Algorithms and Data Structures
C1. Graphs: Foundations and Exploration

Gabriele Roger and Patrick Schnider
University of Basel

April 24, 2025

Content of the Course

— representation
— sorting
— exploration
complexity
analysis applications
| of exploration
fundamental
' | data structures minimum
B L Spanning
— searching trees
shortest
B paths
L concepts other
N problems

Motivation
©0000000000

Motivation

Motivation
0@000000000

Street Maps

BINNINGEN

\
PRATTEL
MOUNCHENSTEIN N

openstreetmap.org

Motivation

(oo}

0000000

Route Networks

-]
Carsos Conrd & s ® e

"0 Gtetach G

:
i
Fror— ot B o gy g i
i ra ano 0 '
e B T e \ go” o
— .
= Taimattstr
EEPEN s
& b
e
" ” :

& G Dot (S
x zongro TS

DS — Buchacienaeg 0 Higemhemer 8|
P o

80

g

o= = & nunien) RO
& 3 gk O Yoate | Ling
hobes & At 5 ToNET0

S T S L)
Oesevor s

3 o e
e e, e et

3
Sehuimbate O
- Tep— i o
3 s Lehersse §

S Higtuer |- p—
& sennentiach Do bracweg g D

pe—
s [—

Motivation
000@0000000

Navigation Networks in Games

heroengine.com

Motivation
0000®000000

Urban Supply System

9 Hekuriziaet

9V Kommunikation

rass

167 zeariaz) vasTans

dgis.info

n Definition Represen aph Exploration

0O0000e00000

Internet

Barrett Lyon / The Opte Project
Visualization of the routing paths of the Internet.

Motivation Definition Representation Graph Exploration Summary
00000080000 [e]e]e]e]e]e) 000000 000000000000 0000 [e]e)

Social Networks

facebook

"'Visualizing Friendships"' by Paul Butler

Motivation
0000000e000

Collaboration

LINKED JAZZ .

Q

Annie Ross

Abbey Lincoln

L

Roy Haynes

o

Toshiko Akiyoshi

wwwwwwwwwww

linkedjazz.org

" Mary Lou Willam:

Danny Barker

Louie Bellson

Motivation
00000000800

Protein Interaction

Network representation of the p53 protein interactions
Module detection in complex networks using integer optimisation,
Xu G, Bennett L, Papageorgiou LG, Tsoka S - Algorithms Mol Biol (2010)

Motivation e Re atio Summar

0000000000

Possible Questions

m Are A and B connected?
m What is the shortest connection between A and B?
m What is the longest distance between two elements?

m How much water can the sewer system discharge?

Summar

Motivation
00000000000

Abstract Graphs

A Graph consists of vertices and edges between vertices.

Vertices Edges
Streets Crossing Street segment
Internet AS (= Provider) Route
Facebook Person Friendship

Proteins Protein Interaction

Definition

@00000

Definition

undirected graph directed graph

Definition atio G Summar
00®000 @ 00

Graphs

m A graph is a pair (V, E) comprising
m V: finite set of vertices
m E: finite set of edges
m Every edge connects two vertices u and v
m undirected graph: set {u, v}
m directed graph: pair (u,v)

Definition Representation
00®000 000000

Graphs

m A graph is a pair (V, E) comprising
m V: finite set of vertices
m E: finite set of edges
m Every edge connects two vertices u and v
m undirected graph: set {u, v}
m directed graph: pair (u,v)
m Multigraphs permit multiple parallel edges between the same
nodes.
m Weighted graphs associate each edge with a weight (a
number).

Definition
[e]e]e] lele)

Undirected Graphs: Terminology

m Neighbours of a vertex u: all vertices v with {u, v} € E.

Definition
[e]e]e] lele)

Undirected Graphs: Terminology

m Neighbours of a vertex u: all vertices v with {u, v} € E.
m degree(v): Degree of a vertex = Number of neighbours.

m Exception: Self-loops increase the degree by 2.
Self-loop = edge that connects a vertex with itself.

Definition
[e]e]e]e] o)

Directed Graphs: Terminology

m Successors of vertex u: all vertices v with (u, v) € E.

m Predecessors of vertex u: all vertices v with (v, u) € E.

