Algorithms and Data Structures
C1. Graphs: Foundations and Exploration

Gabriele Roger and Patrick Schnider

University of Basel

April 24, 2025

/ 44

Algorithms and Data Structures
April 24, 2025 — C1. Graphs: Foundations and Exploration

C1.1 Motivation

C1.2 Definition

C1.3 Representation
C1.4 Graph Exploration

C1.5 Summary

2/ 44

Content of the Course

representation

— sorting
— exploration
| complexity
analysis applications
of exploration
fundamental
data structures minimum
spanning
— searching trees
shortest
paths
— concepts other
problems

3/ 44

C1. Graphs: Foundations and Exploration Motivation

C1.1 Motivation

4/ 44

C1. Graphs: Foundations and Exploration Motivation

Street Maps

openstreetmap.org

5/ 44

C1. Graphs: Foundations and Exploration Motivation

Route Networks

- s

>
| ¥
]

ESRITT
{11
78

St s,
pa——r.
© im Pleifensack. 4 o
i siutcad 3

O e Hogcser 0 IEE

8 1 §513

[re—— [—] 118
- >

pr—y
Betscheaer O B

o T8
0o aituen | § |
R it i

6/ 44

C1. Graphs: Foundations and Exploration

Navigation Networks in Games

heroengine.com

Motivation

C1. Graphs: Foundations and Exploration Motivation

Urban Supply System

GeltlS - GIS Gelterkinden

9 wasser
I cas
9 Fermvaerme

zearnaz) vasrars

dgis.info

8/ 44

C1. Graphs: Foundations and Exploration

Internet

Barrett Lyon / The Opte Project
Visualization of the routing paths of the Internet.

Motivation

C1. Graphs: Foundations and Exploration

Social Networks

Motivation

"

Visualizing Friendships”' by Paul Butler

10 / 44

Motivation

C1. Graphs: Foundations and Exploration

Collaboration

LINKED JAZZ -

- WitHian

Toshiko Akiyoshi " catery
Roy Haynes RN W Ve 7 . sy oo {
N S L B NS o <= : [
. 5 = . *
g Nanty Wison
.
S John Levy

Annie Ross

Aobey Lincoln = = . ., S . S o 3 == S 2 o
‘Stanloy Kay i 2 TN 22 g ‘-. g o : — . 3 | p
o % 5 S \
— = 1 Louie Bellson

7 " Mary Lou Wiliams
- DaveBrubeck .

Danny Barker

o ans”

linkedjazz.org

11/ 44

C1. Graphs: Foundations and Exploration

Protein Interaction

-
o
o oy)

@ ot
S

Network representation of the p53 protein interactions
Module detection in complex networks using integer optimisation,
Xu G, Bennett L, Papageorgiou LG, Tsoka S - Algorithms Mol Biol (2010)

Motivation

12 / 44

C1. Graphs: Foundations and Exploration Motivation

Possible Questions

> Are A and B connected?
» What is the shortest connection between A and B?
> What is the longest distance between two elements?

» How much water can the sewer system discharge?

13 / 44

C1. Graphs: Foundations and Exploration

Abstract Graphs

Motivation

A Graph consists of vertices and edges between vertices.

Vertices Edges
Streets Crossing Street segment
Internet AS (= Provider) Route
Facebook Person Friendship
Proteins Protein Interaction

14

44

C1. Graphs: Foundations and Exploration Definition

C1.2 Definition

15 / 44

C1. Graphs: Foundations and Exploration Definition

Undirected and Directed Graphs

(A —(8) 3
Boe :‘:
CHENG 3

undirected graph directed graph

16 / 44

C1. Graphs: Foundations and Exploration Definition

Graphs

» A graph is a pair (V, E) comprising
> V: finite set of vertices
> E: finite set of edges
» Every edge connects two vertices u and v
» undirected graph: set {u, v}
» directed graph: pair (u, v)
P> Multigraphs permit multiple parallel edges between the same
nodes.
» Weighted graphs associate each edge with a weight (a
number).

17 / 44

C1. Graphs: Foundations and Exploration Definition

Undirected Graphs: Terminology

» Neighbours of a vertex u: all vertices v with {u,v} € E.
» degree(v): Degree of a vertex = Number of neighbours.

» Exception: Self-loops increase the degree by 2.
Self-loop = edge that connects a vertex with itself.

