
Algorithms and Data Structures
B5. Binary Search Trees

Gabriele Röger and Patrick Schnider

University of Basel

April 10, 2025



Binary Search Trees Queries Insertion and Deletion Summary

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

hash table

binary search tree

red black treegraph
algorithms

concepts



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Trees



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Tree

Definition (Binary Search Tree)

A binary search tree T is a binary tree that satisfies the binary
search tree property: For every node x in T

all nodes y in the left subtree of x have a key smaller than x
(y .key ≤ x .key), and

all nodes y in the right subtree of x have a key larger than x
(y .key ≥ x .key).

5

4

1

7

7 9

1

4

7

5

7

9



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Trees: Operations

We will support the following operations:

search(n, k) given node n and key k, returns pointer to
element with key k in the tree rooted by n, or None if there is
no such element in the tree.

insert(n, k, v) adds a node with key k and value v to tree
rooted in node n.

delete(n) given a pointer n to a node in the tree, removes n.

minimum(n) and maximum(n) return the element with the
smallest and largest key, respectively, from the tree rooted in
node n.

successor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next larger element in the
tree, or None if n holds the maximum element.

predecessor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next smaller element in
the tree, or None if n holds the minimum element.



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Trees: Operations

We will support the following operations:

search(n, k) given node n and key k, returns pointer to
element with key k in the tree rooted by n, or None if there is
no such element in the tree.

insert(n, k, v) adds a node with key k and value v to tree
rooted in node n.

delete(n) given a pointer n to a node in the tree, removes n.

minimum(n) and maximum(n) return the element with the
smallest and largest key, respectively, from the tree rooted in
node n.

successor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next larger element in the
tree, or None if n holds the maximum element.

predecessor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next smaller element in
the tree, or None if n holds the minimum element.



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Trees: Operations

We will support the following operations:

search(n, k) given node n and key k, returns pointer to
element with key k in the tree rooted by n, or None if there is
no such element in the tree.

insert(n, k, v) adds a node with key k and value v to tree
rooted in node n.

delete(n) given a pointer n to a node in the tree, removes n.

minimum(n) and maximum(n) return the element with the
smallest and largest key, respectively, from the tree rooted in
node n.

successor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next larger element in the
tree, or None if n holds the maximum element.

predecessor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next smaller element in
the tree, or None if n holds the minimum element.



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Trees: Operations

We will support the following operations:

search(n, k) given node n and key k, returns pointer to
element with key k in the tree rooted by n, or None if there is
no such element in the tree.

insert(n, k, v) adds a node with key k and value v to tree
rooted in node n.

delete(n) given a pointer n to a node in the tree, removes n.

minimum(n) and maximum(n) return the element with the
smallest and largest key, respectively, from the tree rooted in
node n.

successor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next larger element in the
tree, or None if n holds the maximum element.

predecessor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next smaller element in
the tree, or None if n holds the minimum element.



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Trees: Operations

We will support the following operations:

search(n, k) given node n and key k, returns pointer to
element with key k in the tree rooted by n, or None if there is
no such element in the tree.

insert(n, k, v) adds a node with key k and value v to tree
rooted in node n.

delete(n) given a pointer n to a node in the tree, removes n.

minimum(n) and maximum(n) return the element with the
smallest and largest key, respectively, from the tree rooted in
node n.

successor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next larger element in the
tree, or None if n holds the maximum element.

predecessor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next smaller element in
the tree, or None if n holds the minimum element.



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Trees: Operations

We will support the following operations:

search(n, k) given node n and key k, returns pointer to
element with key k in the tree rooted by n, or None if there is
no such element in the tree.

insert(n, k, v) adds a node with key k and value v to tree
rooted in node n.

delete(n) given a pointer n to a node in the tree, removes n.

minimum(n) and maximum(n) return the element with the
smallest and largest key, respectively, from the tree rooted in
node n.

successor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next larger element in the
tree, or None if n holds the maximum element.

predecessor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next smaller element in
the tree, or None if n holds the minimum element.



Binary Search Trees Queries Insertion and Deletion Summary

Binary Search Tree: Representation

We use a class Node for the nodes of the tree:

1 class Node:

2 def __init__(self, key, value):

3 self.key = key

4 self.value = value

5 self.parent = None # will be set to parent node

6 self.left = None # will be set to left child node

7 self.right = None # will be set to right child node



Binary Search Trees Queries Insertion and Deletion Summary

Binary Tree: Inorder Tree Walk

An inorder tree walk prints the key of a root of a subtree between
the values of the left subtree and those in the right subtree:

1 def inorder_tree_walk(node):

2 if node is not None:

3 inorder_tree_walk(node.left)

4 print(node.key, end=" ")

5 inorder_tree_walk(node.right)

An inorder tree walk from the root of a binary search tree
prints all keys in sorted order.

