Algorithms and Data Structures B6. Red-Black Trees Gabriele Röger and Patrick Schnider University of Basel April 16/23, 2025

1 / 33

Red-Black Trees

B6.1 Red-Black Trees

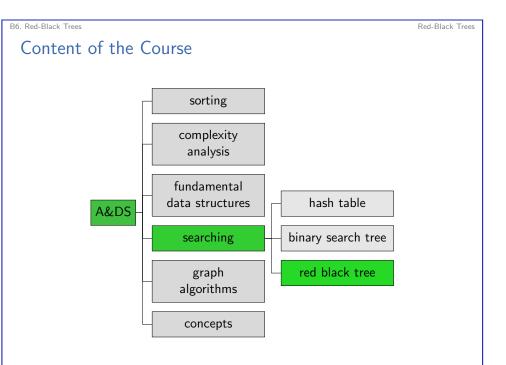
B6. Red-Black Trees

Algorithms and Data Structures April 16/23, 2025 — B6. Red-Black Trees

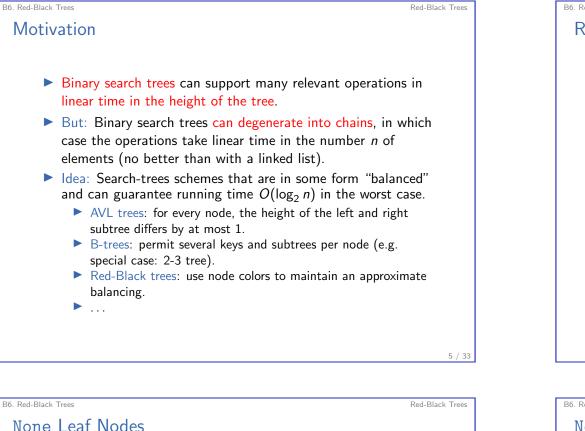
B6.1 Red-Black Trees

B6.2 Insertion (and Deletion)

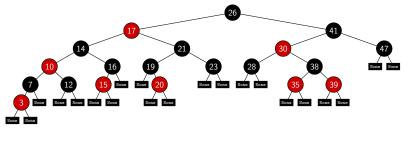
B6.3 Summary



2 / 33



- Left, right and parent are None if there is no corresponding node.
- Because it is conceptionally and implementation-wise easier, we will represent them as actual node objects.
- These are then the leaves of the trees and the nodes holding the entries are inner nodes.



B6. Red-Black Trees

Red-Black Trees: Representation

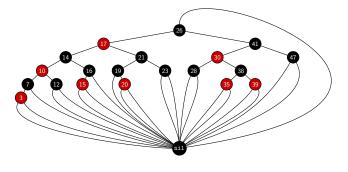
- Use one extra bit per node, storing its color, which can be either red or black.
- Each node now contains attributes color, key, left, right and parent.

B6. Red-Black Trees

None Leaf Nodes: Sentinel

Instead of many leaf nodes, we use a single sentinel node nil.

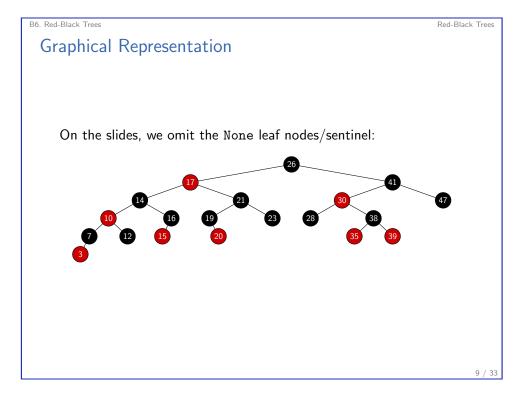
- Implemented like a normal (black) node but used as child of many nodes.
- ▶ The sentinel also serves as parent of the root.
- Attributes for parent and children can take on arbitrary values.