18 / 44

C1. Graphs: Foundations and Exploration Definition

Directed Graphs: Terminology

» Successors of vertex u: all vertices v with (u,v) € E.
» Predecessors of vertex u: all vertices v with (v, u) € E.
» outdegree(v): outdegree = number of successors

» indegree(v): indegree = number of predecessors

19 / 44

C1. Graphs: Foundations and Exploration

Paths and Cycles

» Path of length n: Sequence (vp, ..., v,) of vertices with
» {vj,vit1} € E for i =0,...,n—1 (undirected graph)
» (vi,viy1) € Efor i =0,...,n—1 (directed graph)
» The path is simple if all vertices are distinct.
» Example: (5,4,1,2)
» Cycle: Path with equal start and end vertex (vp = v,)
of length > 0.
» (6,7,9,8,6) in the undirected and
(5,2,1,3,5) in the directed example graph
» The cycle is simple if all vertices v4,..., v, are distinct.
» if there is no simple cycle, the graph is acyclic.

Path of
length 37

H—03

Definition

20 / 44

C1. Graphs: Foundations and Exploration Representation

C1.3 Representation

21 / 44

C1. Graphs: Foundations and Exploration Representation

Content of the Course

— sorting
— exploration
| complexity
analysis applications
| of exploration
fundamental
data structures minimum
— spanning
— searching trees
shortest
Bl paths
— concepts other
] problems

22 / 44

C1. Graphs: Foundations and Exploration Representation

Representation of Vertices

» We use numbers 0 to |V/| — 1 for the vertices.

» If not the case in application: Us a map to convert from
names to numbers.

23 / 44

C1. Graphs: Foundations and Exploration Representation

Adjacency-matrix Representation

Graph G = ({0,...,|V| — 1}, E) represented as |V/| x |V/| matrix
with entries aj, (in row i, column k):
1 if (i, k) € E (directed graph) or
aj = {i, k} € E (undirected graph)

0 otherwise

D 01100
(0 3 A— (1) 8 8 8 (1) For undirected graphs
- symmetric
10110
00110

24 / 44

C1. Graphs: Foundations and Exploration

Adjacency-list Representation

Store for every vertex the list of successors / neighbours.

[o1¢]

’0 1
S
@) Ao

S

o1

Representation

25 / 44

C1. Graphs: Foundations and Exploration Representation

Representation: Complexity

Adj. matrix Adj. list

Space V|2 |E| + | V|
Add edge 1 1
Edge between v and v? 1 (out)degree(v)
Iterate over outgoing edges V| (out)degree(v)

Often sparse graphs (low average degree)
Which representation?

26 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

C1.4 Graph Exploration

27 / 44

C1. Graphs: Foundations and Exploration

Content of the Course

— representation

Graph Exploration

depth-first
search

— sorting
B complexity
analysis | | applications
of exploration
|| fundamental
- data structures minimum
— spanning
— searching trees
B shortest
paths
— concepts || other
problems

breadth-first
search

induced
search tree

28 / 44

C1. Graphs: Foundations and Exploration

Graph Exploration

v

Task: Given a vertex v, visit all vertices that are reachable
from v.

Often used as ingredient of other graph algorithms.
Depth-first search: go “deep” into the graph (away from v)

Breadth-first search: first all neighbours, then neighbours of
neighbours, ...

Graph Exploration

29 / 44

C1. Graphs: Foundations and Exploration

Depth-first Search

Mark visited vertices

> Mark v

> Iterate over the successors/neighbours w of v.
> If w not marked, start recursively from w.

Abbreviation: DFS

Graph Exploration

30 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Example
Here: Visit successors in increasing order of their number.

(1—(2)
@ Depth-first search from start

/v vertex 0 marks vertices in order

0-1-2-4-5-3
34

31

| 44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Algorithm (Recursive)

1 def depth_first_exploration(graph, node, visited=None):
2 if visited is None:

3 visited = set()

4 if node in visited:

5 return

6 visited.add(node)

7 for s in graph.successors(node):

8 depth_first_exploration(graph, s, visited)

If we expect that most vertices will be visited:
bool array instead of set for visited

32 / 44

C1. Graphs: Foundations and Exploration

Depth-first Vertex Orders

>
>

>

Preorder: Vertex is included before its children are considered.

Postorder: Vertex is included when the (recursive) depth-first
search of all its children has finished.

Reverse Postorder: Like postorder, but in reverse order.

1 def depth_first_exploration(graph, node, visited):
2 if node in visited:

3 return

4 preorder.append (node)

5 visited.add(node)

6 for s in graph.successors(node):

7 depth_first_exploration(graph, s, visited)
8 postorder.append (node)

9 reverse_postorder.appendleft (node)

(Representation of vertex sequence as a deque.)