Analogously:

preorder tree walk: root, then left subtree, then right subtree

postorder tree walk: left subtree, then right subtree, then root



Binary Search Trees Queries Insertion and Deletion Summary

Binary Tree: Inorder Tree Walk

An inorder tree walk prints the key of a root of a subtree between
the values of the left subtree and those in the right subtree:

1 def inorder_tree_walk(node):

2 if node is not None:

3 inorder_tree_walk(node.left)

4 print(node.key, end=" ")

5 inorder_tree_walk(node.right)

An inorder tree walk from the root of a binary search tree
prints all keys in sorted order.

Analogously:

preorder tree walk: root, then left subtree, then right subtree

postorder tree walk: left subtree, then right subtree, then root



Binary Search Trees Queries Insertion and Deletion Summary

Binary Tree: Inorder Tree Walk

An inorder tree walk prints the key of a root of a subtree between
the values of the left subtree and those in the right subtree:

1 def inorder_tree_walk(node):

2 if node is not None:

3 inorder_tree_walk(node.left)

4 print(node.key, end=" ")

5 inorder_tree_walk(node.right)

An inorder tree walk from the root of a binary search tree
prints all keys in sorted order.

Analogously:

preorder tree walk: root, then left subtree, then right subtree

postorder tree walk: left subtree, then right subtree, then root



Binary Search Trees Queries Insertion and Deletion Summary

Jupyter Notebook

Jupyter notebook: bst.ipynb



Binary Search Trees Queries Insertion and Deletion Summary

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

Every node gets printed → Ω(n).
Let d be an upper bound on the (constant) running time of
everything except for the recursive calls.
Let k < n be the number of nodes in the left subtree (and
thus n − k − 1 be the number of nodes in the right subtree).
We prove by induction that T (n) < 2dn + d .
Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d



Binary Search Trees Queries Insertion and Deletion Summary

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

Every node gets printed → Ω(n).
Let d be an upper bound on the (constant) running time of
everything except for the recursive calls.
Let k < n be the number of nodes in the left subtree (and
thus n − k − 1 be the number of nodes in the right subtree).
We prove by induction that T (n) < 2dn + d .
Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d



Binary Search Trees Queries Insertion and Deletion Summary

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

Every node gets printed → Ω(n).
Let d be an upper bound on the (constant) running time of
everything except for the recursive calls.
Let k < n be the number of nodes in the left subtree (and
thus n − k − 1 be the number of nodes in the right subtree).
We prove by induction that T (n) < 2dn + d .
Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d



Binary Search Trees Queries Insertion and Deletion Summary

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

Every node gets printed → Ω(n).
Let d be an upper bound on the (constant) running time of
everything except for the recursive calls.
Let k < n be the number of nodes in the left subtree (and
thus n − k − 1 be the number of nodes in the right subtree).
We prove by induction that T (n) < 2dn + d .
Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d



Binary Search Trees Queries Insertion and Deletion Summary

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

Every node gets printed → Ω(n).
Let d be an upper bound on the (constant) running time of
everything except for the recursive calls.
Let k < n be the number of nodes in the left subtree (and
thus n − k − 1 be the number of nodes in the right subtree).
We prove by induction that T (n) < 2dn + d .
Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d



Binary Search Trees Queries Insertion and Deletion Summary

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

Every node gets printed → Ω(n).
Let d be an upper bound on the (constant) running time of
everything except for the recursive calls.
Let k < n be the number of nodes in the left subtree (and
thus n − k − 1 be the number of nodes in the right subtree).
We prove by induction that T (n) < 2dn + d .
Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d



Binary Search Trees Queries Insertion and Deletion Summary

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

Every node gets printed → Ω(n).
Let d be an upper bound on the (constant) running time of
everything except for the recursive calls.
Let k < n be the number of nodes in the left subtree (and
thus n − k − 1 be the number of nodes in the right subtree).
We prove by induction that T (n) < 2dn + d .
Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d



Binary Search Trees Queries Insertion and Deletion Summary

Questions

Questions?



