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Motivation

Binary search trees can support many relevant operations in
linear time in the height of the tree.

But: Binary search trees can degenerate into chains, in which
case the operations take linear time in the number n of
elements (no better than with a linked list).

Idea: Search-trees schemes that are in some form “balanced”
and can guarantee running time O(log2 n) in the worst case.

AVL trees: for every node, the height of the left and right
subtree differs by at most 1.
B-trees: permit several keys and subtrees per node (e.g.
special case: 2-3 tree).
Red-Black trees: use node colors to maintain an approximate
balancing.
. . .
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Red-Black Trees: Representation

Use one extra bit per node, storing its color, which can be
either red or black.

Each node now contains attributes color, key, left, right and
parent.
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None Leaf Nodes

Left, right and parent are None if there is no corresponding
node.

Because it is conceptionally and implementation-wise easier,
we will represent them as actual node objects.

These are then the leaves of the trees and the nodes holding
the entries are inner nodes.
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None Leaf Nodes: Sentinel

Instead of many leaf nodes, we use a single sentinel node nil.

Implemented like a normal (black) node
but used as child of many nodes.

The sentinel also serves as parent of the root.

Attributes for parent and children can take on arbitrary values.
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Graphical Representation

On the slides, we omit the None leaf nodes/sentinel:
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Red-Black Trees

Definition (Red-Black Tree)

A red-black tree is a binary search tree that satisfies the following
red-black properties:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (None node) is black.

4 If a node is red, then both its children are black.

5 For each node, all simple paths from the node to descendant
leaves contain the same number of black nodes.
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Quiz I: Is this a Red-Black Tree?
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Reminder: A red-black tree is a binary search tree where:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (None node) is black.

4 If a node is red, then both its children are black.

5 For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.
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Quiz II: Is this a Red-Black Tree?
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Reminder: A red-black tree is a binary search tree where:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (None node) is black.

4 If a node is red, then both its children are black.

5 For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.
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Quiz III: Is this a Red-Black Tree?
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Reminder: A red-black tree is a binary search tree where:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (None node) is black.

4 If a node is red, then both its children are black.

5 For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.
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Quiz IV: Is this a Red-Black Tree?
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Reminder: A red-black tree is a binary search tree where:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (None node) is black.

4 If a node is red, then both its children are black.

5 For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.
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Quiz V: Is this a Red-Black Tree?
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Reminder: A red-black tree is a binary search tree where:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (None node) is black.

4 If a node is red, then both its children are black.

5 For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.
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Questions

Questions?
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Height of Red-Black Tree

Theorem

A red-black tree with n inner nodes has height at most
2 log2(n + 1).

Proof

Let the black-height bh(x) of node x denote the number of black
nodes on any simple path from, but not including, x down to a
leaf.

We first show by induction on the height of x that the subtree
rooted at any node x contains at least 2bh(x) − 1 inner nodes.

. . .
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Height of Red-Black Tree

Proof (continued).

Height of x is 0: x is a leaf and the subtree rooted at x contains
2bh(x) − 1 = 20 − 1 = 0 inner nodes.

Inductive step: x has positive height.
Then x has two children. If a child is black, it contributes 1 to x ’s
black-height but not to its own. If a child is red, then it
contributes to neither x ’s black-height nor its own.
Therefore, each child has a black-height of bh(x)− 1 or bh(x).
Since the height of the child is smaller than the one of x , by the
inductive hypothesis the subtree rooted by each child has at least
2bh(x)−1 − 1 inner nodes.
Thus, the subtree rooted by x contains at least
2(2bh(x)−1 − 1) + 1 = 2bh(x) − 1 inner nodes. . . .
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Proof (continued).
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Height of Red-Black Tree

Proof (continued).

We showed that that the subtree rooted at any node x contains at
least 2bh(x) − 1 inner nodes.

Let h be the height of the tree. Since both children of a red node
must be black, at least half of the nodes on any simple path from
the root to a leaf (not including the root) must be black.
Thus, the black-height of the root is at least h/2 and thus
n > 2h/2 − 1.

Moving the 1 to the left-hand side and taking logarithms on both
sides yields log2(n + 1) ≥ h/2, or h ≤ 2 log2(n + 1).
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Height of Red-Black Tree: Consequence

Theorem

A red-black tree with n inner nodes has height at most
2 log2(n + 1).

The height of a red-black tree is in O(log2 n).

Red-black trees are binary search trees.

On binary search trees, search(n, k), minimum(n),
maximum(n), successor(n),predecessor(n) can run in
time O(h) (cf. Ch. B5).

We can use the same implementation for red-black trees,
achieving running time O(log2(n)) for all these queries.
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Insertion (and Deletion)
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Modifying Red-Black Trees

We cannot simply use the insertion and deletion implementation
from binary search trees (Why not?).

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Insert (and delete) a number of keys into the
red-black tree. What do you observe?

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
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Rotation

Inserting and deleting nodes as in binary search trees does not
preserve the red-black property.

Rotation is an operation that transforms the structure of the
tree but preserves the binary-search-tree property.

Two variants: left and right rotation.

