
Algorithms and Data Structures
C1. Graphs: Foundations and Exploration

Gabriele Röger and Patrick Schnider

University of Basel

April 24, 2025

1 / 44

Algorithms and Data Structures
April 24, 2025 — C1. Graphs: Foundations and Exploration

C1.1 Motivation

C1.2 Definition

C1.3 Representation

C1.4 Graph Exploration

C1.5 Summary

2 / 44

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

shortest
paths

other
problems

concepts

3 / 44

C1. Graphs: Foundations and Exploration Motivation

C1.1 Motivation

4 / 44

C1. Graphs: Foundations and Exploration Motivation

Street Maps

openstreetmap.org

5 / 44

C1. Graphs: Foundations and Exploration Motivation

Route Networks

tnw.ch

6 / 44

C1. Graphs: Foundations and Exploration Motivation

Navigation Networks in Games

heroengine.com

7 / 44

C1. Graphs: Foundations and Exploration Motivation

Urban Supply System

dgis.info

8 / 44

C1. Graphs: Foundations and Exploration Motivation

Internet

Barrett Lyon / The Opte Project
Visualization of the routing paths of the Internet.

9 / 44

C1. Graphs: Foundations and Exploration Motivation

Social Networks

”‘Visualizing Friendships”’ by Paul Butler

10 / 44

C1. Graphs: Foundations and Exploration Motivation

Collaboration

linkedjazz.org

11 / 44

C1. Graphs: Foundations and Exploration Motivation

Protein Interaction

Network representation of the p53 protein interactions
Module detection in complex networks using integer optimisation,

Xu G, Bennett L, Papageorgiou LG, Tsoka S - Algorithms Mol Biol (2010)

12 / 44

C1. Graphs: Foundations and Exploration Motivation

Possible Questions

▶ Are A and B connected?

▶ What is the shortest connection between A and B?

▶ What is the longest distance between two elements?

▶ How much water can the sewer system discharge?

13 / 44

C1. Graphs: Foundations and Exploration Motivation

Abstract Graphs

A Graph consists of vertices and edges between vertices.

Vertices Edges

Streets Crossing Street segment
Internet AS (≈ Provider) Route

Facebook Person Friendship
Proteins Protein Interaction

14 / 44

C1. Graphs: Foundations and Exploration Definition

C1.2 Definition

15 / 44

C1. Graphs: Foundations and Exploration Definition

Undirected and Directed Graphs

A B

C D

E
F

undirected graph

1 2

3 4

5

directed graph

16 / 44

C1. Graphs: Foundations and Exploration Definition

Graphs

▶ A graph is a pair (V ,E) comprising
▶ V: finite set of vertices
▶ E: finite set of edges

▶ Every edge connects two vertices u and v
▶ undirected graph: set {u, v}
▶ directed graph: pair (u, v)

▶ Multigraphs permit multiple parallel edges between the same
nodes.

▶ Weighted graphs associate each edge with a weight (a
number).

17 / 44

C1. Graphs: Foundations and Exploration Definition

Undirected Graphs: Terminology

▶ Neighbours of a vertex u: all vertices v with {u, v} ∈ E .
▶ degree(v): Degree of a vertex = Number of neighbours.

▶ Exception: Self-loops increase the degree by 2.
Self-loop = edge that connects a vertex with itself.

3 4

4 1

2

18 / 44

C1. Graphs: Foundations and Exploration Definition

Directed Graphs: Terminology

▶ Successors of vertex u: all vertices v with (u, v) ∈ E .

▶ Predecessors of vertex u: all vertices v with (v , u) ∈ E .

▶ outdegree(v): outdegree = number of successors

▶ indegree(v): indegree = number of predecessors

19 / 44

C1. Graphs: Foundations and Exploration Definition

Paths and Cycles

▶ Path of length n: Sequence (v0, . . . , vn) of vertices with
▶ {vi , vi+1} ∈ E for i = 0, . . . , n − 1 (undirected graph)
▶ (vi , vi+1) ∈ E for i = 0, . . . , n − 1 (directed graph)
▶ The path is simple if all vertices are distinct.
▶ Example: (5,4,1,2)

▶ Cycle: Path with equal start and end vertex (v0 = vn)
of length > 0.

▶ (6,7,9,8,6) in the undirected and
(5,2,1,3,5) in the directed example graph

▶ The cycle is simple if all vertices v1, . . . , vn are distinct.
▶ if there is no simple cycle, the graph is acyclic.

1 2

4 3

5 6 7

8 9

Path of
length 3

Cycle of
length 4

1

2

3 4

5

Path of
length 3

20 / 44

C1. Graphs: Foundations and Exploration Representation

C1.3 Representation

21 / 44

C1. Graphs: Foundations and Exploration Representation

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

applications
of exploration

minimum
spanning
trees

shortest
paths

other
problems

concepts

22 / 44

C1. Graphs: Foundations and Exploration Representation

Representation of Vertices

▶ We use numbers 0 to |V | − 1 for the vertices.

▶ If not the case in application: Us a map to convert from
names to numbers.

23 / 44

C1. Graphs: Foundations and Exploration Representation

Adjacency-matrix Representation

Graph G = ({0, . . . , |V | − 1},E) represented as |V | × |V | matrix
with entries aik (in row i , column k):

aik =

1 if (i , k) ∈ E (directed graph) or

{i , k} ∈ E (undirected graph)

0 otherwise

0

1

2

3

4

A =

0 1 1 0 0
1 0 0 0 0
0 0 0 0 1
1 0 1 1 0
0 0 1 1 0

 For undirected graphs
symmetric

24 / 44

C1. Graphs: Foundations and Exploration Representation

Adjacency-list Representation

Store for every vertex the list of successors / neighbours.