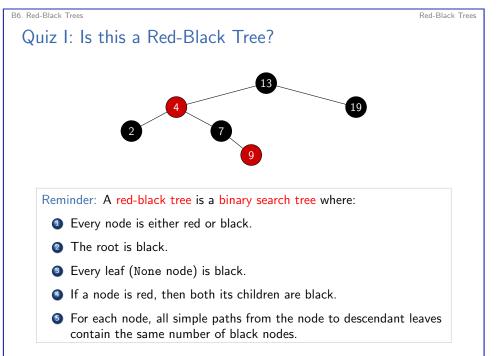


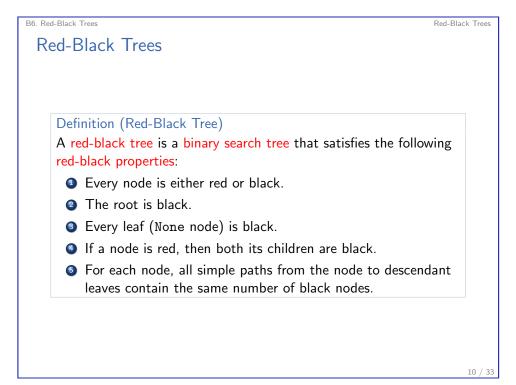
6 / 33

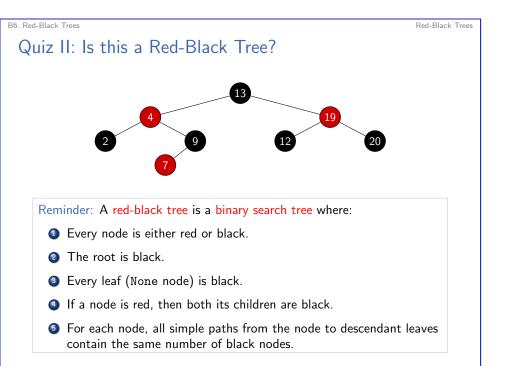
Red-Black Trees

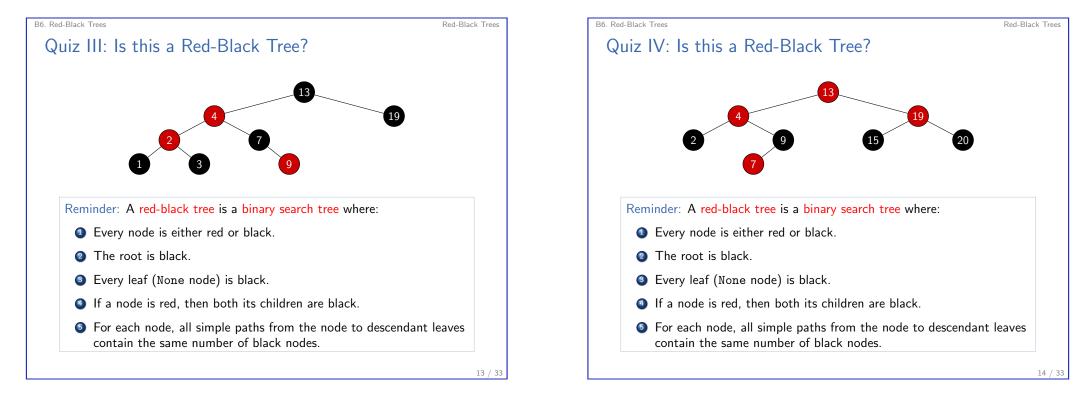
Red-Black Trees

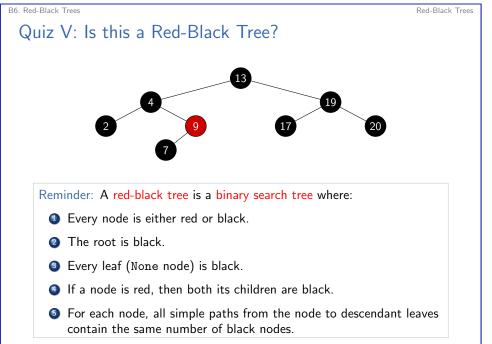












Height of Red-Black Tree

Theorem

B6. Red-Black Trees

A red-black tree with n inner nodes has height at most $2\log_2(n+1)$.

Proof

Let the black-height bh(x) of node x denote the number of black nodes on any simple path from, but not including, x down to a leaf.

We first show by induction on the height of x that the subtree rooted at any node x contains at least $2^{bh(x)} - 1$ inner nodes. ...

Red-Black Trees

Height of Red-Black Tree

Proof (continued).

Height of x is 0: x is a leaf and the subtree rooted at x contains $2^{bh(x)} - 1 = 2^0 - 1 = 0$ inner nodes.

Inductive step: x has positive height.

Then x has two children. If a child is black, it contributes 1 to x's black-height but not to its own. If a child is red, then it contributes to neither x's black-height nor its own. Therefore, each child has a black-height of bh(x) - 1 or bh(x). Since the height of the child is smaller than the one of x, by the inductive hypothesis the subtree rooted by each child has at least $2^{bh(x)-1} - 1$ inner nodes.

