
Algorithms and Data Structures
C3. Disjoint-set Data Structure/Union-Find

Gabriele Röger and Patrick Schnider

University of Basel

May 7, 2025

1 / 26

Algorithms and Data Structures
May 7, 2025 — C3. Disjoint-set Data Structure/Union-Find

C3.1 Union-Find

C3.2 Connected Components and Equivalence
Classes

C3.3 Summary

2 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

C3.1 Union-Find

3 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Questions

Are the red vertices connected?
How many connected components does the graph have?

4 / 26



C3. Disjoint-set Data Structure/Union-Find Union-Find

Connected Components as Disjoint Sets

Set of conn. components as collection of disjoint sets of objects.

▶ One set for all vertices of one connected component.
▶ Operations:

▶ Union: Given two objects, merge the sets that contain them
into one.
Introduce a new edge between the given vertices, connecting
their connected components.

▶ Find: Given an object, return a representative of the set that
contains it.
Given a vertex, return a representative vertex for its connected
component.

▶ Must return the same representative for all objects in the set.
▶ The representative may only change if set gets merged.
▶ Two objects are in the same set (two vertices are connected)

if find returns the same representative for them.

▶ Count: Return the number of sets
Return the number of connected components.

5 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Union-Find Data Type

1 class UnionFind:

2 # Initialization for n objects (with names 0, ..., n-1).

3 def __init__(n: int) -> None

4

5 # Merge the sets containing objects v and w.

6 def union(v: int, w: int) -> None

7

8 # Representative for set containing v.

9 # May change if set is merged by call of union,

10 # but not otherwise.

11 def find(v: int) -> int

12

13 # Number of sets.

14 def count() -> int

6 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

(Somewhat) Naive Algorithm: Quick-Find

▶ For n objects: Array representative of length n.

▶ Entry at position i is representative of the set containing i .

▶ Initially, every object is (alone) in its own set, and thus its
representative.

▶ Update the array in every call of union.

7 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Quick-Find Data Structure

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.components = no_nodes

4 self.representative = list(range(no_nodes))

5

6 def count(self):

7 return self.components

8

9 def find(self, v):

10 return self.representative[v]

[0, 1, ..., no nodes-1]

8 / 26



C3. Disjoint-set Data Structure/Union-Find Union-Find

Quick-Find Data Structure (Continued)

20 def union(self, v, w):

21 repr_v = self.find(v)

22 repr_w = self.find(w)

23 if repr_v == repr_w: # already in same component

24 return

25 # replace all occurrences of repr_v in

26 # self.representative with repr_w

27 for i in range(len(self.representative)):

28 if self.representative[i] == repr_v:

29 self.representative[i] = repr_w

30 self.components -= 1 # we merged two components

Running time?

▶ Cost model = number of array accesses

▶ one access for every call of find

▶ between n + 3 and 2n + 1 accesses
for every call of union that merges two components

9 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Better: Quick-Union aka Disjoint-set Forest

▶ (implicit) tree for representing each set

▶ represented as array with parent nodes as entries
(root: reference to itself)

0 1 2 3 4 5 6 7 8

3 5 0 3 6 5 3 6 5
3

6

4 7

0

2

5

8 1

▶ Root node serves as representative of the set.

10 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Quick-Union Data Structure

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] != v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 repr_v = self.find(v)

13 repr_w = self.find(w)

14 if repr_v == repr_w: # already in same component

15 return

16 self.parent[repr_v] = repr_w

17 self.components -= 1

18

19 # count as in QuickFind

11 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

First Improvement

▶ Problem with Quick-Union: Trees can degenerate into chains.
→ find requires linear time in the size of the set.

▶ Idea: In union the root of the tree with lower height becomes
Idea: a child of the root of the higher tree.

12 / 26



C3. Disjoint-set Data Structure/Union-Find Union-Find

Ranked Quick-Union Algorithm

1 class RankedQuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def union(self, v, w):

8 repr_v = self.find(v)

9 repr_w = self.find(w)

10 if repr_v == repr_w:

11 return

12 if self.rank[repr_w] < self.rank[repr_v]:

13 self.parent[repr_w] = repr_v

14 else:

15 self.parent[repr_v] = repr_w

16 if self.rank[repr_v] == self.rank[repr_w]:

17 self.rank[repr_w] += 1

18 self.components -= 1

19

20 # connected, count and find as in QuickUnion

13 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Second Improvement

Path Compression

▶ Idea: During find, reconnect all traversed nodes to the root.
▶ We do not update the height of the tree during path

compression.
▶ Value of rank can deviate from the actual height.
▶ That’s why it is called rank and not height.

