Algorithms and Data Structures C2. Graph Exploration: Applications

Gabriele Röger and Patrick Schnider

University of Basel

April 30, 2025

Algorithms and Data Structures April 30, 2025 — C2. Graph Exploration: Applications

C2.1 Reachability

C2.2 Shortest Paths

C2.3 Acyclic Graphs

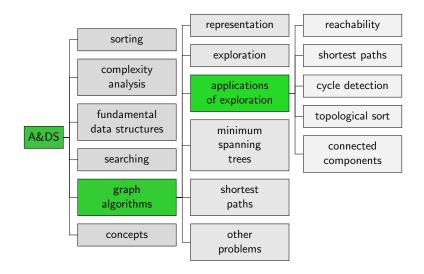
C2.4 Connected Components

C2.5 Summary

Reminder: Graph Exploration

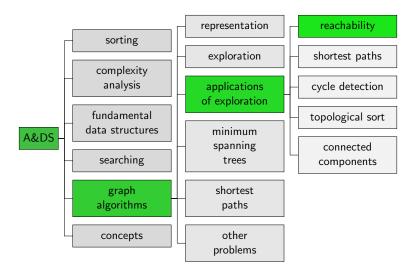
- Given a vertex v, visit all vertices that are reachable from v.
- Often used as part of other graph algorithms.
- Depth-first search: go "deep" into the graph (away from v)
- Breadth-first search: first all neighbours, then neighbours of neighbours, ...

Content of the Course



C2.1 Reachability

Content of the Course



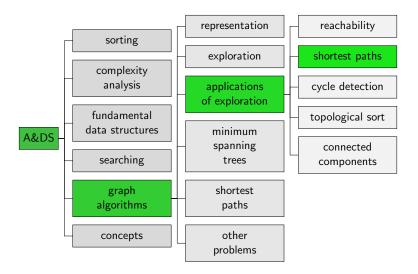
Mark-and-Sweep Garbage Collection

- Aim: Release memory occupied by no longer accessible objects.
 - Directed graph: Objects as vertices, references to objects as edges.
 - One bit per object for marker during garbage collection.
 - Mark: Mark all reachable objects (set bit to 1).
 - Sweep: Clear unmarked objects from memory. Afterwards set bit for all reachable objects back to 0.

Magic Wand in Image Editing

C2.2 Shortest Paths

Content of the Course



Shortest Paths: Idea

- Breadth-first search visits the vertices with increasing (minimal) distance from the start vertex.
- First visit of a vertex happens on shortest path.
- Idea: Use path from induced search tree.

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

Shortest-path Problem

Single-source Shortest-paths Problem

- Given: Graph and start vertex s
- Query for vertex v
 - ls there a path from s to v?
 - If yes, what is the shortest path?
- Abbreviation SSSP

Shortest Paths: Algorithm

```
1 class SingleSourceShortestPaths:
      def __init__(self, graph, start_node):
2
           self.predecessor = [None] * graph.no_nodes()
3
           self.predecessor[start_node] = start_node
4
5
           # precompute predecessors with breadth-first search with
6
           # self.predecessors used for detecting visited nodes
7
           queue = deque()
8
           queue.append(start_node)
9
10
           while queue:
                                                 In principle as before
               v = queue.popleft()
11
               for s in graph.successors(v): (just as a class)
12
                   if self.predecessor[s] is None:
13
                       self.predecessor[s] = v
14
                       queue.append(s)
15
16
       . . .
```

Shortest Paths: Algorithm (Continued)

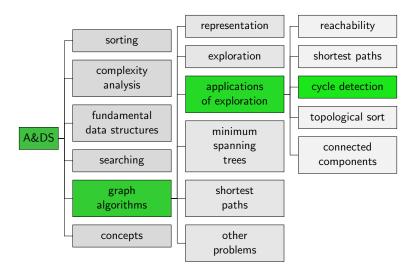
```
def has_path_to(self, node):
19
           return self.predecessor[node] is not None
20
21
      def get_path_to(self, node):
22
           if not self.has_path_to(node):
23
               return None
24
           if self.predecessor[node] == node: # start node
25
               return [node]
26
           pre = self.predecessor[node]
27
           path = self.get_path_to(pre)
28
           path.append(node)
29
           return path
30
```

Running time?

Later: Shortest paths with edge weights

C2.3 Acyclic Graphs

Content of the Course



Acyclic Graphs

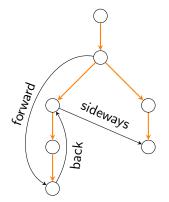
Detection of Acyclic Graphs

Definition (Directed Acyclic Graph)

A directed acyclic graph (DAG) is a directed graph that contains no directed cycles.

Task: Decide whether a directed graph contains a cycle. If yes, return a cycle.

Criterion for Acyclicity



Induced search tree of a depth-first search (orange) and possible other edges

The (reachable part of the) graph is acyclic if and only if there are no back edges.

Idea: Remember the vertices on the current path in a DFS.

