Algorithms and Data Structures
B6. Red-Black Trees

Gabriele Roger and Patrick Schnider

University of Basel

April 16/23, 2025

1/33

Algorithms and Data Structures
April 16/23, 2025 — B6. Red-Black Trees

B6.1 Red-Black Trees
B6.2 Insertion (and Deletion)

B6.3 Summary

2/33

B6. Red-Black Trees

B6.1 Red-Black Trees

Red-Black Trees

3 /33

B6. Red-Black Trees

Content of the Course

— sorting

complexity
analysis

fundamental
data structures

hash table

binary search tree

graph
algorithms

— concepts

Red-Black Trees

4/ 33

B6. Red-Black Trees Red-Black Trees

Motivation

» Binary search trees can support many relevant operations in
linear time in the height of the tree.

» But: Binary search trees can degenerate into chains, in which
case the operations take linear time in the number n of
elements (no better than with a linked list).

> |dea: Search-trees schemes that are in some form “balanced”
and can guarantee running time O(log, n) in the worst case.
P> AVL trees: for every node, the height of the left and right
subtree differs by at most 1.
> B-trees: permit several keys and subtrees per node (e.g.
special case: 2-3 tree).
» Red-Black trees: use node colors to maintain an approximate
balancing.

B6. Red-Black Trees Red-Black Trees

Red-Black Trees: Representation

> Use one extra bit per node, storing its color, which can be
either red or black.

» Each node now contains attributes color, key, left, right and
parent.

33

B6. Red-Black Trees Red-Black Trees

None Leaf Nodes

> Left, right and parent are None if there is no corresponding
node.

» Because it is conceptionally and implementation-wise easier,
we will represent them as actual node objects.

P These are then the leaves of the trees and the nodes holding
the entries are inner nodes.

B6. Red-Black Trees Red-Black Trees

None Leaf Nodes: Sentinel

Instead of many leaf nodes, we use a single sentinel node nil.

» Implemented like a normal (black) node
but used as child of many nodes.

» The sentinel also serves as parent of the root.

> Attributes for parent and children can take on arbitrary values.

33

B6. Red-Black Trees Red-Black Trees

Graphical Representation

On the slides, we omit the None leaf nodes/sentinel:

B6. Red-Black Trees

Red-Black Trees

Definition (Red-Black Tree)

A red-black tree is a binary search tree that satisfies the following
red-black properties:

@ Every node is either red or black.

@ The root is black.

© Every leaf (None node) is black.

@ If a node is red, then both its children are black.

@ For each node, all simple paths from the node to descendant
leaves contain the same number of black nodes.

Red-Black Trees

10 / 33

B6. Red-Black Trees

Quiz |: Is this a Red-Black Tree?

Red-Black Trees

Reminder: A red-black tree is a binary search tree where:
© Every node is either red or black.
@ The root is black.
© Every leaf (None node) is black.
© If a node is red, then both its children are black.

@ For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.

11 /33

B6. Red-Black Trees

Quiz lI: Is this a Red-Black Tree?

Reminder: A red-black tree is a binary search tree where:
© Every node is either red or black.
@ The root is black.
© Every leaf (None node) is black.
© If a node is red, then both its children are black.

@ For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.

Red-Black Trees

12 /33

B6. Red-Black Trees

Quiz llI: Is this a Red-Black Tree?

Red-Black Trees

Reminder: A red-black tree is a binary search tree where:
@ Every node is either red or black.
@ The root is black.
© Every leaf (None node) is black.
@ If a node is red, then both its children are black.

@ For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.

13 /33

B6. Red-Black Trees

Quiz IV: Is this a Red-Black Tree?

Reminder: A red-black tree is a binary search tree where:
@ Every node is either red or black.
@ The root is black.
© Every leaf (None node) is black.
@ If a node is red, then both its children are black.

@ For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.

Red-Black Trees

14 / 33

B6. Red-Black Trees

Quiz V: Is this a Red-Black Tree?

Red-Black Trees

Reminder: A red-black tree is a binary search tree where:
© Every node is either red or black.
@ The root is black.
© Every leaf (None node) is black.
© If a node is red, then both its children are black.

@ For each node, all simple paths from the node to descendant leaves
contain the same number of black nodes.

