Algorithms and Data Structures C2. Graph Exploration: Applications

Gabriele Röger and Patrick Schnider

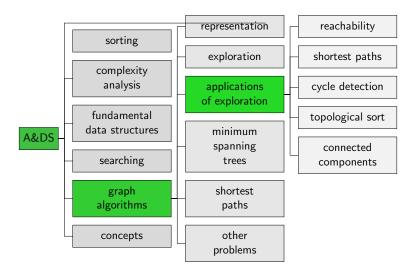
University of Basel

April 30, 2025

Reminder: Graph Exploration

- Given a vertex v, visit all vertices that are reachable from v.
- Often used as part of other graph algorithms.
- Depth-first search: go "deep" into the graph (away from v)
- Breadth-first search: first all neighbours, then neighbours of neighbours, ...

Content of the Course



Reachability ●000

Shortest Paths

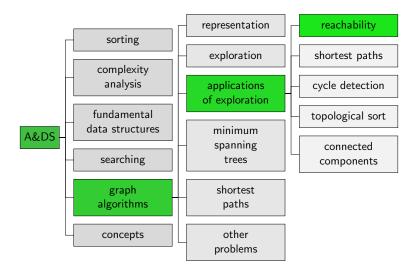
Acyclic Graphs

Connected Components

Summary 00

Reachability

Content of the Course



Reachability

Mark-and-Sweep Garbage Collection

Aim: Release memory occupied by no longer accessible objects.

- Directed graph: Objects as vertices, references to objects as edges.
- One bit per object for marker during garbage collection.
- Mark: Mark all reachable objects (set bit to 1).
- Sweep: Clear unmarked objects from memory.
 Afterwards set bit for all reachable objects back to 0.

Acyclic Graphs

Connected Component

Magic Wand in Image Editing

Reachability 0000 Shortest Paths

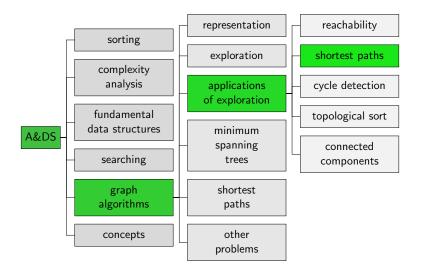
Acyclic Graphs

Connected Components

Summary 00

Shortest Paths

Content of the Course



Shortest Paths: Idea

- Breadth-first search visits the vertices with increasing (minimal) distance from the start vertex.
- First visit of a vertex happens on shortest path.
- Idea: Use path from induced search tree.

Shortest Paths

Acyclic Graphs

Connected Components

Summary 00

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

Shortest-path Problem

Single-source Shortest-paths Problem

- Given: Graph and start vertex s
- Query for vertex v
 - Is there a path from *s* to *v*?
 - If yes, what is the shortest path?
- Abbreviation SSSP

Shortest Paths: Algorithm

```
class SingleSourceShortestPaths:
 1
      def __init__(self, graph, start_node):
2
           self.predecessor = [None] * graph.no_nodes()
3
           self.predecessor[start_node] = start_node
4
5
           # precompute predecessors with breadth-first search with
6
           # self.predecessors used for detecting visited nodes
7
           queue = deque()
8
           queue.append(start_node)
9
           while queue:
10
11
               v = queue.popleft()
               for s in graph.successors(v):
12
                   if self.predecessor[s] is None:
13
                        self.predecessor[s] = v
14
                        queue.append(s)
15
16
       . . .
```

Shortest Paths: Algorithm (Continued)

```
def has_path_to(self, node):
19
           return self.predecessor[node] is not None
20
21
      def get_path_to(self, node):
22
           if not self.has_path_to(node):
23
               return None
24
           if self.predecessor[node] == node: # start node
25
               return [node]
26
           pre = self.predecessor[node]
27
           path = self.get_path_to(pre)
28
           path.append(node)
29
30
           return path
```

Running time?

Later: Shortest paths with edge weights

Reachability

Shortest Paths

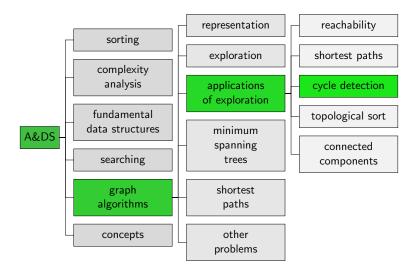
Acyclic Graphs

Connected Components

Summary 00

Acyclic Graphs

Content of the Course



Acyclic Graphs

Connected Components

Detection of Acyclic Graphs

Definition (Directed Acyclic Graph)

A directed acyclic graph (DAG) is a directed graph that contains no directed cycles.

Detection of Acyclic Graphs

Definition (Directed Acyclic Graph)

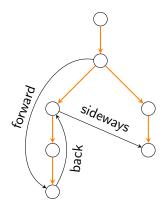
A directed acyclic graph (DAG) is a directed graph that contains no directed cycles.

Task: Decide whether a directed graph contains a cycle. If yes, return a cycle.

