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C1. Graphs: Foundations and Exploration Motivation

C1.1 Motivation
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C1. Graphs: Foundations and Exploration Motivation

Street Maps

openstreetmap.org
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C1. Graphs: Foundations and Exploration Motivation

Route Networks
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C1. Graphs: Foundations and Exploration

Navigation Networks in Games

heroengine.com

Motivation



C1. Graphs: Foundations and Exploration Motivation

Urban Supply System
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C1. Graphs: Foundations and Exploration

Internet

Barrett Lyon / The Opte Project
Visualization of the routing paths of the Internet.

Motivation
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Social Networks

Motivation

"

Visualizing Friendships”' by Paul Butler
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Motivation

C1. Graphs: Foundations and Exploration

Collaboration
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C1. Graphs: Foundations and Exploration

Protein Interaction
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Network representation of the p53 protein interactions
Module detection in complex networks using integer optimisation,
Xu G, Bennett L, Papageorgiou LG, Tsoka S - Algorithms Mol Biol (2010)

Motivation
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C1. Graphs: Foundations and Exploration Motivation

Possible Questions

> Are A and B connected?
» What is the shortest connection between A and B?
> What is the longest distance between two elements?

» How much water can the sewer system discharge?
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C1. Graphs: Foundations and Exploration

Abstract Graphs

Motivation

A Graph consists of vertices and edges between vertices.

Vertices Edges
Streets Crossing Street segment
Internet  AS (= Provider) Route
Facebook Person Friendship
Proteins  Protein Interaction
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C1. Graphs: Foundations and Exploration Definition

C1.2 Definition
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C1. Graphs: Foundations and Exploration Definition

Undirected and Directed Graphs

(A —(8) 3
Boe :‘:
CHENG 3

undirected graph directed graph
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C1. Graphs: Foundations and Exploration Definition

Graphs

» A graph is a pair (V, E) comprising
> V: finite set of vertices
> E: finite set of edges
» Every edge connects two vertices u and v
» undirected graph: set {u, v}
» directed graph: pair (u, v)
P> Multigraphs permit multiple parallel edges between the same
nodes.
» Weighted graphs associate each edge with a weight (a
number).
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C1. Graphs: Foundations and Exploration Definition

Undirected Graphs: Terminology

» Neighbours of a vertex u: all vertices v with {u,v} € E.
» degree(v): Degree of a vertex = Number of neighbours.

» Exception: Self-loops increase the degree by 2.
Self-loop = edge that connects a vertex with itself.
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C1. Graphs: Foundations and Exploration Definition

Directed Graphs: Terminology

» Successors of vertex u: all vertices v with (u,v) € E.
» Predecessors of vertex u: all vertices v with (v, u) € E.
» outdegree(v): outdegree = number of successors

» indegree(v): indegree = number of predecessors
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C1. Graphs: Foundations and Exploration

Paths and Cycles

» Path of length n: Sequence (vp, ..., v,) of vertices with
» {vj,vit1} € E for i =0,...,n—1 (undirected graph)
» (vi,viy1) € Efor i =0,...,n—1 (directed graph)
» The path is simple if all vertices are distinct.
» Example: (5,4,1,2)
» Cycle: Path with equal start and end vertex (vp = v,)
of length > 0.
» (6,7,9,8,6) in the undirected and
(5,2,1,3,5) in the directed example graph
» The cycle is simple if all vertices v4,..., v, are distinct.
» if there is no simple cycle, the graph is acyclic.

Path of
length 37

H—03

Definition
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C1. Graphs: Foundations and Exploration Representation

C1.3 Representation
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C1. Graphs: Foundations and Exploration Representation
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C1. Graphs: Foundations and Exploration Representation

Representation of Vertices

» We use numbers 0 to |V/| — 1 for the vertices.

» If not the case in application: Us a map to convert from
names to numbers.
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C1. Graphs: Foundations and Exploration Representation

Adjacency-matrix Representation

Graph G = ({0,...,|V| — 1}, E) represented as |V/| x |V/| matrix
with entries aj, (in row i, column k):
1 if (i, k) € E (directed graph) or
aj = {i, k} € E (undirected graph)

0 otherwise

D 01100
(0 3 A— (1) 8 8 8 (1) For undirected graphs
- symmetric
10110
00110
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C1. Graphs: Foundations and Exploration

Adjacency-list Representation

Store for every vertex the list of successors / neighbours.
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Representation
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C1. Graphs: Foundations and Exploration Representation

Representation: Complexity

Adj. matrix Adj. list

Space V|2 |E| + | V|
Add edge 1 1
Edge between v and v? 1 (out)degree(v)
Iterate over outgoing edges V| (out)degree(v)

Often sparse graphs (low average degree)
Which representation?
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C1. Graphs: Foundations and Exploration Graph Exploration

C1.4 Graph Exploration
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C1. Graphs: Foundations and Exploration
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C1. Graphs: Foundations and Exploration

Graph Exploration

v

Task: Given a vertex v, visit all vertices that are reachable
from v.

