Algorithms and Data Structures C3. Disjoint-set Data Structure/Union-Find

Gabriele Röger and Patrick Schnider

University of Basel

May 7, 2025

C3. Disjoint-set Data Structure/Union-Find

Union-Find

1 / 26

C3.1 Union-Find

Algorithms and Data Structures May 7, 2025 — C3. Disjoint-set Data Structure/Union-Find

C3.1 Union-Find

C3.2 Connected Components and Equivalence Classes

C3.3 Summary

Set of conn. components as collection of disjoint sets of objects.

- One set for all vertices of one connected component.
- Operations:
 - Union: Given two objects, merge the sets that contain them into one.

Introduce a new edge between the given vertices, connecting their connected components.

Find: Given an object, return a representative of the set that contains it.

Given a vertex, return a representative vertex for its connected component.

- Must return the same representative for all objects in the set.
- The representative may only change if set gets merged.
- Two objects are in the same set (two vertices are connected) if find returns the same representative for them.
- Count: Return the number of sets Return the number of connected components.

5 / 26

C3. Disjoint-set Data Structure/Union-Find

Union-Fi

(Somewhat) Naive Algorithm: Quick-Find

- ► For *n* objects: Array representative of length *n*.
- Entry at position *i* is representative of the set containing *i*.
- Initially, every object is (alone) in its own set, and thus its representative.
- Update the array in every call of union.

3. D	isjoint-set	Data	Structure	/ι	Inion-	Find
------	-------------	------	-----------	----	--------	------

Union-Find Data Type

1 class UnionFind:

4

7

2 # Initialization for n objects (with names 0, ..., n-1).

- 3 def __init__(n: int) -> None
- 5 # Merge the sets containing objects v and w.
- 6 def union(v: int, w: int) -> None
- 8 # Representative for set containing v.
- 9 # May change if set is merged by call of union,
- 10 # but not otherwise.
- 11 def find(v: int) -> int
- 12 13 # Number of sets.
- 14 def count() -> int

6 / 26

Union-Find

12 / 26

C3. Disjoint-set Data Structure/Union-Find	Union-Find	C3. Disjoint-set Data Structure/Union-Find	Union-Find
Ranked Quick-Union Algorithm		Second Improvement	
<pre>1 class RankedQuickUnion: 2 definit(self, no_nodes): 3 self.parent = list(range(no_nodes)) 4 self.components = no_nodes 5 self.rank = [0] * no_nodes # [0,, 0] 6 7 def union(self, v, w): 8 repr_v = self.find(v) 9 repr_w = self.find(w) 10 if repr_v == repr_w: 11 return 12 if self.rank[repr_w] < self.rank[repr_v]: 13 self.parent[repr_w] = repr_v 14 else: 15 self.parent[repr_v] == repr_w 16 if self.rank[repr_v] == self.rank[repr_w]: 17 self.rank[repr_w] += 1 18 self.components -= 1 19 20 # connected, count and find as in QuickUnion</pre>		 Path Compression Idea: During find, reconnect all traversed nodes to the root We do not update the height of the tree during path compression. Value of rank can deviate from the actual height. That's why it is called rank and not height. 	t.
	13 / 26		14 / 26
C3. Disjoint-set Data Structure/Union-Find Ranked Quick-Union Algorithm with Path Compres	Union-Find Ssion	C3. Disjoint-set Data Structure/Union-Find Discussion	Union-Find
<pre>1 class RankedQuickUnionWithPathCompression: 2 definit(self, no_nodes): 3 self.parent = list(range(no_nodes)) 4 self.components = no_nodes 5 self.rank = [0] * no_nodes # [0,, 0] 6 7 def find(self, v): 8 if self.parent[v] == v: 9 return v 10 root = self.find(self.parent[v]) 11 self.parent[v] = root 12 return root 13 14 # connected, count and union as in RankedQuickUnion</pre>		 With all improvements, we achieve almost constant amort cost for all operations. More precisely: [Tarjan 1975] m calls of find for n objects (and at most n - 1 calls of union, merging two components) O(mα(m, n)) array accesses α is inverse of a variant of the Ackermann function In practise is α(m, n) ≤ 3. Nevertheless: there cannot be a union-find structure that guarantees linear running time. (under cell-probe model, only accounting for memory access) 	zed