Acyclic Graphs

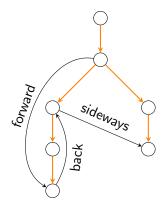
Connected Components

Criterion for Acyclicity



Induced search tree of a depth-first search (orange) and possible other edges

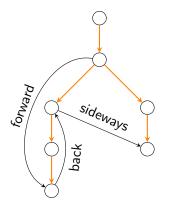
Criterion for Acyclicity



Induced search tree of a depth-first search (orange) and possible other edges

The (reachable part of the) graph is acyclic if and only if there are no back edges.

Criterion for Acyclicity



Induced search tree of a depth-first search (orange) and possible other edges

The (reachable part of the) graph is acyclic if and only if there are no back edges.

Idea: Remember the vertices on the current path in a DFS.

Cycle Detection: Algorithm

```
class DirectedCycle:
 1
       def __init__(self, graph):
2
           self.predecessor = [None] * graph.no_nodes()
3
           self.on_current_path = [False] * graph.no_nodes()
4
           self.cycle = None
5
           for node in range(graph.no_nodes()):
6
               if self.has_cycle():
\overline{7}
                    break
8
               if self.predecessor[node] is Nonex
9
                    self.predecessor[node] = node Repeated depth-first
10
                    self.dfs(graph, node)
11
                                                     searches such that
12
                                                     at the end all vertices
       def has_cycle(self):
13
                                                     have been visited.
           return self.cycle is not None
14
```

16	<pre>def dfs(self, graph, node):</pre>
17	<pre>self.on_current_path[node] = True</pre>
18	<pre>for s in graph.successors(node):</pre>
19	<pre>if self.has_cycle():</pre>
20	return
21	<pre>if self.on_current_path[s]:</pre>
22	<pre>self.predecessor[s] = node</pre>
23	<pre>self.extract_cycle(s)</pre>
24	<pre>if self.predecessor[s] is None:</pre>
25	<pre>self.predecessor[s] = node</pre>
26	<pre>self.dfs(graph, s)</pre>
27	<pre>self.on_current_path[node] = False</pre>

16	def dfs(self, graph, node):
17	<pre>self.on_current_path[node] = True</pre>
18	<pre>for s in graph.successors(node):</pre>
19	<pre>if self.has_cycle():</pre>
20	return
21	<pre>if self.on_current_path[s]:</pre>
22	<pre>self.predecessor[s] = node</pre>
23	<pre>self.extract_cycle(s)</pre>
24	<pre>if self.predecessor[s] is None:</pre>
25	<pre>self.predecessor[s] = node</pre>
26	<pre>self.dfs(graph, s)</pre>
27	<pre>self.on_current_path[node] = False</pre>

Update whether vertex is on the current path.

16	<pre>def dfs(self, graph, node):</pre>
17	<pre>self.on_current_path[node] = True</pre>
18	Foundsain graph.successors(node):
19	<pre>cycleif self.has_cycle():</pre>
20	return
21	<pre>if self.on_current_path[s]:</pre>
22	<pre>self.predecessor[s] = node</pre>
23	<pre>self.extract_cycle(s)</pre>
24	<pre>if self.predecessor[s] is None:</pre>
25	<pre>self.predecessor[s] = node</pre>
26	<pre>self.dfs(graph, s)</pre>
27	<pre>self.on_current_path[node] = False</pre>

Update whether vertex is on the current path.

Reachability 0000	Shortest Paths 0000000	Acyclic Graphs 00000●0000000	Connected Components	Summary 00
Cycle	Detection: A	ph, node):	Śkip it	a cycle en detected vhere.
17 18 19 20 21 22 23	Foundsain grap cycle ^{if self.h} retur if self.o self.		verte	ate whether ix is on the ent path.
24 25 26 27	self.	<pre>redecessor[s] is No predecessor[s] = no dfs(graph, s) nt_path[node] = Fal</pre>	ode	

When calling extract_cycle, node is on a cycle in self.predecessor.

29	def	<pre>extract_cycle(self, node):</pre>
30		<pre>self.cycle = deque()</pre>
31		current = node
32		<pre>self.cycle.appendleft(current)</pre>
33		while True:
34		<pre>current = self.predecessor[current]</pre>
35		<pre>self.cycle.appendleft(current)</pre>
36		if current == node:
37		return

Reachability 0000 Shortest Paths

Acyclic Graphs

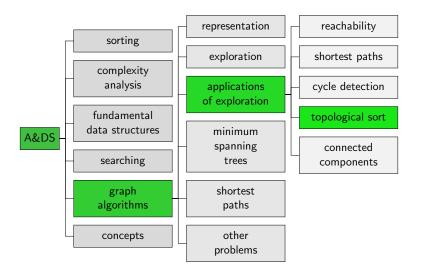
Connected Components

Summary 00

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

Content of the Course



Topological Sort

Definition

A topological sort of a directed acyclic graph G = (V, E) is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

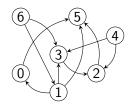
For example relevant for scheduling:

edge (u, v) expresses that job u must be completed before job v can be started.

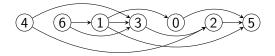
Acyclic Graphs

Connected Components

Topological Sort: Illustration



Topological sort: 4, 6, 1, 3, 0, 2, 5



Topological Sort: Algorithm

Theorem

For the reachable part of a acyclic graph, the reverse DFS postorder is a topological sort.

