
Algorithms and Data Structures
C2. Graph Exploration: Applications

Gabriele Röger and Patrick Schnider

University of Basel

April 30, 2025

1 / 40

Algorithms and Data Structures
April 30, 2025 — C2. Graph Exploration: Applications

C2.1 Reachability

C2.2 Shortest Paths

C2.3 Acyclic Graphs

C2.4 Connected Components

C2.5 Summary

2 / 40

Reminder: Graph Exploration

▶ Given a vertex v , visit all vertices that are reachable from v .

▶ Often used as part of other graph algorithms.

▶ Depth-first search: go “deep” into the graph (away from v)

▶ Breadth-first search: first all neighbours, then neighbours of
neighbours, . . .

3 / 40

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

reachability

shortest paths

cycle detection

topological sort

connected
components

minimum
spanning
trees

shortest
paths

other
problems

concepts

4 / 40



C2. Graph Exploration: Applications Reachability

C2.1 Reachability

5 / 40

C2. Graph Exploration: Applications Reachability

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

reachability

shortest paths

cycle detection

topological sort

connected
components

minimum
spanning
trees

shortest
paths

other
problems

concepts

6 / 40

C2. Graph Exploration: Applications Reachability

Mark-and-Sweep Garbage Collection

Aim: Release memory occupied by no longer accessible objects.

▶ Directed graph: Objects as vertices, references to objects as
edges.

▶ One bit per object for marker during garbage collection.

▶ Mark: Mark all reachable objects (set bit to 1).

▶ Sweep: Clear unmarked objects from memory.
Afterwards set bit for all reachable objects back to 0.

7 / 40

C2. Graph Exploration: Applications Reachability

Magic Wand in Image Editing

8 / 40



C2. Graph Exploration: Applications Shortest Paths

C2.2 Shortest Paths

9 / 40

C2. Graph Exploration: Applications Shortest Paths

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

reachability

shortest paths

cycle detection

topological sort

connected
components

minimum
spanning
trees

shortest
paths

other
problems

concepts

10 / 40

C2. Graph Exploration: Applications Shortest Paths

Shortest Paths: Idea

▶ Breadth-first search visits the vertices with increasing
(minimal) distance from the start vertex.

▶ First visit of a vertex happens on shortest path.

▶ Idea: Use path from induced search tree.

11 / 40

C2. Graph Exploration: Applications Shortest Paths

Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb

12 / 40



C2. Graph Exploration: Applications Shortest Paths

Shortest-path Problem

Single-source Shortest-paths Problem

▶ Given: Graph and start vertex s
▶ Query for vertex v

▶ Is there a path from s to v?
▶ If yes, what is the shortest path?

▶ Abbreviation SSSP

13 / 40

C2. Graph Exploration: Applications Shortest Paths

Shortest Paths: Algorithm

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.predecessor = [None] * graph.no_nodes()

4 self.predecessor[start_node] = start_node

5

6 # precompute predecessors with breadth-first search with

7 # self.predecessors used for detecting visited nodes

8 queue = deque()

9 queue.append(start_node)

10 while queue:

11 v = queue.popleft()

12 for s in graph.successors(v):

13 if self.predecessor[s] is None:

14 self.predecessor[s] = v

15 queue.append(s)

16 ...

In principle as before
(just as a class)

14 / 40

C2. Graph Exploration: Applications Shortest Paths

Shortest Paths: Algorithm (Continued)

19 def has_path_to(self, node):

20 return self.predecessor[node] is not None

21

22 def get_path_to(self, node):

23 if not self.has_path_to(node):

24 return None

25 if self.predecessor[node] == node: # start node

26 return [node]

27 pre = self.predecessor[node]

28 path = self.get_path_to(pre)

29 path.append(node)

30 return path

Running time?

Later: Shortest paths with edge weights

15 / 40

C2. Graph Exploration: Applications Acyclic Graphs

C2.3 Acyclic Graphs

16 / 40



C2. Graph Exploration: Applications Acyclic Graphs

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

reachability

shortest paths

cycle detection

topological sort

connected
components

minimum
spanning
trees

shortest
paths

other
problems

concepts

17 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Detection of Acyclic Graphs

Definition (Directed Acyclic Graph)

A directed acyclic graph (DAG) is a directed graph that contains
no directed cycles.

Task: Decide whether a directed graph contains
Task: a cycle. If yes, return a cycle.

18 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Criterion for Acyclicity

fo
rw
ar
d

b
ac
k

sideways

Induced search tree of a
depth-first search (orange) and
possible other edges

The (reachable part of the)
graph is acyclic if and only if
there are no back edges.

Idea: Remember the vertices on the current path in a DFS.

19 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Cycle Detection: Algorithm

1 class DirectedCycle:

2 def __init__(self, graph):

3 self.predecessor = [None] * graph.no_nodes()

4 self.on_current_path = [False] * graph.no_nodes()

5 self.cycle = None

6 for node in range(graph.no_nodes()):

7 if self.has_cycle():

8 break

9 if self.predecessor[node] is None:

10 self.predecessor[node] = node

11 self.dfs(graph, node)

12

13 def has_cycle(self):

14 return self.cycle is not None

Repeated depth-first
searches such that
at the end all vertices
have been visited.

20 / 40



C2. Graph Exploration: Applications Acyclic Graphs

Cycle Detection: Algorithm (Continued)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node

23 self.extract_cycle(s)

24 if self.predecessor[s] is None:

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Update whether
vertex is on the
current path.

