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Reminder: Graph Exploration

▶ Given a vertex v , visit all vertices that are reachable from v .

▶ Often used as part of other graph algorithms.

▶ Depth-first search: go “deep” into the graph (away from v)

▶ Breadth-first search: first all neighbours, then neighbours of
neighbours, . . .
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C2.1 Reachability
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C2. Graph Exploration: Applications Reachability

Mark-and-Sweep Garbage Collection

Aim: Release memory occupied by no longer accessible objects.

▶ Directed graph: Objects as vertices, references to objects as
edges.

▶ One bit per object for marker during garbage collection.

▶ Mark: Mark all reachable objects (set bit to 1).

▶ Sweep: Clear unmarked objects from memory.
Afterwards set bit for all reachable objects back to 0.
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Magic Wand in Image Editing
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C2.2 Shortest Paths
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Shortest Paths: Idea

▶ Breadth-first search visits the vertices with increasing
(minimal) distance from the start vertex.

▶ First visit of a vertex happens on shortest path.

▶ Idea: Use path from induced search tree.
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Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb
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Shortest-path Problem

Single-source Shortest-paths Problem

▶ Given: Graph and start vertex s
▶ Query for vertex v

▶ Is there a path from s to v?
▶ If yes, what is the shortest path?

▶ Abbreviation SSSP
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Shortest Paths: Algorithm

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.predecessor = [None] * graph.no_nodes()

4 self.predecessor[start_node] = start_node

5

6 # precompute predecessors with breadth-first search with

7 # self.predecessors used for detecting visited nodes

8 queue = deque()

9 queue.append(start_node)

10 while queue:

11 v = queue.popleft()

12 for s in graph.successors(v):

13 if self.predecessor[s] is None:

14 self.predecessor[s] = v

15 queue.append(s)

16 ...

In principle as before
(just as a class)
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Shortest Paths: Algorithm (Continued)

19 def has_path_to(self, node):

20 return self.predecessor[node] is not None

21

22 def get_path_to(self, node):

23 if not self.has_path_to(node):

24 return None

25 if self.predecessor[node] == node: # start node

26 return [node]

27 pre = self.predecessor[node]

28 path = self.get_path_to(pre)

29 path.append(node)

30 return path

Running time?

Later: Shortest paths with edge weights
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C2.3 Acyclic Graphs
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Detection of Acyclic Graphs

Definition (Directed Acyclic Graph)

A directed acyclic graph (DAG) is a directed graph that contains
no directed cycles.

Task: Decide whether a directed graph contains
Task: a cycle. If yes, return a cycle.
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Criterion for Acyclicity
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Induced search tree of a
depth-first search (orange) and
possible other edges

The (reachable part of the)
graph is acyclic if and only if
there are no back edges.

Idea: Remember the vertices on the current path in a DFS.
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Cycle Detection: Algorithm

1 class DirectedCycle:

2 def __init__(self, graph):

3 self.predecessor = [None] * graph.no_nodes()

4 self.on_current_path = [False] * graph.no_nodes()

5 self.cycle = None

6 for node in range(graph.no_nodes()):

7 if self.has_cycle():

8 break

9 if self.predecessor[node] is None:

10 self.predecessor[node] = node

11 self.dfs(graph, node)

12

13 def has_cycle(self):

14 return self.cycle is not None

Repeated depth-first
searches such that
at the end all vertices
have been visited.
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Cycle Detection: Algorithm (Continued)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node

23 self.extract_cycle(s)

24 if self.predecessor[s] is None:

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Update whether
vertex is on the
current path.

Skip if a cycle
has been detected
somewhere.

Found a
cycle
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Cycle Detection: Algorithm (Continued)

When calling extract cycle, node is on a cycle in
self.predecessor.

29 def extract_cycle(self, node):

30 self.cycle = deque()

31 current = node

32 self.cycle.appendleft(current)

33 while True:

34 current = self.predecessor[current]

35 self.cycle.appendleft(current)

36 if current == node:

37 return
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Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb
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Topological Sort

Definition

A topological sort of a directed acyclic graph G = (V ,E ) is a
linear ordering of all its vertices such that if G contains an edge
(u, v), then u appears before v in the ordering.

For example relevant for scheduling:
edge (u, v) expresses that job u must be completed before job v
can be started.
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Topological Sort: Illustration
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Topological sort: 4, 6, 1, 3, 0, 2, 5

4 6 1 3 0 2 5
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Topological Sort: Algorithm

Theorem
For the reachable part of a acyclic graph, the reverse DFS
postorder is a topological sort.

Algorithm:

▶ Sequence of depth-first searches (for still unvisited vertices)
until all vertices visited.

▶ Store for each DFS the reverse postorder:
Pi for i-th search

▶ Let k be the number of searches. Then the concatenation
Pk , . . . ,P1 is a topological sort.
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Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb
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C2.4 Connected Components
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Connected Components of Undirected Graphs

Undirected graph

▶ Two vertices u and v are in the same connected component
if there is a path between u and v .
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Connected Components: Interface

We want to implement the following interface:

1 class ConnectedComponents:

2 # Initialization with precomputation

3 def __init__(graph: UndirectedGraph) -> None

4

5 # Are vertices node1 and node2 connected?

6 def connected(node1: int, node2: int) -> bool

7

8 # Number of connected components

9 def count() -> int

10

11 # Component number for node

12 # (between 0 and count()-1)

13 def id(node: int) -> int

Idea: Sequence of graph explorations until all vertices visited.
Idea: ID of vertex corresponds to iteration in which it was visited.
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Connected Components: Algorithm

1 class ConnectedComponents:

2 def __init__(self, graph):

3 self.id = [None] * graph.no_nodes()

4 self.curr_id = 0

5 visited = [False] * graph.no_nodes()

6 for node in range(graph.no_nodes()):

7 if not visited[node]:

8 self.dfs(graph, node, visited)

9 self.curr_id += 1

10

11 def dfs(self, graph, node, visited):

12 if visited[node]:

13 return

14 visited[node] = True

15 self.id[node] = self.curr_id

16 for n in graph.neighbours(node):

17 self.dfs(graph, n, visited)

How are connected, count and id implemented?
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Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb
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Connected Components of Directed Graphs

Directed graph G

▶ If one ignores the arc directions, then every connected
component of the resulting undirected graph is a weakly
connected component of G .

▶ G is strongly connected, if there is a directed path from each
vertex to each other vertex.

▶ A strongly connected component of G is a maximal strongly
connected subgraph.
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Strongly Connected Components

0 1

2 3

4
5

6

7 8

9

36 / 40



C2. Graph Exploration: Applications Connected Components

Strongly Connected Components

Kosaraju’ algorithm

▶ Given directed graph G = (V ,E ), compute a reverse
postorder P (for all vertices) of the graph
GR = (V , {(v , u) | (u, v) ∈ E}) (all edges reversed).

▶ Conduct a sequence of explorations in G , always selecting the
first still unvisited vertex in P as the next start vertex.

▶ All vertices that are reached by the same exploration, are in
the same strongly connected component.

37 / 40

C2. Graph Exploration: Applications Connected Components

Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb
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C2.5 Summary
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Summary

We have seen a number of applications of graph exploration:

▶ Reachability

▶ Shortest paths

▶ Cycle detection

▶ Topological sort

▶ Connected components

Some applications require a specific exploration, for other
applications we can use both, BFS and DFS.
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