Thus, the subtree rooted by x contains at least $2(2^{bh(x)-1}-1) + 1 = 2^{bh(x)} - 1$ inner nodes.

17 / 33

Red-Black Trees

. . .

Red-Black Trees

B6. Red-Black Trees

Height of Red-Black Tree: Consequence

Theorem

A red-black tree with n inner nodes has height at most $2\log_2(n+1)$.

- The height of a red-black tree is in $O(\log_2 n)$.
- Red-black trees are binary search trees.
- On binary search trees, search(n, k), minimum(n), maximum(n), successor(n),predecessor(n) can run in time O(h) (cf. Ch. B5).
- We can use the same implementation for red-black trees, achieving running time O(log₂(n)) for all these queries.

Height of Red-Black Tree

Proof (continued).

We showed that that the subtree rooted at any node x contains at least $2^{bh(x)} - 1$ inner nodes.

Let *h* be the height of the tree. Since both children of a red node must be black, at least half of the nodes on any simple path from the root to a leaf (not including the root) must be black. Thus, the black-height of the root is at least h/2 and thus $n > 2^{h/2} - 1$.

Moving the 1 to the left-hand side and taking logarithms on both sides yields $\log_2(n+1) \ge h/2$, or $h \le 2\log_2(n+1)$.

B6. Red-Black Trees

Insertion (and Deletion)

18 / 33

B6.2 Insertion (and Deletion)

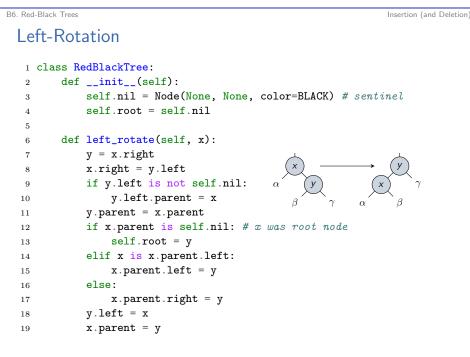
Modifying Red-Black Trees

We cannot simply use the insertion and deletion implementation from binary search trees (Why not?).

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Insert (and delete) a number of keys into the red-black tree. What do you observe?

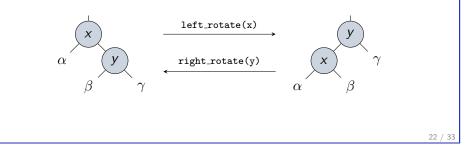
21 / 33



B6. Red-Black Trees

Rotation

- Inserting and deleting nodes as in binary search trees does not preserve the red-black property.
- Rotation is an operation that transforms the structure of the tree but preserves the binary-search-tree property.
- ► Two variants: left and right rotation.
- We use them to re-establish the red-black property during an insertion/deletion.



B6. Red-Bla	ack Trees	Insertion (and Deletion)
Inser	rtion	
1	<pre>def insert(self, key, value):</pre>	
2	current = self.root	
3	parent = <mark>self.nil</mark>	
4	while current is not self.nil:	
5	parent = current	
6	if current.key > key:	Up to this point
7	current = current.left	
8	else:	pretty much like
9	current = current.right	insert in binary
10	node = Node(key, value, <mark>color=RED</mark>)	search tree
11	node.parent = parent	search tree.
12	if parent is <mark>self.nil</mark> : # tree was empty	
13	<pre>self.root = node</pre>	
14	elif key < parent.key:	
15	parent.left = node	
16	else:	What red-black
17	parent.right = node	properties can be
18	<pre>node.left = self.nil # explicit leaf no</pre>	^{des} violated before the
19	<pre>node.right = self.nil</pre>	
20	<pre>self.fixup(node)</pre>	fixup?
		24 / 33

Insertion (and Deletion

Reminder: Red-Black Trees

Definition (Red-Black Tree)

A red-black tree is a binary search tree that satisfies the following red-black properties:

- Every node is either red or black.
- The root is black.
- Severy leaf (None node) is black.
- If a node is red, then both its children are black.
- For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

What could be violated before the fixup? Only 2 or 4!

Property 2 is easy to re-establish: Just color the root black. For property 4, distinguish three cases...

25 / 33

27 / 33

Insertion (and Deletion

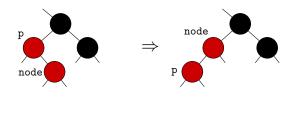
B6. Red-Black Trees

Fixup: Case 2

[Suppose node's parent is a left child.]