Definition
[e]e]e]e] o)

Directed Graphs: Terminology

m Successors of vertex u: all vertices v with (u, v) € E.
m Predecessors of vertex u: all vertices v with (v, u) € E.
m outdegree(v): outdegree = number of successors

m indegree(v): indegree = number of predecessors

Paths and Cycles

m Path of length n: Sequence (vo, ..., vyn) of vertices with
m {v;,viy1} € E for i =0,...,n— 1 (undirected graph)
m (vi,vip1) € Efori=0,...,n—1 (directed graph)
m The path is simple if all vertices are distinct.
m Example: (5,4,1,2)

Path of
length 37

Definition ‘ tation G Summar
00000e [e O O OC [e]e)

Paths and Cycles

m Path of length n: Sequence (vo, ..., vyn) of vertices with
m {v;,viy1} € E for i =0,...,n— 1 (undirected graph)
m (vi,vip1) € Efori=0,...,n—1 (directed graph)
m The path is simple if all vertices are distinct.
m Example: (5,4,1,2)
m Cycle: Path with equal start and end vertex (vo = vj)
of length > 0.
m (6,7,9,8,6) in the undirected and
(5,2,1,3,5) in the directed example graph
m The cycle is simple if all vertices vq, ..., v, are distinct.
m if there is no simple cycle, the graph is acyclic.

Path of
length 37

Representation
[YofeteYete)

Representation

Representation
[o JoteYete)

Content of the Course

— sorting
— exploration
| complexity
analysis applications
| of exploration
fundamental
| data structures minimum
B L Spanning
— searching trees
shortest
Bl paths
— concepts other
N problems

Representation
00000

Representation of Vertices

m We use numbers 0 to |V| — 1 for the vertices.

m If not the case in application: Us a map to convert from
names to numbers.

Representation

O00e00

Adjacency-matrix Representation

Graph G = ({0,...,|V]| — 1}, E) represented as |V/| x |V| matrix
with entries aj (in row i, column k):
1 if (i, k) € E (directed graph) or
ajx = {i, k} € E (undirected graph)

0 otherwise

Representation Graph Exp
000800 0000000«

Summary

Adjacency-matrix Representation

Graph G = ({0,...,|V| — 1}, E) represented as |V/| x |V/| matrix
with entries aj (in row i, column k):
1 if (i, k) € E (directed graph) or
ajx = {i, k} € E (undirected graph)

0 otherwise

D 01100
1 0000

Q'(:) A=10 00 0 1
10110

2 00110

Representation
000800

Summar

Adjacency-matrix Representation

Graph G = ({0,...,|V]| — 1}, E) represented as |V/| x |V| matrix
with entries aj (in row i, column k):
1 if (i, k) € E (directed graph) or
ajx = {i, k} € E (undirected graph)

0 otherwise

(D 01100
100 00
0 For undirected graphs
'@ A= (1) 8 Cl) ? é symmetric
2 00110

Representation
000000

Adjacency-list Representation

Store for every vertex the list of successors / neighbours.

o
’0 1_/\
G
) | AHEE]
‘@ 41 N

Representation

O0000e

Representation: Complexity

Adj. matrix Adj. list

Space V|2 |E| + | V|
Add edge 1 1
Edge between v and v? 1 (out)degree(v)

Iterate over outgoing edges V] (out)degree(v)

Representation

O0000e

Representation: Complexity

Adj. matrix Adj. list

Space V|2 |E| + | V]|
Add edge 1 1
Edge between v and v? 1 (out)degree(v)
Iterate over outgoing edges |V (out)degree(v)

Often sparse graphs (low average degree)
Which representation?

Graph Exploration
900000000000 0000

Graph Exploration

Graph Exploration
000000000000 0000

Content of the Course

depth-first
— representation [search
— sorting
= g
complexity search
analysis applications
| | of exploration induced
fundamental O search tree
|| data structures minimum
- — spanning
— searching trees
shortest
N paths
— concepts other
O problems

00@0000000000000

Graph Exploration Summar

Graph Exploration

m Task: Given a vertex v, visit all vertices that are reachable
from v.

m Often used as ingredient of other graph algorithms.
m Depth-first search: go "deep” into the graph (away from v)

m Breadth-first search: first all neighbours, then neighbours of
neighbours, ...

Definition ! o Graph Exploration Summar
o) 000@000000000000 «

Depth-first Search

Mark visited vertices

= Mark v
m lterate over the successors/neighbours w of v.
m If w not marked, start recursively from w.