Comparison to Exploration-based Approach

- Chapter C2: Algorithm ConnectedComponents, based on graph exploration.
- ► After the precomputation, queries only require constant time.
- In practise, disjoint-set forests are often faster, because for many applications, we do not have to build up the full graph.
- If the graph has already been built up, graph exploration can be better.
- Another advantage of union find:
 - Online approach
 - ► We can easily introduce further edges.

C3.2 Connected Components and Equivalence Classes

C3. Disjoint-set Data Structure/Union-Find

Connected Components and Equivalence Classes

Reminder: Connected Components

Undirected graph

Two vertices u and v are in the same connected component if there is a path between u and v (= vertices u and v are connected).

C3. Disjoint-set Data Structure/Union-Find Connected Components: Properties The connected components define a partition of the vertices: Every vertex is in a connected component. No vertex is in more than one connected component. "is connected with" is an equivalence relation. reflexive: Every vertex is connected with itself. symmetric: If u is connected with v, then v is connected with u. transitive: If u is connected with v, and v with w, then u is connected with w.

17 / 26

C3. Disjoint-set Data Structure/Union-Find

Connected Components and Equivalence Classes

Partition in General

Definition (Partition)

A partition of a finite set M is a set P of non-empty subsets of M, such that

- every element of M is in some set in P: $\bigcup_{S \in P} S = M$, and
- ▶ that sets in *P* are pairwise disjoint: $S \cap S' = \emptyset$ for $S, S' \in P$ with $S \neq S'$.

The sets in P are called blocks.

- $M = \{e_1, \ldots, e_5\}$
 - $P_1 = \{\{e_1, e_4\}, \{e_3\}, \{e_2, e_5\}\}$ is a partition of M.
 - $P_2 = \{\{e_1, e_4, e_5\}, \{e_3\}\}$ is not a partition of M.
 - $P_3 = \{\{e_1, e_4, e_5\}, \{e_3\}, \{e_2, e_5\}\}$ is not a partition of M.
 - $P_4 = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}\}$ is a partition of M.

21 / 26

C3. Disjoint-set Data Structure/Union-Find

Connected Components and Equivalence Classes

Equivalence Classes

Definition (Equivalence Classes) Let R be an equivalence relation over M. The equivalence class of $a \in M$ is the set

 $[a] = \{b \in M \mid a \sim b\}.$

- The set of all equivalence classes is a partition of M.
- ► Vice versa:

For partition *P* define $R = \{(x, y) \mid \exists B \in P : x, y \in B\}$ (i.e. $x \sim y$ if and only if x and y are in the same block). Then *R* is an equivalence relation.

We can consider blocks in partitions as equivalence classes and vice versa.

- Given: finite set M, sequence s of equivalences a ~ b over M
- Consider equivalences as edges in a graph with set *M* of vertices.
- The connected components correspond to the equivalence classes of the finest equivalence relation that considers all equivalences from s.
 - no "unnecessary" equivalences.

Can use union-find data structures to determine equivalence classes.

Summary

C3.3 Summary

C3. Disjoint-set Data Structure/Union-Find

Summary

- A union-find data structure maintains a collection of disjoint sets.
 - union: merge two sets.
 - find: identify the set containing an object and return its representative.
- Good implementation: Disjoint-set forest with improvements to keep the height of the trees low:
 - Union adjoins the shorter tree to the taller tree.
 - Find reconnects traversed nodes to the root (path compression).
- ► Applications:
 - Connected components
 - ► Finest equivalence relation

25 / 26

Summarv