Binary Search Trees Queries Insertion and Deletion Summary

Queries



Binary Search Trees Queries Insertion and Deletion Summary

Search

Find an entry with the given key k or return None if there is no
such entry in the tree with the given root:

1 def search(root, k):

2 node = root

3 while node is not None:

4 if node.key == k:

5 return node

6 elif node.key > k:

7 node = node.left

8 else:

9 node = node.right

10 return None # no node with key k in tree

The nodes encountered during the search form a simple path
downward from the root, so the running time is in O(h), where
h is the height of the tree.



Binary Search Trees Queries Insertion and Deletion Summary

Search

Find an entry with the given key k or return None if there is no
such entry in the tree with the given root:

1 def search(root, k):

2 node = root

3 while node is not None:

4 if node.key == k:

5 return node

6 elif node.key > k:

7 node = node.left

8 else:

9 node = node.right

10 return None # no node with key k in tree

The nodes encountered during the search form a simple path
downward from the root, so the running time is in O(h), where
h is the height of the tree.



Binary Search Trees Queries Insertion and Deletion Summary

Search: Illustration

7

4

2

1 3

5

6

10

8 13

12

Search for k = 3 (red) and for k = 9 (green).



Binary Search Trees Queries Insertion and Deletion Summary

Minimum and Maximum

Find an entry with the smallest among all keys in the tree rooted
by node:

1 def minimum(node):

2 while node.left is not None:

3 node = node.left

4 return node

Running time?

Maximum: Find an entry with a largest key in the tree.
⇝ exercise in notebook



Binary Search Trees Queries Insertion and Deletion Summary

Minimum and Maximum

Find an entry with the smallest among all keys in the tree rooted
by node:

1 def minimum(node):

2 while node.left is not None:

3 node = node.left

4 return node

Running time: O(h) with h height of tree.

Maximum: Find an entry with a largest key in the tree.
⇝ exercise in notebook



Binary Search Trees Queries Insertion and Deletion Summary

Minimum and Maximum

Find an entry with the smallest among all keys in the tree rooted
by node:

1 def minimum(node):

2 while node.left is not None:

3 node = node.left

4 return node

Running time: O(h) with h height of tree.

Maximum: Find an entry with a largest key in the tree.
⇝ exercise in notebook



Binary Search Trees Queries Insertion and Deletion Summary

Successor

Given element x, return a pointer to the successor in an inorder
tree walk or None if x is the maximum node.

If keys are distinct, this is the next larger element in the tree
(otherwise?).

We can determine the successor without inspecting the keys.

1 def successor(node):

2 if node.right is not None:

3 # return left-most node in the right subtree

4 return minimum(node.right)

5 # otherwise, we must go upwards in the tree

6 parent = node.parent

7 while parent is not None and node == parent.right:

8 node = parent

9 parent = node.parent

10 return parent



Binary Search Trees Queries Insertion and Deletion Summary

Successor: Illustration and Running Time

7

4

2

1 3

5

6

10

8 13

12

Successor of node with k = 6 (red) and for k = 10 (green).

We either follow a simple path up the tree or down the tree.
→ Running time O(h)



Binary Search Trees Queries Insertion and Deletion Summary

Successor: Illustration and Running Time

7

4

2

1 3

5

6

10

8 13

12

Successor of node with k = 6 (red) and for k = 10 (green).

We either follow a simple path up the tree or down the tree.
→ Running time O(h)



Binary Search Trees Queries Insertion and Deletion Summary

Predecessor

Given element x, return a pointer to the predecessor in an inorder
tree walk or None if x is the minimum node.

Implementation is symmetric to successor.
Exercise in Jupyter notebook

The resulting running time is O(h).



Binary Search Trees Queries Insertion and Deletion Summary

Questions

Questions?



Binary Search Trees Queries Insertion and Deletion Summary

Insertion and Deletion



Binary Search Trees Queries Insertion and Deletion Summary

Insertion

Descend from root similar as in a search for the key (tracking
also the parent of the current node). → O(h)

Insert the new node at the identified position.→ O(h)

Overall running time O(h).

7

4

2

1 3

5

6

13

10

9

16

14

Insert k = 12



Binary Search Trees Queries Insertion and Deletion Summary

Insertion

Descend from root similar as in a search for the key (tracking
also the parent of the current node). → O(h)

Insert the new node at the identified position.→ O(h)

Overall running time O(h).