Cycle Detection: Algorithm

```
1 class DirectedCycle:
      def __init__(self, graph):
2
           self.predecessor = [None] * graph.no_nodes()
3
           self.on_current_path = [False] * graph.no_nodes()
4
           self.cycle = None
5
           for node in range(graph.no_nodes()):
6
               if self.has_cycle():
7
                   break
8
               if self.predecessor[node] is None:
9
                   self.predecessor[node] = node
10
                   self.dfs(graph, node)
11
                                             Repeated depth-first
12
      def has_cycle(self):
13
                                             searches such that
           return self.cycle is not None
14
                                             at the end all vertices
                                             have been visited.
```

Cycle Detection: Algorithm (Continued)

16 17 18	<pre>def dfs(self, graph, node): self.on_current_path[node] = True for s in graph.successors(node):</pre>	Skip if a cycle has been detected somewhere.
19	if self.has_cycle():	Somewhere.
20	return	
21 22	Found a first self.on_current_path[s]:	Update whether vertex is on the
23	<pre>cycle self.extract_cycle(s)</pre>	current path.
24	<pre>if self.predecessor[s] is None:</pre>	
25	<pre>self.predecessor[s] = node</pre>	
26	<pre>self.dfs(graph, s)</pre>	
27	self.on_current_path[node] = False 🖌	

Acyclic Graphs

Cycle Detection: Algorithm (Continued)

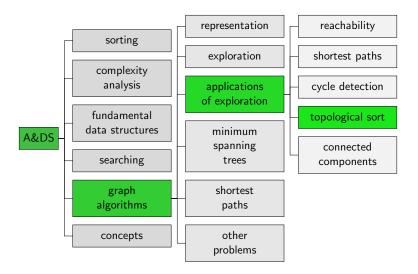
When calling extract_cycle, node is on a cycle in self.predecessor.

```
def extract_cycle(self, node):
29
           self.cycle = deque()
30
           current = node
31
           self.cycle.appendleft(current)
32
           while True:
33
               current = self.predecessor[current]
34
               self.cycle.appendleft(current)
35
               if current == node:
36
37
                    return
```

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

Content of the Course



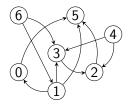
Topological Sort

Definition A topological sort of a directed acyclic graph G = (V, E) is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

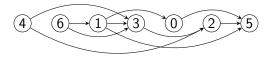
For example relevant for scheduling:

edge (u, v) expresses that job u must be completed before job v can be started.

Topological Sort: Illustration



Topological sort: 4, 6, 1, 3, 0, 2, 5



Topological Sort: Algorithm

Theorem

For the reachable part of a acyclic graph, the reverse DFS postorder is a topological sort.

Algorithm:

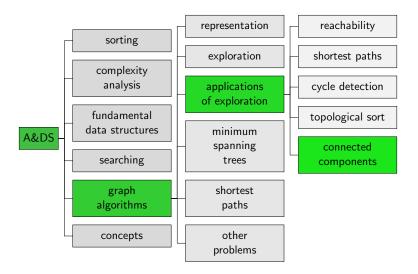
- Sequence of depth-first searches (for still unvisited vertices) until all vertices visited.
- Store for each DFS the reverse postorder: *P_i* for *i*-th search
- Let k be the number of searches. Then the concatenation P_k,..., P₁ is a topological sort.

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

C2.4 Connected Components

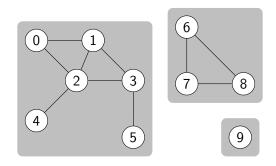
Content of the Course



Connected Components of Undirected Graphs

Undirected graph

Two vertices u and v are in the same connected component if there is a path between u and v.



Connected Components: Interface

We want to implement the following interface:

```
class ConnectedComponents:
1
       # Initialization with precomputation
2
      def __init__(graph: UndirectedGraph) -> None
3
4
       # Are vertices node1 and node2 connected?
5
      def connected(node1: int, node2: int) -> bool
6
7
       # Number of connected components
8
      def count() -> int
9
10
       # Component number for node
11
       # (between 0 and count()-1)
12
      def id(node: int) -> int
13
```

Idea: Sequence of graph explorations until all vertices visited. ID of vertex corresponds to iteration in which it was visited.

Connected Components: Algorithm

```
1 class ConnectedComponents:
       def __init__(self, graph):
2
           self.id = [None] * graph.no_nodes()
3
           self.curr_id = 0
4
           visited = [False] * graph.no_nodes()
5
6
           for node in range(graph.no_nodes()):
               if not visited[node]:
\overline{7}
                    self.dfs(graph, node, visited)
8
                    self.curr_id += 1
9
10
       def dfs(self, graph, node, visited):
11
           if visited[node]:
12
               return
13
           visited[node] = True
14
           self.id[node] = self.curr_id
15
           for n in graph.neighbours(node):
16
               self.dfs(graph, n, visited)
17
```

How are connected, count and id implemented?

Connected Components

Jupyter Notebook

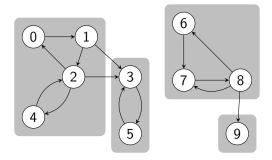
Jupyter notebook: graph_exploration_applications.ipynb

Connected Components of Directed Graphs

Directed graph G

- If one ignores the arc directions, then every connected component of the resulting undirected graph is a weakly connected component of G.
- ► *G* is strongly connected, if there is a directed path from each vertex to each other vertex.
- A strongly connected component of G is a maximal strongly connected subgraph.

Strongly Connected Components



Strongly Connected Components

Kosaraju' algorithm

- Given directed graph G = (V, E), compute a reverse postorder P (for all vertices) of the graph G^R = (V, {(v, u) | (u, v) ∈ E}) (all edges reversed).
- Conduct a sequence of explorations in G, always selecting the first still unvisited vertex in P as the next start vertex.
- All vertices that are reached by the same exploration, are in the same strongly connected component.

Connected Components

Jupyter Notebook

Jupyter notebook: graph_exploration_applications.ipynb

C2.5 Summary

Summary

We have seen a number of applications of graph exploration:

- Reachability
- Shortest paths
- Cycle detection
- Topological sort
- Connected components

Some applications require a specific exploration, for other applications we can use both, BFS and DFS.