Abbreviation: DFS

atio Graph Exploration Summar
000000 © o 0000®00000000000 00

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex O marks vertices in order

atio Graph Exploration Summar
000000 © o 0000®00000000000 00

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex O marks vertices in order

atio Graph Exploration Summar
000000 © o 0000®00000000000 00

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex O marks vertices in order
0-1

atio Graph Exploration Summar
000000 © o 0000®00000000000 00

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex O marks vertices in order
0-1-2

atio Graph Exploration Summar
000000 © o 0000®00000000000 00

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex O marks vertices in order
0-1-2-4

atio Graph Exploration Summar
000000 © o 0000®00000000000 00

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex O marks vertices in order
0-1-2-4-5

o Ydle Graph Exploration Summar
000000 © 0000®00000000000 00

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

Depth-first search from start
vertex O marks vertices in order
0-1-2-4-5-3

Graph Exploration
00000e0000000000

Depth-first Search: Algorithm (Recursive)

1 def depth_first_exploration(graph, node, visited=None):
2 if visited is Nome:

3 visited = set()

4 if node in visited:

5 return

6 visited.add(node)

7 for s in graph.successors(node):

8 depth_first_exploration(graph, s, visited)

Graph Exploration
00000e0000000000

Depth-first Search: Algorithm (Recursive)

1 def depth_first_exploration(graph, node, visited=None):
2 if visited is Nome:

3 visited = set()

4 if node in visited:

5 return

6 visited.add(node)

7 for s in graph.successors(node):

8 depth_first_exploration(graph, s, visited)

If we expect that most vertices will be visited:
bool array instead of set for visited

Graph Exploration

Motivation
0O00000@000000000

Depth-first Vertex Orders

m Preorder: Vertex is included before its children are considered.

m Postorder: Vertex is included when the (recursive) depth-first
search of all its children has finished.

m Reverse Postorder: Like postorder, but in reverse order.

1 def depth_first_exploration(graph, node, visited):
2 if node in visited:

3 return

4 preorder.append (node)

5 visited.add(node)

6 for s in graph.successors(node):

7 depth_first_exploration(graph, s, visited)
8 postorder.append (node)

9 reverse_postorder.appendleft (node)

(Representation of vertex sequence as a deque.)

Graph Exploration
000000080000 0000

Depth-first Search: Algorithm (lterative)

1 def depth_first_exploration(graph, node):
2 visited = set()

3 stack = deque()

4 stack.append (node)

5 while stack:

6 v = stack.pop() # LIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 stack.append(s)

Graph Exploration

00000000800 00000

Depth-first Search in Practice

WHAT SITUATIONS

[~~~ w
OKAY, WHAT KINDS OF HWM. WHICH SNAKES ARE
EMERGENCIES (AN HAPPEN? DPWGEROUST LET' SEE... THE RESEARCH COMPARING

i) A) SNAKERITE
B) LIGHTNING STRIKE.

© PALLRIM OHAR
o)
[o}

DD Corn sre. SNPKE VENOVS 15 SCATIERED

¥) GARTER SNAKE. BRD WCONSISTENT: TLL MAKE

© COPFERHERD A SPREADSHEET T ORGPNIZE IT.
o]
OO 0

TMHERELPEK. BY Dy, THE INAND
YOUUR Youke TAIPRN HAS THE DEACLEST
NOT DRESSED? VENOM OF ANY SNAKE

\

i

| https://xkedjcom)761/

T REALY NEED ToSrop
USING PEFPTH-FIRST SEARCHES.

Graph Exploration
000000000 e000000

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

Graph Exploration
000000000 e000000

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

m Mark v
— Distance 0

Abbreviation: BFS

Graph Exploration

000000000 e000000

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...
m Mark v
— Distance 0
m Mark all unmarked successors/neighbours of v
— Distance 1

Abbreviation: BFS

Summar

Graph Exploration Summar
000000000e000000 00

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...
m Mark v
— Distance 0
m Mark all unmarked successors/neighbours of v
— Distance 1
m Mark all unmarked successors/neighbours of vertices with
distance 1.

Abbreviation: BFS

Graph Exploration
000000000e000000

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

m Mark v
— Distance 0

m Mark all unmarked successors/neighbours of v
— Distance 1

m Mark all unmarked successors/neighbours of vertices with
distance 1.

m Mark all unmarked successors/neighbours of vertices with
distance 2.

Abbreviation: BFS

Graph Exploration
000000000e000000

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

m Mark v
— Distance 0

m Mark all unmarked successors/neighbours of v
— Distance 1

m Mark all unmarked successors/neighbours of vertices with
distance 1.

m Mark all unmarked successors/neighbours of vertices with
distance 2.

Abbreviation: BFS

Graph Exploration
000000000e000000

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

m Mark v
— Distance 0

m Mark all unmarked successors/neighbours of v
— Distance 1

m Mark all unmarked successors/neighbours of vertices with
distance 1.

m Mark all unmarked successors/neighbours of vertices with
distance 2.

m Until vertices of distance i do not have unmarked
successors/neighbours.

Abbreviation: BFS

o atio Graph Exploration
000000 © 0000000000e00000

Breadth-first Search: Example
Here: Visit successors in increasing order of their number.

