
That’s why it is called rank and not height.



Union-Find Connected Components and Equivalence Classes Summary

Ranked Quick-Union Algorithm with Path Compression

1 class RankedQuickUnionWithPathCompression:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def find(self, v):

8 if self.parent[v] == v:

9 return v

10 root = self.find(self.parent[v])

11 self.parent[v] = root

12 return root

13

14 # connected, count and union as in RankedQuickUnion



Union-Find Connected Components and Equivalence Classes Summary

Discussion

With all improvements, we achieve almost constant amortized
cost for all operations.

More precisely: [Tarjan 1975]

m calls of find for n objects (and at most n − 1 calls of
union, merging two components)
O(mα(m, n)) array accesses
α is inverse of a variant of the Ackermann function
In practise is α(m, n) ≤ 3.

Nevertheless: there cannot be a union-find structure that
guarantees linear running time.
(under cell-probe model, only accounting for memory access)



Union-Find Connected Components and Equivalence Classes Summary

Discussion

With all improvements, we achieve almost constant amortized
cost for all operations.

More precisely: [Tarjan 1975]

m calls of find for n objects (and at most n − 1 calls of
union, merging two components)
O(mα(m, n)) array accesses
α is inverse of a variant of the Ackermann function
In practise is α(m, n) ≤ 3.

Nevertheless: there cannot be a union-find structure that
guarantees linear running time.
(under cell-probe model, only accounting for memory access)



Union-Find Connected Components and Equivalence Classes Summary

Discussion

With all improvements, we achieve almost constant amortized
cost for all operations.

More precisely: [Tarjan 1975]

m calls of find for n objects (and at most n − 1 calls of
union, merging two components)
O(mα(m, n)) array accesses
α is inverse of a variant of the Ackermann function
In practise is α(m, n) ≤ 3.

Nevertheless: there cannot be a union-find structure that
guarantees linear running time.
(under cell-probe model, only accounting for memory access)



Union-Find Connected Components and Equivalence Classes Summary

Comparison to Exploration-based Approach

Chapter C2: Algorithm ConnectedComponents,
based on graph exploration.

After the precomputation, queries only require constant time.

In practise, disjoint-set forests are often faster, because for
many applications, we do not have to build up the full graph.

If the graph has already been built up, graph exploration can
be better.

Another advantage of union find:

Online approach
We can easily introduce further edges.



Union-Find Connected Components and Equivalence Classes Summary

Connected Components and
Equivalence Classes



Union-Find Connected Components and Equivalence Classes Summary

Reminder: Connected Components

Undirected graph

Two vertices u and v are in the same connected component
if there is a path between u and v (= vertices u and v are
connected).

0 1

2 3

4
5

6

7 8

9



Union-Find Connected Components and Equivalence Classes Summary

Connected Components: Properties

The connected components define a
partition of the vertices:

Every vertex is in a connected component.
No vertex is in more than one connected component.

“is connected with” is an equivalence relation.

reflexive: Every vertex is connected with itself.
symmetric: If u is connected with v ,
then v is connected with u.
transitive: If u is connected with v , and v with w ,
then u is connected with w .



Union-Find Connected Components and Equivalence Classes Summary

Partition in General

Definition (Partition)

A partition of a finite set M is a set P of non-empty subsets of M,
such that

every element of M is in some set in P:⋃
S∈P S = M, and

that sets in P are pairwise disjoint:
S ∩ S ′ = ∅ for S , S ′ ∈ P with S ̸= S ′.

The sets in P are called blocks.

M = {e1, . . . , e5}
P1 = {{e1, e4}, {e3}, {e2, e5}}

is a partition of M.

P2 = {{e1, e4, e5}, {e3}}

is not a partition of M.

P3 = {{e1, e4, e5}, {e3}, {e2, e5}}

is not a partition of M.

P4 = {{e1}, {e2}, {e3}, {e4}, {e5}}

is a partition of M.