0

1

2

3

4

0

1

2

3

4

1 2

0

4

0 2 3

3 2

25 / 44

C1. Graphs: Foundations and Exploration Representation

Representation: Complexity

Adj. matrix Adj. list

Space |V |2 |E |+ |V |
Add edge 1 1

Edge between u and v? 1 (out)degree(v)

Iterate over outgoing edges |V | (out)degree(v)

Often sparse graphs (low average degree)
Which representation?

26 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

C1.4 Graph Exploration

27 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

representation

exploration

depth-first
search

breadth-first
search

induced
search tree

applications
of exploration

minimum
spanning
trees

shortest
paths

other
problems

concepts

28 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Graph Exploration

▶ Task: Given a vertex v , visit all vertices that are reachable
from v .

▶ Often used as ingredient of other graph algorithms.

▶ Depth-first search: go “deep” into the graph (away from v)

▶ Breadth-first search: first all neighbours, then neighbours of
neighbours, . . .

29 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search

Mark visited vertices

▶ Mark v
▶ Iterate over the successors/neighbours w of v .

▶ If w not marked, start recursively from w .

Abbreviation: DFS

30 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Example

Here: Visit successors in increasing order of their number.

0

1

3

2

5

4

Depth-first search from start
vertex 0 marks vertices in order
0 - 1 - 2 - 4 - 5 - 3

31 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Algorithm (Recursive)

1 def depth_first_exploration(graph, node, visited=None):

2 if visited is None:

3 visited = set()

4 if node in visited:

5 return

6 visited.add(node)

7 for s in graph.successors(node):

8 depth_first_exploration(graph, s, visited)

If we expect that most vertices will be visited:
bool array instead of set for visited

32 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Vertex Orders

▶ Preorder: Vertex is included before its children are considered.

▶ Postorder: Vertex is included when the (recursive) depth-first
search of all its children has finished.

▶ Reverse Postorder: Like postorder, but in reverse order.

1 def depth_first_exploration(graph, node, visited):

2 if node in visited:

3 return

4 preorder.append(node)

5 visited.add(node)

6 for s in graph.successors(node):

7 depth_first_exploration(graph, s, visited)

8 postorder.append(node)

9 reverse postorder.appendleft(node)

(Representation of vertex sequence as a deque.)

33 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Algorithm (Iterative)

1 def depth_first_exploration(graph, node):

2 visited = set()

3 stack = deque()

4 stack.append(node)

5 while stack:

6 v = stack.pop() # LIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):

10 stack.append(s)

34 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search in Practice

https://xkcd.com/761/

35 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search

First all neighbours, then neighbours of neighbours, . . .

▶ Mark v
→ Distance 0

▶ Mark all unmarked successors/neighbours of v
→ Distance 1

▶ Mark all unmarked successors/neighbours of vertices with
distance 1.

▶ Mark all unmarked successors/neighbours of vertices with
distance 2.

▶ . . .

▶ Until vertices of distance i do not have unmarked
successors/neighbours.

Abbreviation: BFS

36 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Example

Here: Visit successors in increasing order of their number.

0

1

3

2

5

4

Breadth-first search from start
vertex 0 marks vertices in order
0 - 1 - 3 - 2 - 4 - 5

37 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Conceptually)

Only difference to iterative depth-first search:
First-in-first-out treatment of vertices (instead of last-in-first-out)

1 def breadth_first_exploration(graph, node):

2 visited = set()

3 queue = deque()

4 queue.append(node)

5 while queue:

6 v = queue.popleft() # FIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):

10 queue.append(s)

38 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Somewhat more Efficient)

We only further consider a vertex when we first run across it.
We can directly mark it as visited and disregard it if we see it again.

1 def breadth_first_exploration(graph, node):

2 visited = set()

3 queue = deque()

4 visited.add(node)

5 queue.append(node)

6 while queue:

7 v = queue.popleft()

8 for s in graph.successors(v):

9 if s not in visited:

10 visited.add(s)

11 queue.append(s)

39 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Running Time

For all algorithm variants:

▶ Every reachable vertex gets marked.

▶ We follow every reachable edge exactly once.

▶ Running time O(|V |+ |E |)
▶ We can restrict this to the reachable vertices and edges.

40 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Induced Search Tree

The induced search tree of a graph exploration contains for every
visited vertex (except for the start vertex) an edge from its
predecessor in the exploration.

0

1

3

2

5

4
depth-first search

0

1

3

2

5

4

breadth-first search

(induced search tree ̸= binary search tree)

41 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Induced Search Tree: Example BFS

▶ Every vertex has at most one predecessor in the tree.

▶ Represent induced search tree by the predecessor relation.

▶ The visited vertices are exactly those for which there is a
predecessor set: We do not need visited anymore.

1 def bfs_with_predecessors(graph, node):

2 predecessor = [None] * graph.no_nodes()

3 queue = deque()

4 # use self-loop for start node

5 predecessor[node] = node

6 queue.append(node)

7 while queue:

8 v = queue.popleft()

9 for s in graph.successors(v):

10 if predecessor[s] is None:

11 predecessor[s] = v

12 queue.append(s)

42 / 44

C1. Graphs: Foundations and Exploration Summary

C1.5 Summary

43 / 44

C1. Graphs: Foundations and Exploration Summary

▶ Graphs consist of vertices and edges.

▶ Edges can be directed or undirected.
▶ Graph exploration systematically visits all vertices that can be

reached from the given vertex.
▶ Depth-first search goes “deeper” into the graph whenever

possible.
▶ Breadth-first search first visits the vertices that are closer to

the start vertex.

44 / 44

	Motivation
	

	Definition
	

	Representation
	

	Graph Exploration
	

	Summary
	