We use them to re-establish the red-black property during an
insertion/deletion.
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Left-Rotation

1 class RedBlackTree:

2 def __init__(self):

3 self.nil = Node(None, None, color=BLACK) # sentinel

4 self.root = self.nil

5

6 def left_rotate(self, x):

7 y = x.right

8 x.right = y.left

9 if y.left is not self.nil:

10 y.left.parent = x

11 y.parent = x.parent

12 if x.parent is self.nil: # x was root node

13 self.root = y

14 elif x is x.parent.left:

15 x.parent.left = y

16 else:

17 x.parent.right = y

18 y.left = x

19 x.parent = y
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Insertion

1 def insert(self, key, value):

2 current = self.root

3 parent = self.nil

4 while current is not self.nil :

5 parent = current

6 if current.key > key:

7 current = current.left

8 else:

9 current = current.right

10 node = Node(key, value, color=RED )

11 node.parent = parent

12 if parent is self.nil : # tree was empty

13 self.root = node

14 elif key < parent.key:

15 parent.left = node

16 else:

17 parent.right = node

18 node.left = self.nil # explicit leaf nodes

19 node.right = self.nil

20 self.fixup(node)

Up to this point
pretty much like
insert in binary
search tree.

What red-black
properties can be
violated before the
fixup?
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Reminder: Red-Black Trees

Definition (Red-Black Tree)

A red-black tree is a binary search tree that satisfies the following
red-black properties:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (None node) is black.

4 If a node is red, then both its children are black.

5 For each node, all simple paths from the node to descendant
leaves contain the same number of black nodes.

What could be violated before the fixup?

Only 2 or 4!

Property 2 is easy to re-establish: Just color the root black.
For property 4, distinguish three cases...
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Fixup: Case 1

Potential problem: node and its parent are both red
(the only violation of red-black property 4).

Case 1: The uncle (parent’s sibling) of node is red.

The grandparent of node cannot be red (by property 4).

Idea: Make grandparent red and parent and uncle black.

Afterwards: Need to fixup grandparent
(its parent could be red).

node node

⇒
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Fixup: Case 2

[Suppose node’s parent is a left child.]

Case 2: The uncle of node is black and node is a right child.

Perform a left-rotation on the parent.

Now the red previous parent is the left child of the red node.

This constellation corresponds to case 3 (with the previous
parent in the role of the red child node) and is resolved the
same way (next slide).

node

p node

p

⇒
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Fixup: Case 3

[Suppose node’s parent is a left child.]

Case 3: The uncle of node is black and node is a left child.

Make parent black and grandparent red.

Afterwards, perform a right-rotation on the grandparent.

node

p

node

p

node

p

⇒ ⇒
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Insertion: Fixup

1 def fixup(self, node):

2 while node.parent.color == RED:

3 grandparent = node.parent.parent

4 if node.parent is grandparent.left:

5 uncle = grandparent.right

6 if uncle.color == RED:

7 node.parent.color = BLACK

8 uncle.color = BLACK

9 grandparent.color = RED

10 node = grandparent

11 else:

12 if node is node.parent.right:

13 node = node.parent

14 self.left_rotate(node)

15 node.parent.color = BLACK

16 node.parent.parent.color = RED

17 self.right_rotate(grandparent)

18 else:

... ...

... # symmetric cases 1-3, where parent is

... # not the left child (cf. notebook).

33 self.root.color = BLACK

Case 1

Case 2

Case 3

Running time: O(h)
(h tree height)
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Insertion: Fixup

1 def fixup(self, node):

2 while node.parent.color == RED:

3 grandparent = node.parent.parent

4 if node.parent is grandparent.left:

5 uncle = grandparent.right

6 if uncle.color == RED:

7 node.parent.color = BLACK

8 uncle.color = BLACK

9 grandparent.color = RED

10 node = grandparent

11 else:

12 if node is node.parent.right:

13 node = node.parent

14 self.left_rotate(node)

15 node.parent.color = BLACK

16 node.parent.parent.color = RED

17 self.right_rotate(grandparent)

18 else:

... ...

... # symmetric cases 1-3, where parent is

... # not the left child (cf. notebook).

33 self.root.color = BLACK

Case 1

Case 2

Case 3

Running time: O(h)
(h tree height)
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Insertion: Running Time

1 def insert(self, key, value):

2 current = self.root

3 parent = self.nil

4 while current is not self.nil:

5 parent = current

6 if current.key > key:

7 current = current.left

8 else:

9 current = current.right

10 node = Node(key, value, color=RED)

11 node.parent = parent

12 if parent is self.nil: # tree was empty

13 self.root = node

14 elif key < parent.key:

15 parent.left = node

16 else:

17 parent.right = node

18 node.left = self.nil # explicit leaf nodes

19 node.right = self.nil

20 self.fixup(node)

Running time?
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Insertion: Running Time

1 def insert(self, key, value):

2 current = self.root

3 parent = self.nil

4 while current is not self.nil:

5 parent = current

6 if current.key > key:

7 current = current.left

8 else:

9 current = current.right

10 node = Node(key, value, color=RED)

11 node.parent = parent

12 if parent is self.nil: # tree was empty

13 self.root = node

14 elif key < parent.key:

15 parent.left = node

16 else:

17 parent.right = node

18 node.left = self.nil # explicit leaf nodes

19 node.right = self.nil

20 self.fixup(node)

Running time:
O(h)
(h tree height)
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Questions

Questions?
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Deletion

Deleting a node from a red-black tree is more complicated
than inserting a node.

We do not cover the details in this course.

Deletion from a tree with n nodes is possible
in time O(log2 n).
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Summary
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Summary

Red-black trees are a special kind of binary search trees that
are approximately balanced.

The height of a red-black tree with n nodes is O(log2 n).

Consequently, the query operations only take logarithmic time
in the size of the tree.

The same is true for insertion and deletion.
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