Union-Find Connected Components and Equivalence Classes Summary

Partition in General

Definition (Partition)

A partition of a finite set M is a set P of non-empty subsets of M,
such that

every element of M is in some set in P:⋃
S∈P S = M, and

that sets in P are pairwise disjoint:
S ∩ S ′ = ∅ for S , S ′ ∈ P with S ̸= S ′.

The sets in P are called blocks.

M = {e1, . . . , e5}
P1 = {{e1, e4}, {e3}, {e2, e5}} is a partition of M.

P2 = {{e1, e4, e5}, {e3}}

is not a partition of M.

P3 = {{e1, e4, e5}, {e3}, {e2, e5}}

is not a partition of M.

P4 = {{e1}, {e2}, {e3}, {e4}, {e5}}

is a partition of M.



Union-Find Connected Components and Equivalence Classes Summary

Partition in General

Definition (Partition)

A partition of a finite set M is a set P of non-empty subsets of M,
such that

every element of M is in some set in P:⋃
S∈P S = M, and

that sets in P are pairwise disjoint:
S ∩ S ′ = ∅ for S , S ′ ∈ P with S ̸= S ′.

The sets in P are called blocks.

M = {e1, . . . , e5}
P1 = {{e1, e4}, {e3}, {e2, e5}} is a partition of M.

P2 = {{e1, e4, e5}, {e3}} is not a partition of M.

P3 = {{e1, e4, e5}, {e3}, {e2, e5}}

is not a partition of M.

P4 = {{e1}, {e2}, {e3}, {e4}, {e5}}

is a partition of M.



Union-Find Connected Components and Equivalence Classes Summary

Partition in General

Definition (Partition)

A partition of a finite set M is a set P of non-empty subsets of M,
such that

every element of M is in some set in P:⋃
S∈P S = M, and

that sets in P are pairwise disjoint:
S ∩ S ′ = ∅ for S , S ′ ∈ P with S ̸= S ′.

The sets in P are called blocks.

M = {e1, . . . , e5}
P1 = {{e1, e4}, {e3}, {e2, e5}} is a partition of M.

P2 = {{e1, e4, e5}, {e3}} is not a partition of M.

P3 = {{e1, e4, e5}, {e3}, {e2, e5}} is not a partition of M.

P4 = {{e1}, {e2}, {e3}, {e4}, {e5}}

is a partition of M.



Union-Find Connected Components and Equivalence Classes Summary

Partition in General

Definition (Partition)

A partition of a finite set M is a set P of non-empty subsets of M,
such that

every element of M is in some set in P:⋃
S∈P S = M, and

that sets in P are pairwise disjoint:
S ∩ S ′ = ∅ for S , S ′ ∈ P with S ̸= S ′.

The sets in P are called blocks.

M = {e1, . . . , e5}
P1 = {{e1, e4}, {e3}, {e2, e5}} is a partition of M.

P2 = {{e1, e4, e5}, {e3}} is not a partition of M.

P3 = {{e1, e4, e5}, {e3}, {e2, e5}} is not a partition of M.

P4 = {{e1}, {e2}, {e3}, {e4}, {e5}} is a partition of M.



Union-Find Connected Components and Equivalence Classes Summary

Equivalence Relations in General

Definition (Equivalence Relation)

An equivalence relation over set M is a
symmetric, transitive and reflexive relation R ⊆ M ×M.
We write a ∼ b for (a, b) ∈ R and say that a is equivalent to b.

symmetric: a ∼ b implies b ∼ a

transitive: a ∼ b and b ∼ c implies a ∼ c

reflexive: for all e ∈ M: e ∼ e



Union-Find Connected Components and Equivalence Classes Summary

Equivalence Classes

Definition (Equivalence Classes)

Let R be an equivalence relation over M.
The equivalence class of a ∈ M is the set

[a] = {b ∈ M | a ∼ b}.

The set of all equivalence classes is a partition of M.

Vice versa:
For partition P define R = {(x , y) | ∃B ∈ P : x , y ∈ B}
(i.e. x ∼ y if and only if x and y are in the same block).
Then R is an equivalence relation.