Skip if a cycle
has been detected
somewhere.

Found a
cycle

21 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Cycle Detection: Algorithm (Continued)

When calling extract cycle, node is on a cycle in
self.predecessor.

29 def extract_cycle(self, node):

30 self.cycle = deque()

31 current = node

32 self.cycle.appendleft(current)

33 while True:

34 current = self.predecessor[current]

35 self.cycle.appendleft(current)

36 if current == node:

37 return

22 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb

23 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

reachability

shortest paths

cycle detection

topological sort

connected
components

minimum
spanning
trees

shortest
paths

other
problems

concepts

24 / 40



C2. Graph Exploration: Applications Acyclic Graphs

Topological Sort

Definition

A topological sort of a directed acyclic graph G = (V ,E ) is a
linear ordering of all its vertices such that if G contains an edge
(u, v), then u appears before v in the ordering.

For example relevant for scheduling:
edge (u, v) expresses that job u must be completed before job v
can be started.

25 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Topological Sort: Illustration

0

1

2

3

4

56

Topological sort: 4, 6, 1, 3, 0, 2, 5

4 6 1 3 0 2 5

26 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Topological Sort: Algorithm

Theorem
For the reachable part of a acyclic graph, the reverse DFS
postorder is a topological sort.

Algorithm:

▶ Sequence of depth-first searches (for still unvisited vertices)
until all vertices visited.

▶ Store for each DFS the reverse postorder:
Pi for i-th search

▶ Let k be the number of searches. Then the concatenation
Pk , . . . ,P1 is a topological sort.

27 / 40

C2. Graph Exploration: Applications Acyclic Graphs

Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb

28 / 40



C2. Graph Exploration: Applications Connected Components

C2.4 Connected Components

29 / 40

C2. Graph Exploration: Applications Connected Components

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

reachability

shortest paths

cycle detection

topological sort

connected
components

minimum
spanning
trees

shortest
paths

other
problems

concepts

30 / 40

C2. Graph Exploration: Applications Connected Components

Connected Components of Undirected Graphs

Undirected graph

▶ Two vertices u and v are in the same connected component
if there is a path between u and v .

0 1

2 3

4
5

6

7 8

9

31 / 40

C2. Graph Exploration: Applications Connected Components

Connected Components: Interface

We want to implement the following interface:

1 class ConnectedComponents:

2 # Initialization with precomputation

3 def __init__(graph: UndirectedGraph) -> None

4

5 # Are vertices node1 and node2 connected?

6 def connected(node1: int, node2: int) -> bool

7

8 # Number of connected components

9 def count() -> int

10

11 # Component number for node

12 # (between 0 and count()-1)

13 def id(node: int) -> int

Idea: Sequence of graph explorations until all vertices visited.
Idea: ID of vertex corresponds to iteration in which it was visited.

32 / 40



C2. Graph Exploration: Applications Connected Components

Connected Components: Algorithm

1 class ConnectedComponents:

2 def __init__(self, graph):

3 self.id = [None] * graph.no_nodes()

4 self.curr_id = 0

5 visited = [False] * graph.no_nodes()

6 for node in range(graph.no_nodes()):

7 if not visited[node]:

8 self.dfs(graph, node, visited)

9 self.curr_id += 1

10

11 def dfs(self, graph, node, visited):

12 if visited[node]:

13 return

14 visited[node] = True

15 self.id[node] = self.curr_id

16 for n in graph.neighbours(node):

17 self.dfs(graph, n, visited)

How are connected, count and id implemented?
33 / 40

C2. Graph Exploration: Applications Connected Components

Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb

34 / 40

C2. Graph Exploration: Applications Connected Components

Connected Components of Directed Graphs

Directed graph G

▶ If one ignores the arc directions, then every connected
component of the resulting undirected graph is a weakly
connected component of G .

▶ G is strongly connected, if there is a directed path from each
vertex to each other vertex.

▶ A strongly connected component of G is a maximal strongly
connected subgraph.

35 / 40

C2. Graph Exploration: Applications Connected Components

Strongly Connected Components

0 1

2 3

4
5

6

7 8

9

36 / 40



C2. Graph Exploration: Applications Connected Components

Strongly Connected Components

Kosaraju’ algorithm

▶ Given directed graph G = (V ,E ), compute a reverse
postorder P (for all vertices) of the graph
GR = (V , {(v , u) | (u, v) ∈ E}) (all edges reversed).

▶ Conduct a sequence of explorations in G , always selecting the
first still unvisited vertex in P as the next start vertex.

▶ All vertices that are reached by the same exploration, are in
the same strongly connected component.

37 / 40

C2. Graph Exploration: Applications Connected Components

Jupyter Notebook

Jupyter notebook: graph exploration applications.ipynb

38 / 40

C2. Graph Exploration: Applications Summary

C2.5 Summary

39 / 40

C2. Graph Exploration: Applications Summary

Summary

We have seen a number of applications of graph exploration:

▶ Reachability

▶ Shortest paths

▶ Cycle detection

▶ Topological sort

▶ Connected components

Some applications require a specific exploration, for other
applications we can use both, BFS and DFS.

40 / 40


	Reachability
	

	Shortest Paths
	

	Acyclic Graphs
	

	Connected Components
	

	Summary
	


