Algorithms and Data Structures C2. Graph Exploration: Applications

Gabriele Röger and Patrick Schnider

University of Basel

April 30, 2025

Reminder: Graph Exploration Given a vertex v, visit all vertices that are reachable from v. Often used as part of other graph algorithms. Depth-first search: go "deep" into the graph (away from v) Breadth-first search: first all neighbours, then neighbours of neighbours, ...

April 30, 2025 — C2. Graph Exploration: Applications C2.1 Reachability C2.2 Shortest Paths C2.3 Acyclic Graphs C2.4 Connected Components C2.5 Summary

Algorithms and Data Structures

1 / 40

C2. Graph Exploration: Applications

Reachability

C2.1 Reachability

Aim: Release memory occupied by no longer accessible objects.

- Directed graph: Objects as vertices, references to objects as edges.
- One bit per object for marker during garbage collection.
- Mark: Mark all reachable objects (set bit to 1).
- Sweep: Clear unmarked objects from memory. Afterwards set bit for all reachable objects back to 0.

5 / 40

Reachability

Shortest Paths

C2.2 Shortest Paths

Shortest Paths: Idea

- Breadth-first search visits the vertices with increasing (minimal) distance from the start vertex.
- First visit of a vertex happens on shortest path.
- Idea: Use path from induced search tree.

9 / 40

Shortest Paths

C2. Graph Exploration: Applications Shortest Paths C2. Graph Exploration: Applications Shortest Paths Shortest-path Problem Shortest Paths: Algorithm 1 class SingleSourceShortestPaths: 2 def __init__(self, graph, start_node): self.predecessor = [None] * graph.no_nodes() 3 Single-source Shortest-paths Problem self.predecessor[start_node] = start_node 4 5 ► Given: Graph and start vertex s *# precompute predecessors with breadth-first search with* 6 \blacktriangleright Query for vertex v # self.predecessors used for detecting visited nodes 7 queue = deque() 8 ▶ Is there a path from s to v? queue.append(start_node) 9 If yes, what is the shortest path? while queue: 10 Abbreviation SSSP In principle as before v = queue.popleft() 11 for s in graph.successors(v): (just as a class) 12if self.predecessor[s] is None: 13 self.predecessor[s] = v 14 queue.append(s) 1516 13 / 40 C2. Graph Exploration: Applications Shortest Paths C2. Graph Exploration: Applications Acvelic Graphs Shortest Paths: Algorithm (Continued) def has_path_to(self, node): 19return self.predecessor[node] is not None 2021def get_path_to(self, node): 22C2.3 Acyclic Graphs if not self.has_path_to(node): 23return None 24if self.predecessor[node] == node: # start node 25return [node] 26pre = self.predecessor[node] 27

15 / 40

- path = self.get_path_to(pre) 28
- path.append(node) 29
- return path 30

Running time?

Later: Shortest paths with edge weights

1	class DirectedCycle:
2	<pre>definit(self, graph):</pre>
3	<pre>self.predecessor = [None] * graph.no_nodes()</pre>
4	<pre>self.on_current_path = [False] * graph.no_nodes()</pre>
5	<pre>self.cycle = None</pre>
6	<pre>for node in range(graph.no_nodes()):</pre>
7	<pre>if self.has_cycle():</pre>
8	break
9	<pre>if self.predecessor[node] is None:</pre>
10	<pre>self.predecessor[node] = node</pre>
11	self.dfs(graph, node) 🤸
12	Repeated depth-first
13	def has_cycle(self): searches such that
14	return self.cycle is not None at the end all vertices
	have been visited.

C2. Graph Exploration: Applications

Definition

Acyclic Graphs

Topological Sort

C2. Graph Exploration: Applications

Acyclic Graphs

Topological Sort: Illustration

Topological sort: 4, 6, 1, 3, 0, 2, 5

25 / 40

Acyclic Graphs

C2. Graph Exploration: Applications

can be started.

Topological Sort: Algorithm

Theorem

For the reachable part of a acyclic graph, the reverse DFS postorder is a topological sort.

A topological sort of a directed acyclic graph G = (V, E) is a linear ordering of all its vertices such that if G contains an edge

edge (u, v) expresses that job u must be completed before job v

(u, v), then u appears before v in the ordering.

For example relevant for scheduling:

Algorithm:

- Sequence of depth-first searches (for still unvisited vertices) until all vertices visited.
- Store for each DFS the reverse postorder: *P_i* for *i*-th search
- Let k be the number of searches. Then the concatenation P_k, \ldots, P_1 is a topological sort.

C2.4 Connected Components

C2. Graph Exploration: Applications

Connected Components

Connected Components of Undirected Graphs

Undirected graph

Two vertices u and v are in the same connected component if there is a path between u and v.

Idea: Sequence of graph explorations until all vertices visited. ID of vertex corresponds to iteration in which it was visited.

Connected Components

Strongly Connected Components

Kosaraju' algorithm

- Given directed graph G = (V, E), compute a reverse postorder P (for all vertices) of the graph $G^R = (V, \{(v, u) \mid (u, v) \in E\})$ (all edges reversed).
- Conduct a sequence of explorations in *G*, always selecting the first still unvisited vertex in P as the next start vertex.
- ▶ All vertices that are reached by the same exploration, are in the same strongly connected component.

We have seen a number of applications of graph exploration:

- Reachability
- Shortest paths
- Cycle detection
- ► Topological sort
- Connected components

Some applications require a specific exploration, for other applications we can use both, BFS and DFS.