15 / 33

B6. Red-Black Trees

Height of Red-Black Tree

Theorem
A red-black tree with n inner nodes has height at most
2logy(n+1).

Proof

Let the black-height bh(x) of node x denote the number of black
nodes on any simple path from, but not including, x down to a
leaf.

We first show by induction on the height of x that the subtree
rooted at any node x contains at least 2P2(*) — 1 inner nodes.

Red-Black Trees

16 / 33

B6. Red-Black Trees Red-Black Trees

Height of Red-Black Tree

Proof (continued).
Height of x is 0: x is a leaf and the subtree rooted at x contains
2Ph(x) 1 =20 _ 1 =0 inner nodes.

Inductive step: x has positive height.

Then x has two children. If a child is black, it contributes 1 to x's
black-height but not to its own. If a child is red, then it
contributes to neither x's black-height nor its own.

Therefore, each child has a black-height of bh(x) — 1 or bh(x).
Since the height of the child is smaller than the one of x, by the
inductive hypothesis the subtree rooted by each child has at least
2Ph()=1 _ 1 inner nodes.

Thus, the subtree rooted by x contains at least

2(2P2()=1 _ 1) 4 1 = 2P2(*) — 1 inner nodes.

17 / 33

B6. Red-Black Trees

Height of Red-Black Tree

Proof (continued).
We showed that that the subtree rooted at any node x contains at
least 2P2() — 1 inner nodes.

Let h be the height of the tree. Since both children of a red node
must be black, at least half of the nodes on any simple path from
the root to a leaf (not including the root) must be black.

Thus, the black-height of the root is at least h/2 and thus

n>2h?2 1
Moving the 1 to the left-hand side and taking logarithms on both
sides yields log,(n+ 1) > h/2, or h < 2log,(n + 1). O

Red-Black Trees

18 / 33

B6. Red-Black Trees Red-Black Trees

Height of Red-Black Tree: Consequence

Theorem
A red-black tree with n inner nodes has height at most

2log,(n+1).

» The height of a red-black tree is in O(log, n).
» Red-black trees are binary search trees.

» On binary search trees, search(n, k), minimum(n),
maximum(n), successor(n),predecessor(n) can run in
time O(h) (cf. Ch. B5).

» We can use the same implementation for red-black trees,
achieving running time O(log,(n)) for all these queries.

19 / 33

B6. Red-Black Trees

B6.2 Insertion (and Deletion)

Insertion (and Deletion)

20 / 33

B6. Red-Black Trees Insertion (and Deletion) B6. Red-Black Trees Insertion (and Deletion)

Modifying Red-Black Trees Rotation
We cannot simply use the insertion and deletion implementation > Inserting and deleting nodes as in binary search trees does not
from binary search trees (\Why not?). preserve the red-black property.

> Rotation is an operation that transforms the structure of the
tree but preserves the binary-search-tree property.

> Two variants: left and right rotation.

» We use them to re-establish the red-black property during an
insertion /deletion.

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

left_rotate(x)
Insert (and delete) a number of keys into the @ ot right_rotate(y) Y
red-black tree. What do you observe? 2
B v e B
21 /33 22 /33
B6. Red-Black Trees Insertion (and Deletion) B6. Red-Black Trees Insertion (and Deletion)

Left-Rotation Insertion

1 class RedBlackTree: 1 def insert(self, key, value):

2 def __init__(self): 2 current = self.root

3 self.nil = Node(None, None, color=BLACK) # sentinel 3 parent = self.nil

4 self.root = self.nil 4 while current is not self.nil :

5 5 parent = current

6 def left_rotate(self, x): 6 if current.key > key: Up to this point

B . 7 current = current.left .
7 y = x.right s else: pretty much like
; - _—
8 x.right = y.left 9 current = current.right ; in bi
. . o insert in binary

9 if y.left is not self.nil: @ v 10 node = Node(key, value, color=RED) h

10 y.left.parent = x 8 5 a 8 11 node.parent = parent search tree.

11 y.parent = x.parent 12 if parent is self.nil : # tree was empty

12 if x.parent is self.nil: # z was root node 13 self.root = node

13 self.root =y 14 elif key < parent.key:

. . 15 parent.left = node

4 1if . t.left:

! elif x is x.perent lo 6 else: What red-black
15 x.parent.left =y 17 parent.right = node properties can be
16 else:] 18 node.left = self.nil # explicit leaf nodes iolated before th
17 X.parent.right =y 10 G = EolE il violate erore the
18 y.left =X f|Xup?