We can consider blocks in partitions as equivalence classes
and vice versa.



Union-Find Connected Components and Equivalence Classes Summary

Equivalence Classes

Definition (Equivalence Classes)

Let R be an equivalence relation over M.
The equivalence class of a ∈ M is the set

[a] = {b ∈ M | a ∼ b}.

The set of all equivalence classes is a partition of M.

Vice versa:
For partition P define R = {(x , y) | ∃B ∈ P : x , y ∈ B}
(i.e. x ∼ y if and only if x and y are in the same block).
Then R is an equivalence relation.

We can consider blocks in partitions as equivalence classes
and vice versa.



Union-Find Connected Components and Equivalence Classes Summary

Equivalence Classes

Definition (Equivalence Classes)

Let R be an equivalence relation over M.
The equivalence class of a ∈ M is the set

[a] = {b ∈ M | a ∼ b}.

The set of all equivalence classes is a partition of M.

Vice versa:
For partition P define R = {(x , y) | ∃B ∈ P : x , y ∈ B}
(i.e. x ∼ y if and only if x and y are in the same block).
Then R is an equivalence relation.

We can consider blocks in partitions as equivalence classes
and vice versa.



Union-Find Connected Components and Equivalence Classes Summary

Equivalence Classes

Definition (Equivalence Classes)

Let R be an equivalence relation over M.
The equivalence class of a ∈ M is the set

[a] = {b ∈ M | a ∼ b}.

The set of all equivalence classes is a partition of M.

Vice versa:
For partition P define R = {(x , y) | ∃B ∈ P : x , y ∈ B}
(i.e. x ∼ y if and only if x and y are in the same block).
Then R is an equivalence relation.

We can consider blocks in partitions as equivalence classes
and vice versa.



Union-Find Connected Components and Equivalence Classes Summary

Union-Find and Equivalences

Given: finite set M,
sequence s of equivalences a ∼ b over M

Consider equivalences as edges in a graph with set M of
vertices.

The connected components correspond to the equivalence
classes of the finest equivalence relation that considers all
equivalences from s.

no “unnecessary” equivalences.

Can use union-find data structures to determine equivalence
classes.



Union-Find Connected Components and Equivalence Classes Summary

Union-Find and Equivalences

Given: finite set M,
sequence s of equivalences a ∼ b over M

Consider equivalences as edges in a graph with set M of
vertices.

The connected components correspond to the equivalence
classes of the finest equivalence relation that considers all
equivalences from s.

no “unnecessary” equivalences.

Can use union-find data structures to determine equivalence
classes.



Union-Find Connected Components and Equivalence Classes Summary

Union-Find and Equivalences

Given: finite set M,
sequence s of equivalences a ∼ b over M

Consider equivalences as edges in a graph with set M of
vertices.

The connected components correspond to the equivalence
classes of the finest equivalence relation that considers all
equivalences from s.

no “unnecessary” equivalences.

Can use union-find data structures to determine equivalence
classes.



Union-Find Connected Components and Equivalence Classes Summary

Union-Find and Equivalences

Given: finite set M,
sequence s of equivalences a ∼ b over M

Consider equivalences as edges in a graph with set M of
vertices.

The connected components correspond to the equivalence
classes of the finest equivalence relation that considers all
equivalences from s.

no “unnecessary” equivalences.

Can use union-find data structures to determine equivalence
classes.



Union-Find Connected Components and Equivalence Classes Summary

Summary



Union-Find Connected Components and Equivalence Classes Summary

Summary

A union-find data structure maintains a collection of disjoint
sets.

union: merge two sets.
find: identify the set containing an object and return its
representative.

Good implementation: Disjoint-set forest
with improvements to keep the height of the trees low:

Union adjoins the shorter tree to the taller tree.
Find reconnects traversed nodes to the root
(path compression).

Applications:

Connected components
Finest equivalence relation


	Union-Find
	

	Connected Components and Equivalence Classes
	

	Summary
	