33

Graph Exploration

44

C1. Graphs: Foundations and Exploration Graph Exploration

Depth-first Search: Algorithm (Iterative)

1 def depth_first_exploration(graph, node):
2 visited = set()

3 stack = deque()

4 stack.append (node)

5 while stack:

6 v = stack.pop() # LIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 stack.append(s)

34 / 44

C1. Graphs: Foundations and Exploration

Depth-first Search in Practice

PREPPRING FOR ADATE: [T Vv ey "\H
M OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE
\WHAT_SITUATIONS

Graph Exploration

EMERGENCIES (AN HPPEN? DPWGEROUS? LETS SEE... THE RESEARCH COMPRRING
MGHT T FREPPRE FRR? 0) A) SNAKERITE.)A)8) CoRM SHAKE D’*?R SNRKE VENOMS 15 SCATTERED
) MEDICAL EMERGENCY B) LIGHTNNG STRIKE

GARTER D WCONSISTENT: TLL MAKE
2) DANEING ©) FALLAROM HAR 2 mFPEﬂE%ﬂE ? A SPREADSHEET T ORGPNIZE IT:
20D T BFENSVE

(o] 0 [¢]
E ° ’ §O;
[s)

IMHERETOPEK. BY (D, THE INAND
YOUUR YoUKE TAIPPN HAS THE DEALLIEST
NMWE&ED\ T VNG OF ENY SNAKE

]

i

https://xked.com/761/ |

T REALLY NEED To STep
USING DEPTH-FIRST SEARCHES.

35 /44

C1. Graphs: Foundations and Exploration

Breadth-first Search

First all neighbours, then neighbours of neighbours, ...

| 2

>

Mark v
— Distance 0

Mark all unmarked successors/neighbours of v

— Distance 1

Mark all unmarked successors/neighbours of vertices with
distance 1.

Mark all unmarked successors/neighbours of vertices with
distance 2.

Until vertices of distance i do not have unmarked
successors/neighbours.

Abbreviation: BFS

Graph Exploration

36 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Example

Here: Visit successors in increasing order of their number.

(1) \

@ Breadth-first search from start
vertex 0 marks vertices in order

0-1-3-2-4-5
—@

37/

44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Conceptually)

Only difference to iterative depth-first search:
First-in-first-out treatment of vertices (instead of last-in-first-out)

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 queue . append (node)

5 while queue:

6 v = queue.popleft() # FIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):
10 queue . append(s)

38

| 44

C1. Graphs: Foundations and Exploration Graph Exploration

Breadth-first Search: Algorithm (Somewhat more Efficient)

We only further consider a vertex when we first run across it.
We can directly mark it as visited and disregard it if we see it again.

1 def breadth_first_exploration(graph, node):
2 visited = set()

3 queue = deque()

4 visited.add(node)

5 queue . append (node)

6 while queue:

7 v = queue.popleft()

8 for s in graph.successors(v):
9 if s not in visited:

10 visited.add(s)

11 queue . append(s)

39

44

C1. Graphs: Foundations and Exploration Graph Exploration

Running Time

For all algorithm variants:
» Every reachable vertex gets marked.
> We follow every reachable edge exactly once.
» Running time O(| V| + |E|)

» We can restrict this to the reachable vertices and edges.

40 / 44

C1. Graphs: Foundations and Exploration Graph Exploration

Induced Search Tree

The induced search tree of a graph exploration contains for every
visited vertex (except for the start vertex) an edge from its

predecessor in the exploration.
Q—2)
o | X s
@—®

depth-first search breadth-first search

(induced search tree # binary search tree)

41 / 44

C1. Graphs: Foundations and Exploration

Induced Search Tree: Example BFS

> Every vertex has at most one predecessor in the tree.

Graph Exploration

» Represent induced search tree by the predecessor relation.

P> The visited vertices are exactly those for which there is a
predecessor set: We do not need visited anymore.

1
2
3
4
5
6
7
8
9

10
11
12

def bfs_with_predecessors(graph, node):

predecessor = [None] * graph.no_nodes()
queue = deque()
use self-loop for start node
predecessor [node] = node
queue . append (node)
while queue:
v = queue.popleft()
for s in graph.successors(v):
if predecessor[s] is None:
predecessor([s] = v
queue . append (s)

44

C1. Graphs: Foundations and Exploration Summary

C1.5 Summary

43 / 44

C1. Graphs: Foundations and Exploration Summary

» Graphs consist of vertices and edges.
> Edges can be directed or undirected.

» Graph exploration systematically visits all vertices that can be
reached from the given vertex.
» Depth-first search goes “deeper” into the graph whenever
possible.
> Breadth-first search first visits the vertices that are closer to
the start vertex.

44

44

	Motivation
	

	Definition
	

	Representation
	

	Graph Exploration
	

	Summary
	