Often used as ingredient of other graph algorithms.
Depth-first search: go “deep” into the graph (away from v)

Breadth-first search: first all neighbours, then neighbours of
neighbours, ...

Graph Exploration
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C1. Graphs: Foundations and Exploration

Depth-first Search

Mark visited vertices

> Mark v

> Iterate over the successors/neighbours w of v.
> If w not marked, start recursively from w.

Abbreviation: DFS

Graph Exploration
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C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

(1—(2)
@ Depth-first search from start

/v vertex 0 marks vertices in order

0-1-2-4-5-3
34

31
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C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Algorithm (Recursive)

1 def depth_first_exploration(graph, node, visited=None):
2 if visited is None:

3 visited = set()

4 if node in visited:

5 return

6 visited.add(node)

7 for s in graph.successors(node):

8 depth_first_exploration(graph, s, visited)

If we expect that most vertices will be visited:
bool array instead of set for visited
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C1. Graphs: Foundations and Exploration

Depth-first Vertex Orders

>
>

>

Preorder: Vertex is included before its children are considered.

Postorder: Vertex is included when the (recursive) depth-first
search of all its children has finished.

Reverse Postorder: Like postorder, but in reverse order.

1 def depth_first_exploration(graph, node, visited):
2 if node in visited:

3 return

4 preorder.append (node)

5 visited.add(node)

6 for s in graph.successors(node):

7 depth_first_exploration(graph, s, visited)
8 postorder.append (node)

9 reverse_postorder.appendleft (node)

(Representation of vertex sequence as a deque.)

33

Graph Exploration
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C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Algorithm (Iterative)

1 def depth_first_exploration(graph, node):
2 visited = set()

3 stack = deque()

4 stack.append (node)

5 while stack:

6 v = stack.pop() # LIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 stack.append(s)
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C1. Graphs: Foundations and Exploration

Depth-first Search in Practice
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Graph Exploration
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C1. Graphs: Foundations and Exploration

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

| 2

>

Mark v
— Distance 0

Mark all unmarked successors/neighbours of v

— Distance 1

Mark all unmarked successors/neighbours of vertices with
distance 1.

Mark all unmarked successors/neighbours of vertices with
distance 2.

Until vertices of distance i do not have unmarked
successors/neighbours.

Abbreviation: BFS

Graph Exploration
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C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Example

Here: Visit successors in increasing order of their number.

(1) \

@ Breadth-first search from start
vertex 0 marks vertices in order

0-1-3-2-4-5
—@

37/
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C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Conceptually)

Only difference to iterative depth-first search:
First-in-first-out treatment of vertices (instead of last-in-first-out)

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 queue . append (node)

5 while queue:

6 v = queue.popleft() # FIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 queue . append(s)

38
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C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Somewhat more Efficient)

We only further consider a vertex when we first run across it.
We can directly mark it as visited and disregard it if we see it again.

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 visited.add(node)

5 queue . append (node)

6 while queue:

7 v = queue.popleft()

8 for s in graph.successors(v):
9 if s not in visited:

10 visited.add(s)

11 queue . append(s)

39
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C1. Graphs: Foundations and Exploration Graph Exploration

Running Time

For all algorithm variants:
» Every reachable vertex gets marked.
> We follow every reachable edge exactly once.
» Running time O(| V| + |E|)

» We can restrict this to the reachable vertices and edges.
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C1. Graphs: Foundations and Exploration Graph Exploration

Induced Search Tree

The induced search tree of a graph exploration contains for every
visited vertex (except for the start vertex) an edge from its

predecessor in the exploration.
Q—2)
o | X s
@—®

depth-first search breadth-first search

(induced search tree # binary search tree)
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C1. Graphs: Foundations and Exploration

Induced Search Tree: Example BFS

> Every vertex has at most one predecessor in the tree.

Graph Exploration

» Represent induced search tree by the predecessor relation.

P> The visited vertices are exactly those for which there is a
predecessor set: We do not need visited anymore.

1
2
3
4
5
6
7
8
9

10
11
12

def bfs_with_predecessors(graph, node):

predecessor = [None] * graph.no_nodes()
queue = deque()
# use self-loop for start node
predecessor [node] = node
queue . append (node)
while queue:
v = queue.popleft()
for s in graph.successors(v):
if predecessor[s] is None:
predecessor([s] = v
queue . append (s)
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C1. Graphs: Foundations and Exploration Summary

C1.5 Summary
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C1. Graphs: Foundations and Exploration Summary

» Graphs consist of vertices and edges.
> Edges can be directed or undirected.

» Graph exploration systematically visits all vertices that can be
reached from the given vertex.
» Depth-first search goes “deeper” into the graph whenever
possible.
> Breadth-first search first visits the vertices that are closer to
the start vertex.
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