14 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Ranked Quick-Union Algorithm with Path Compression

1 class RankedQuickUnionWithPathCompression:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def find(self, v):

8 if self.parent[v] == v:

9 return v

10 root = self.find(self.parent[v])

11 self.parent[v] = root

12 return root

13

14 # connected, count and union as in RankedQuickUnion

15 / 26

C3. Disjoint-set Data Structure/Union-Find Union-Find

Discussion

▶ With all improvements, we achieve almost constant amortized
cost for all operations.

▶ More precisely: [Tarjan 1975]
▶ m calls of find for n objects (and at most n − 1 calls of

union, merging two components)
▶ O(mα(m, n)) array accesses
▶ α is inverse of a variant of the Ackermann function
▶ In practise is α(m, n) ≤ 3.

▶ Nevertheless: there cannot be a union-find structure that
guarantees linear running time.
(under cell-probe model, only accounting for memory access)

16 / 26



C3. Disjoint-set Data Structure/Union-Find Union-Find

Comparison to Exploration-based Approach

▶ Chapter C2: Algorithm ConnectedComponents,
based on graph exploration.

▶ After the precomputation, queries only require constant time.

▶ In practise, disjoint-set forests are often faster, because for
many applications, we do not have to build up the full graph.

▶ If the graph has already been built up, graph exploration can
be better.

▶ Another advantage of union find:
▶ Online approach
▶ We can easily introduce further edges.

17 / 26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

C3.2 Connected Components and
Equivalence Classes

18 / 26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Reminder: Connected Components

Undirected graph

▶ Two vertices u and v are in the same connected component
if there is a path between u and v (= vertices u and v are
connected).

0 1

2 3

4
5

6

7 8

9

19 / 26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Connected Components: Properties

▶ The connected components define a
partition of the vertices:
▶ Every vertex is in a connected component.
▶ No vertex is in more than one connected component.

▶ “is connected with” is an equivalence relation.
▶ reflexive: Every vertex is connected with itself.
▶ symmetric: If u is connected with v ,

then v is connected with u.
▶ transitive: If u is connected with v , and v with w ,

then u is connected with w .

20 / 26



C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Partition in General

Definition (Partition)

A partition of a finite set M is a set P of non-empty subsets of M,
such that

▶ every element of M is in some set in P:⋃
S∈P S = M, and

▶ that sets in P are pairwise disjoint:
S ∩ S ′ = ∅ for S , S ′ ∈ P with S ̸= S ′.

The sets in P are called blocks.

M = {e1, . . . , e5}
▶ P1 = {{e1, e4}, {e3}, {e2, e5}} is a partition of M.

▶ P2 = {{e1, e4, e5}, {e3}} is not a partition of M.

▶ P3 = {{e1, e4, e5}, {e3}, {e2, e5}} is not a partition of M.

▶ P4 = {{e1}, {e2}, {e3}, {e4}, {e5}} is a partition of M.

21 / 26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Equivalence Relations in General

Definition (Equivalence Relation)

An equivalence relation over set M is a
symmetric, transitive and reflexive relation R ⊆ M ×M.
We write a ∼ b for (a, b) ∈ R and say that a is equivalent to b.

▶ symmetric: a ∼ b implies b ∼ a

▶ transitive: a ∼ b and b ∼ c implies a ∼ c

▶ reflexive: for all e ∈ M: e ∼ e

22 / 26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Equivalence Classes

Definition (Equivalence Classes)

Let R be an equivalence relation over M.
The equivalence class of a ∈ M is the set

[a] = {b ∈ M | a ∼ b}.

▶ The set of all equivalence classes is a partition of M.

▶ Vice versa:
For partition P define R = {(x , y) | ∃B ∈ P : x , y ∈ B}
(i.e. x ∼ y if and only if x and y are in the same block).
Then R is an equivalence relation.

▶ We can consider blocks in partitions as equivalence classes
and vice versa.

23 / 26

C3. Disjoint-set Data Structure/Union-Find Connected Components and Equivalence Classes

Union-Find and Equivalences

▶ Given: finite set M,
sequence s of equivalences a ∼ b over M

▶ Consider equivalences as edges in a graph with set M of
vertices.

▶ The connected components correspond to the equivalence
classes of the finest equivalence relation that considers all
equivalences from s.
▶ no “unnecessary” equivalences.

Can use union-find data structures to determine equivalence
classes.

24 / 26



C3. Disjoint-set Data Structure/Union-Find Summary

C3.3 Summary

25 / 26

C3. Disjoint-set Data Structure/Union-Find Summary

Summary

▶ A union-find data structure maintains a collection of disjoint
sets.
▶ union: merge two sets.
▶ find: identify the set containing an object and return its

representative.

▶ Good implementation: Disjoint-set forest
with improvements to keep the height of the trees low:
▶ Union adjoins the shorter tree to the taller tree.
▶ Find reconnects traversed nodes to the root

(path compression).

▶ Applications:
▶ Connected components
▶ Finest equivalence relation

26 / 26


	Union-Find
	

	Connected Components and Equivalence Classes
	

	Summary
	