Algorithm:

- Sequence of depth-first searches (for still unvisited vertices) until all vertices visited.
- Store for each DFS the reverse postorder: *P_i* for *i*-th search
- Let k be the number of searches. Then the concatenation P_k, \ldots, P_1 is a topological sort.

Reachability 0000 Shortest Paths

Acyclic Graphs

Connected Components

Summary 00

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

Reachability

Shortest Paths

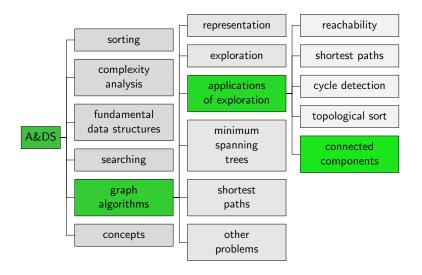
Acyclic Graphs

Connected Components

Summary 00

Connected Components

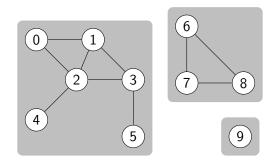
Content of the Course



Connected Components of Undirected Graphs

Undirected graph

Two vertices *u* and *v* are in the same connected component if there is a path between *u* and *v*.



Connected Components: Interface

We want to implement the following interface:

```
class ConnectedComponents:
1
2
       # Initialization with precomputation
      def __init__(graph: UndirectedGraph) -> None
3
4
       # Are vertices node1 and node2 connected?
5
      def connected(node1: int, node2: int) -> bool
6
7
       # Number of connected components
8
      def count() -> int
9
10
       # Component number for node
11
       # (between 0 and count()-1)
12
      def id(node: int) -> int
13
```

Connected Components: Interface

We want to implement the following interface:

```
class ConnectedComponents:
1
2
       # Initialization with precomputation
      def __init__(graph: UndirectedGraph) -> None
3
4
       # Are vertices node1 and node2 connected?
5
      def connected(node1: int, node2: int) -> bool
6
7
       # Number of connected components
8
      def count() -> int
9
10
       # Component number for node
11
       # (between 0 and count()-1)
12
      def id(node: int) -> int
13
```

Idea: Sequence of graph explorations until all vertices visited. ID of vertex corresponds to iteration in which it was visited.

Connected Components: Algorithm

```
1 class ConnectedComponents:
       def __init__(self, graph):
2
           self.id = [None] * graph.no_nodes()
3
           self.curr id = 0
4
           visited = [False] * graph.no_nodes()
5
           for node in range(graph.no_nodes()):
6
               if not visited[node]:
\overline{7}
                    self.dfs(graph, node, visited)
8
                    self.curr id += 1
9
10
       def dfs(self, graph, node, visited):
11
           if visited[node]:
12
               return
13
           visited[node] = True
14
           self.id[node] = self.curr_id
15
           for n in graph.neighbours(node):
16
               self.dfs(graph, n, visited)
17
```

How are connected, count and id implemented?

Reachability 0000 Shortest Paths

Acyclic Graphs

Connected Components

Summary 00

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

Connected Components of Directed Graphs

Directed graph G

If one ignores the arc directions, then every connected component of the resulting undirected graph is a weakly connected component of G.

Connected Components of Directed Graphs

Directed graph G

- If one ignores the arc directions, then every connected component of the resulting undirected graph is a weakly connected component of G.
- *G* is strongly connected, if there is a directed path from each vertex to each other vertex.

Connected Components of Directed Graphs

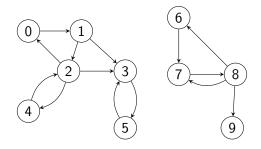
Directed graph G

- If one ignores the arc directions, then every connected component of the resulting undirected graph is a weakly connected component of G.
- *G* is strongly connected, if there is a directed path from each vertex to each other vertex.
- A strongly connected component of *G* is a maximal strongly connected subgraph.

Acyclic Graphs

Connected Components

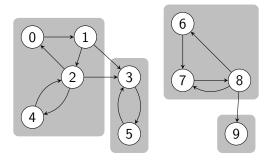
Strongly Connected Components



Acyclic Graphs

Connected Components

Strongly Connected Components



Strongly Connected Components

Kosaraju' algorithm

- Given directed graph G = (V, E), compute a reverse postorder P (for all vertices) of the graph G^R = (V, {(v, u) | (u, v) ∈ E}) (all edges reversed).
- Conduct a sequence of explorations in G, always selecting the first still unvisited vertex in P as the next start vertex.
- All vertices that are reached by the same exploration, are in the same strongly connected component.

Reachability 0000 Shortest Paths

Acyclic Graphs

Connected Components

Summary 00

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

Reachability 0000 Shortest Paths

Acyclic Graphs

Connected Components

Summary •0

Summary

Summary

We have seen a number of applications of graph exploration:

- Reachability
- Shortest paths
- Cycle detection
- Topological sort
- Connected components

Some applications require a specific exploration, for other applications we can use both, BFS and DFS.