19 X.parent =y 20

self.fixup(node) \/

23 / 33 24 / 33

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

B6. Red-Black Trees

Reminder: Red-Black Trees

Insertion (and Deletion)

Definition (Red-Black Tree)
A red-black tree is a binary search tree that satisfies the following
red-black properties:

@ Every node is either red or black.

@ The root is black.

© Every leaf (None node) is black.

Q If a node is red, then both its children are black.

© For each node, all simple paths from the node to descendant
leaves contain the same number of black nodes.

What could be violated before the fixup? Only 2 or 4!

Property 2 is easy to re-establish: Just color the root black.
For property 4, distinguish three cases...

25 / 33

B6. Red-Black Trees

Fixup: Case 1

Potential problem: node and its parent are both red
(the only violation of red-black property 4).

Case 1: The uncle (parent's sibling) of node is red.

» The grandparent of node cannot be red (by property 4).
» |dea: Make grandparent red and parent and uncle black.

> Afterwards: Need to fixup grandparent
(its parent could be red).

node node

Insertion (and Deletion)

26 / 33

B6. Red-Black Trees Insertion (and Deletion)

Fixup: Case 2

[Suppose node's parent is a left child.]

Case 2: The uncle of node is black and node is a right child.
» Perform a left-rotation on the parent.
» Now the red previous parent is the left child of the red node.

» This constellation corresponds to case 3 (with the previous
parent in the role of the red child node) and is resolved the
same way (next slide).

P node

node P

27 / 33

B6. Red-Black Trees

Fixup: Case 3

[Suppose node's parent is a left child.]

Case 3: The uncle of node is black and node is a left child.

» Make parent black and grandparent red.

> Afterwards, perform a right-rotation on the grandparent.

node

node node

Insertion (and Deletion)

28 / 33

B6. Red-Black Trees

Insertion: Fixup

Insertion (and Deletion)

1 def fixup(self, node):
2 while node.parent.color == RED:
3 grandparent = node.parent.parent
4 if node.parent is grandparent.left:
5 uncle = grandparent.right
6 if uncle.color == RED:
7 node.parent.color = BLACK
8 uncle.color = BLACK Case 1
9 grandparent.color = RED
10 node = grandparent
11 else:
12 if node is node.parent.right:
13 node = node.parent
14 self.left_rotate(node) } Case 2
15 node.parent.color = BLACK
16 node.parent.parent.color = RED } Case 3
17 self.right_rotate(grandparent)
18 else:
symmetric cases 1-3, where parent is . H .
not the left child (cf. notebook). Runnmg time: O(h)
33 self.root.color = BLACK (h tree height)

29 / 33

B6. Red-Black Trees

Insertion: Running Time

1 def insert(self, key, value):

2 current = self.root

3 parent = self.nil

4 while current is not self.nil:

5 parent = current

6 if current.key > key: . .

7 current = current.left Runnlng time:
8 else: O(h)

9 current = current.right i

10 node = Node(key, value, color=RED) (h tree height)
11 node.parent = parent

12 if parent is self.nil: # tree was empty

13 self.root = node

14 elif key < parent.key:

15 parent.left = node

16 else:

17 parent.right = node

18 node.left = self.nil # explicit leaf nodes

19 node.right = self.nil

20 self.fixup(node)

Insertion (and Deletion)

B6. Red-Black Trees

Deletion

Insertion (and Deletion)

» Deleting a node from a red-black tree is more complicated

than inserting a node.
> We do not cover the details in this course.

» Deletion from a tree with n nodes is possible
in time O(log, n).

31 /33

30 / 33

B6. Red-Black Trees Summary
B6.3 Summary

32 /33

B6. Red-Black Trees Summary

Summary

» Red-black trees are a special kind of binary search trees that
are approximately balanced.

» The height of a red-black tree with n nodes is O(log, n).

» Consequently, the query operations only take logarithmic time
in the size of the tree.

» The same is true for insertion and deletion.

33 /33

	Red-Black Trees
	

	Insertion (and Deletion)
	

	Summary
	