Breadth-first search from start
vertex 0 marks vertices in order

Summar

atio Graph Exploration Summar
000000 © o 0000000000e00000 00

Breadth-first Search: Example
Here: Visit successors in increasing order of their number.

Breadth-first search from start
vertex 0 marks vertices in order

o Ydle Graph Exploration Summar
000000 © 0000000000e00000 00

Breadth-first Search: Example
Here: Visit successors in increasing order of their number.

Breadth-first search from start
vertex 0 marks vertices in order
0-1

o atio Graph Exploration
000000 © 0000000000e00000

Breadth-first Search: Example

Here: Visit successors in increasing order of their number.

@ Breadth-first search from start
vertex 0 marks vertices in order
3@

Summar

o atio Graph Exploration
000000 © 0000000000e00000

Breadth-first Search: Example

Here: Visit successors in increasing order of their number.

@ Breadth-first search from start
vertex 0 marks vertices in order
3—4 iR

Summar

atio Graph Exploration Summar
000000 © o 0000000000e00000 00

Breadth-first Search: Example
Here: Visit successors in increasing order of their number.

Breadth-first search from start
vertex 0 marks vertices in order
0-1-3-2-4

o Ydle Graph Exploration Summar
000000 © 0000000000e00000 00

Breadth-first Search: Example
Here: Visit successors in increasing order of their number.

Breadth-first search from start
vertex 0 marks vertices in order
0-1-3-2-4-5

Graph Exploration
00000000000e0000

Breadth-first Search: Algorithm (Conceptually)

Only difference to iterative depth-first search:
First-in-first-out treatment of vertices (instead of last-in-first-out)

Summar

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 queue . append (node)

5 while queue:

6 v = queue.popleft() # FIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 queue. append(s)

Definition ~.’ atio Graph Exploration
000000 © 000000000000e000

Breadth-first Search: Algorithm (Somewhat more Efficient)

We only further consider a vertex when we first run across it.
We can directly mark it as visited and disregard it if we see it again.

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 visited.add(node)

5 queue . append (node)

6 while queue:

7 v = queue.popleft()

8 for s in graph.successors(v):
9 if s not in visited:

10 visited.add(s)

11 queue . append(s)

Definition Graph Exploration
o] 0000000000000 e00

Running Time

For all algorithm variants:
m Every reachable vertex gets marked.
m We follow every reachable edge exactly once.
m Running time O(|V/| + |E|)

m We can restrict this to the reachable vertices and edges.

Summar

Graph Exploration Summar

0000000000000 0e0

Induced Search Tree

The induced search tree of a graph exploration contains for every
visited vertex (except for the start vertex) an edge from its

predecessor in the exploration.
T—2
o || ®
@—@

depth-first search breadth-first search

Graph Exploration Summar

0000000000000 0e0

Induced Search Tree

The induced search tree of a graph exploration contains for every
visited vertex (except for the start vertex) an edge from its

predecessor in the exploration.
T—2
o || ®
@—@

depth-first search breadth-first search

(induced search tree # binary search tree)

Graph Exploration Summar
000000000000 000e [e]e)

Induced Search Tree: Example BFS

m Every vertex has at most one predecessor in the tree.

m Represent induced search tree by the predecessor relation.

Graph Exploration
000000000000000e

Induced Search Tree: Example BFS

m Every vertex has at most one predecessor in the tree.
m Represent induced search tree by the predecessor relation.

m The visited vertices are exactly those for which there is a
predecessor set: We do not need visited anymore.

Motivation) Definition e 0 Graph Exploration

0000000000000 00e

Induced Search Tree: Example BFS

m Every vertex has at most one predecessor in the tree.
m Represent induced search tree by the predecessor relation.

m The visited vertices are exactly those for which there is a
predecessor set: We do not need visited anymore.

1 def bfs_with_predecessors(graph, node):
2 predecessor = [None] * graph.no_nodes()
3 queue = deque()

4 # use self-loop for start node

5 predecessor [node] = node

6 queue . append (node)

7 while queue:

8 v = queue.popleft()

9 for s in graph.successors(v):
10 if predecessor[s] is None:
11 predecessor[s] = v

12 queue . append (s)

Summarn
0

Summary

Definition ~.’ atio D r Summary
000000 © o

m Graphs consist of vertices and edges.

m Edges can be directed or undirected.

m Graph exploration systematically visits all vertices that can be
reached from the given vertex.
m Depth-first search goes “deeper” into the graph whenever
possible.
m Breadth-first search first visits the vertices that are closer to
the start vertex.

	Motivation
	

	Definition
	

	Representation
	

	Graph Exploration
	

	Summary
	