7

4

2

1 3

5

6

13

10

9 12

16

14

Insert k = 12



Binary Search Trees Queries Insertion and Deletion Summary

Insertion: Implementation

1 def insert(root, key, value):

2 current = root

3 parent = None

4 # search for the right position

5 while current is not None:

6 parent = current

7 if current.key > key:

8 current = current.left

9 else:

10 current = current.right

11 # insert node

12 node = Node(key, value)

13 node.parent = parent

14 if parent is None: # tree was empty

15 self.root = node

16 elif key < parent.key:

17 parent.left = node

18 else:

19 parent.right = node



Binary Search Trees Queries Insertion and Deletion Summary

Deletion

Deleting a node n is somewhat more complicated:

Conceptually, we distinguish three cases, that we treat
differently.

In the implementation, we organize the code a bit differently.



Binary Search Trees Queries Insertion and Deletion Summary

Deletion Conceptually: Case 1

If node n has no children, replace the child reference of the
parent with None.

p

n

⇒ p



Binary Search Trees Queries Insertion and Deletion Summary

Deletion Conceptually: Case 2

If node n has one child c , this child becomes the new child of
n’s parent node.

p

n

c

⇒ p

c



Binary Search Trees Queries Insertion and Deletion Summary

Deletion Conceptually: Case 3

If node n has two children, the successor s of n takes over n’s
position.

The rest of n’s original right subtree becomes the right
subtree of s.

The left subtree of n becomes the left subtree of s.

p

n

l r

s

R

⇒ p

s

l r

R
w/o s



Binary Search Trees Queries Insertion and Deletion Summary

Helper Function transplant

Replace subtree rooted at node u with subtree rooted at node v.

1 def transplant(u, v):

2 # Also works if v is None.

3 if u.parent is None:

4 T.root = v

5 # v is new root of tree (cf. notebook)

6 elif u == u.parent.left:

7 u.parent.left = v

8 else:

9 u.parent.right = v

10 if v is not None:

11 v.parent = u.parent

Running time?



Binary Search Trees Queries Insertion and Deletion Summary

Helper Function transplant

Replace subtree rooted at node u with subtree rooted at node v.

1 def transplant(u, v):

2 # Also works if v is None.

3 if u.parent is None:

4 T.root = v

5 # v is new root of tree (cf. notebook)

6 elif u == u.parent.left:

7 u.parent.left = v

8 else:

9 u.parent.right = v

10 if v is not None:

11 v.parent = u.parent

Running time: O(1)



Binary Search Trees Queries Insertion and Deletion Summary

Deletion: Implementation

1 def delete(node):

2 if node.left is None:

3 # Case 1 and case 2, where single child is right child.

4 transplant(node, node.right)

5 elif node.right is None:

6 # Case 2, where single child is right child.

7 transplant(node, node.left)

8 else: # Case 3

9 ... # next slide



Binary Search Trees Queries Insertion and Deletion Summary

Deletion: Implementation (Continued)

8 else: # Case 3

9 s = minimum(node.right)

10 if node.right != s:

11 # remove s from right subtree

12 # (replacing it by its right # child), and

13 # make this subtree the right child of s.

14 transplant(s, s.right)

15 s.right = node.right

16 node.right.parent = s

17 # s takes over place of node with

18 # left subtree of node as left subtree

19 transplant(node, s)

20 s.left = node.left

21 s.left.parent = s

Running time?



Binary Search Trees Queries Insertion and Deletion Summary

Deletion: Implementation (Continued)

8 else: # Case 3

9 s = minimum(node.right)

10 if node.right != s:

11 # remove s from right subtree

12 # (replacing it by its right # child), and

13 # make this subtree the right child of s.

14 transplant(s, s.right)

15 s.right = node.right

16 node.right.parent = s

17 # s takes over place of node with

18 # left subtree of node as left subtree

19 transplant(node, s)

20 s.left = node.left

21 s.left.parent = s

Running time: O(h) with h height of tree
(everything constant except for minimum).



Binary Search Trees Queries Insertion and Deletion Summary

Questions

Questions?



Binary Search Trees Queries Insertion and Deletion Summary

Summary



Binary Search Trees Queries Insertion and Deletion Summary

Summary

In a binary search tree the left subtree of every node n with
key k only contains keys at most as large as k and the right
subtree only keys at least as large as k .

The queries search, minimum, maximum, predecessor and
successor and the modifying operations insert and delete

have running time O(h), where h is the height of the tree.

Binary search trees can degenerate to chains of nodes, in
which case these operations take linear time in the number of
entries.


	Binary Search Trees
	

	Queries
	

	Insertion and Deletion
	

	Summary
	