Case 2: The uncle of node is black and node is a right child.

- Perform a left-rotation on the parent.
- ▶ Now the red previous parent is the left child of the red node.
- ▶ This constellation corresponds to case 3 (with the previous parent in the role of the red child node) and is resolved the same way (next slide).



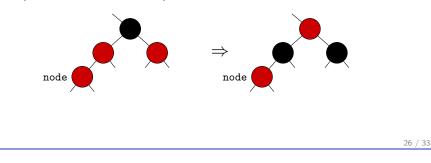
B6. Red-Black Trees

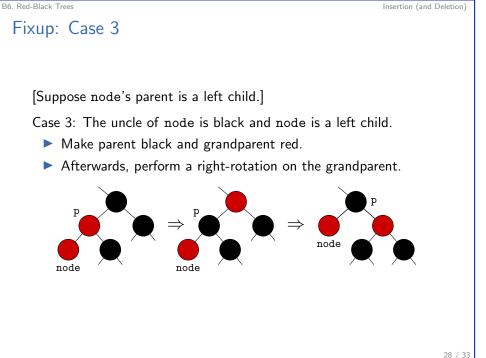
Fixup: Case 1

Potential problem: node and its parent are both red (the only violation of red-black property 4).

Case 1: The uncle (parent's sibling) of node is red.

- ▶ The grandparent of node cannot be red (by property 4).
- Idea: Make grandparent red and parent and uncle black.
- ► Afterwards: Need to fixup grandparent (its parent could be red).



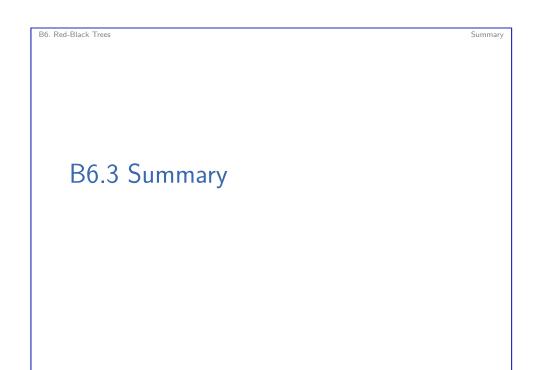


B6. Red-Bla	ck Trees Insertion (and Deletion)
Inse	rtion: Fixup
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	<pre>rtion: Fixup def fixup(self, node): while node.parent.color == RED: grandparent = node.parent.parent if node.parent is grandparent.left: uncle = grandparent.right if uncle.color == RED: node.parent.color = BLACK uncle.color == BLACK uncle.color = BLACK uncle.color = RED node = grandparent else: if node is node.parent.right: node = node.parent self.left_rotate(node) node.parent.color = RED node.parent.color = RED self.left_rotate(grandparent) } Case 3 self.right_rotate(grandparent)</pre>
18	else:
	# symmetric cases 1-3, where parent is Running time: $O(h)$
33	<pre># not the left child (cf. notebook). self.root.color = BLACK</pre>
	29 / 33

B6. Red-Black Trees
Deletion
Deleting a node from a red-black tree is more complicated than inserting a node.
We do not cover the details in this course.
Deletion from a tree with *n* nodes is possible in time O(log₂ n).

1	<pre>def insert(self, key, value):</pre>		
2	current = self.root		
3	parent = self.nil		
4	while current is not self.nil:	Running time:	
5	parent = current		
6	if current.key > key:		
7 8 9 10 11	current = current.left		
	else:	<i>O</i> (<i>h</i>)	
	current = current.right		
	node = Node(key, value, color=RED)	(<i>h</i> tree height)	
	node.parent = parent		
12	if parent is self.nil: # tree was empty		
13	<pre>self.root = node</pre>		
14	elif key < parent.key:		
15	parent.left = node		
16	else:		
17	parent.right = node		
18	<pre>node.left = self.nil # explicit leaf nodes</pre>		
19	<pre>node.right = self.nil</pre>		
20	<pre>self.fixup(node)</pre>		

B6. Red-Black Trees



Insertion (and Deletion)

B6. Red-Black Trees

Summary

33 / 33

Summary

- Red-black trees are a special kind of binary search trees that are approximately balanced.
- The height of a red-black tree with *n* nodes is $O(\log_2 n)$.
- Consequently, the query operations only take logarithmic time in the size of the tree.
- ► The same is true for insertion and deletion.