
Algorithms and Data Structures
B7. ADTs Map and Set

Gabriele Röger and Patrick Schnider

University of Basel

April 23, 2025

1 / 18

Algorithms and Data Structures
April 23, 2025 — B7. ADTs Map and Set

B7.1 Introduction

B7.2 Map

B7.3 Set

B7.4 Summary

2 / 18

B7. ADTs Map and Set Introduction

B7.1 Introduction

3 / 18

B7. ADTs Map and Set Introduction

Reminder: Abstract Data Type

Abstract Data Type

Description of a data type, summarizing the possible data and the
possible operations on this data.

▶ User perspective: How can I use the data type?

▶ In contrast to data structures, not specifying the concrete
representation of the data.

4 / 18

B7. ADTs Map and Set Introduction

Dynamic Sets

▶ Mathematical set: unordered collection of distinct objects.
▶ Can be finite or infinite.
▶ Does not change.

▶ A dynamic set in computer science is slightly different.
▶ Can grow, shrink or otherwise change.
▶ Finite.
▶ Entries (keys) can sometimes be associated with satellite data.

▶ Now: Two ADTs for dynamic sets:
▶ Map
▶ Set

5 / 18

B7. ADTs Map and Set Map

B7.2 Map

6 / 18

B7. ADTs Map and Set Map

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts

7 / 18

B7. ADTs Map and Set Map

Map

A map stores (key, value) pairs such that each possible key occurs
at most once in the collection. It supports the following
operations:

▶ Insert a given key and value. If the key is already present,
update the associated value.

▶ Remove the entry for a given key.

▶ Lookup the entry for a given key (or return that there is none).

Also known as associative array, dictionary or symbol table.
Exact names of operations can differ.

Similar to arrays, but using keys instead of indices.

8 / 18

B7. ADTs Map and Set Map

Map: Data Structures and Running Times

The following data structures can easily be adapted
to implement maps:

data structure insertion removal or lookup
avg./worst avg./worst

linked list O(1)/O(1) O(n)/O(n)
hash table O(1)/O(n) O(1)/O(n)
binary search tree O(log n)/O(n) O(log n)/O(n)
red-black tree O(log n)/O(log n) O(log n)/O(log n)

9 / 18

B7. ADTs Map and Set Map

Maps in Java and Python

Java:

▶ Interface Map

▶ For example implemented by HashMap (hash table) and
TreeMap (red-black tree).

Map<String, Integer> map = new TreeMap<>();

map.put("a key", 42);;

map.put("another key", 17)

Integer value = map.get("aKey");

Python:

▶ Built-in dict (hash table)
map = dict()

map["a key"] = 42

map["another key"] = 17

or alternatively:

map = {"a key" : 42, "another key" : 17}

value = map["a key"]

10 / 18

B7. ADTs Map and Set Set

B7.3 Set

11 / 18

B7. ADTs Map and Set Set

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts

12 / 18

B7. ADTs Map and Set Set

Set

A set stores keys such that each possible key occurs at most once
in the collection. It supports the following operations:

▶ Insert a given key into a set (if it is not already included).

▶ Remove the given key from a set.

▶ Lookup whether a given key is in a set.

▶ Iteration over all elements of a set in an arbitrary order.

In addition, there is often support for the following operators:

▶ Union of two sets.

▶ Intersection of two sets.

▶ Difference of two sets.

Exact names of operations can differ.

13 / 18

B7. ADTs Map and Set Set

Data Structures

We can use the same data structures for sets as for maps.

▶ Do not store a value with the key.
▶ Implementation of operators union, intersection can be done

based on the core operations or with highly specialized
algorithms:
▶ E.g., union, intersection and difference possible in

O(m log(n
m + 1)) for two red-black trees of sizes m and n

(where m ≤ n).

14 / 18

B7. ADTs Map and Set Set

Sets in Java

Java:

▶ Interface Set

▶ For example implemented by HashSet (based on hash table)
and TreeSet (based on red-black tree).

Set<Integer> nums1 = new HashSet<>();

Set<Integer> nums2 = new HashSet<>();

nums1.add(42);

nums1.add(17);

nums2.add(42);

nums2.add(13);

nums2.add(19);

nums2.remove(13);

nums1.retainAll(nums2); // intersection

if (nums1.contains(42)) {

System.out.println("Found 42");

}

15 / 18

B7. ADTs Map and Set Set

Sets in Python

Python:

▶ Built-ins set and frozenset (both based on hash tables;
frozen sets are immutable and hashable)

s1 = set()

s1.add(42)

s1.add(17)

s2 = {42, 13, 19}

s2.remove(13)

s1 &= s2 # intersection

if 42 in s1:

print("Found 42")

16 / 18

B7. ADTs Map and Set Summary

B7.4 Summary

17 / 18

B7. ADTs Map and Set Summary

Summary

▶ Maps and sets are abstract data types for dynamic sets.
▶ Maps map keys to their associated values.
▶ Sets only store elements.
▶ Both are typically implemented based on hash tables or

balanced trees (such as red-black trees).

18 / 18

	Introduction
	

	Map
	

	Set
	

	Summary
	

