
Algorithms and Data Structures
B5. Binary Search Trees

Gabriele Röger and Patrick Schnider

University of Basel

April 10, 2025

1 / 29

Algorithms and Data Structures
April 10, 2025 — B5. Binary Search Trees

B5.1 Binary Search Trees

B5.2 Queries

B5.3 Insertion and Deletion

B5.4 Summary

2 / 29

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

hash table

binary search tree

red black treegraph
algorithms

concepts

3 / 29

B5. Binary Search Trees Binary Search Trees

B5.1 Binary Search Trees

4 / 29



B5. Binary Search Trees Binary Search Trees

Binary Search Tree

Definition (Binary Search Tree)

A binary search tree T is a binary tree that satisfies the binary
search tree property: For every node x in T

▶ all nodes y in the left subtree of x have a key smaller than x
(y .key ≤ x .key), and

▶ all nodes y in the right subtree of x have a key larger than x
(y .key ≥ x .key).

5

4

1

7

7 9

1

4

7

5

7

9

5 / 29

B5. Binary Search Trees Binary Search Trees

Binary Search Trees: Operations

We will support the following operations:

▶ search(n, k) given node n and key k, returns pointer to
element with key k in the tree rooted by n, or None if there is
no such element in the tree.

▶ insert(n, k, v) adds a node with key k and value v to tree
rooted in node n.

▶ delete(n) given a pointer n to a node in the tree, removes n.
▶ minimum(n) and maximum(n) return the element with the

smallest and largest key, respectively, from the tree rooted in
node n.

▶ successor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next larger element in the
tree, or None if n holds the maximum element.

▶ predecessor(n) given node n whose key is from a totally
ordered set, returns a pointer to the next smaller element in
the tree, or None if n holds the minimum element.

6 / 29

B5. Binary Search Trees Binary Search Trees

Binary Search Tree: Representation

We use a class Node for the nodes of the tree:

1 class Node:

2 def __init__(self, key, value):

3 self.key = key

4 self.value = value

5 self.parent = None # will be set to parent node

6 self.left = None # will be set to left child node

7 self.right = None # will be set to right child node

7 / 29

B5. Binary Search Trees Binary Search Trees

Binary Tree: Inorder Tree Walk

An inorder tree walk prints the key of a root of a subtree between
the values of the left subtree and those in the right subtree:

1 def inorder_tree_walk(node):

2 if node is not None:

3 inorder_tree_walk(node.left)

4 print(node.key, end=" ")

5 inorder_tree_walk(node.right)

An inorder tree walk from the root of a binary search tree
prints all keys in sorted order.

Analogously:

▶ preorder tree walk: root, then left subtree, then right subtree

▶ postorder tree walk: left subtree, then right subtree, then root

8 / 29



B5. Binary Search Trees Binary Search Trees

Jupyter Notebook

Jupyter notebook: bst.ipynb

9 / 29

B5. Binary Search Trees Binary Search Trees

Inorder Tree Walk: Running Time

Theorem
If the subtree rooted at node has n nodes then
inorder tree walk(node) has running time Θ(n).

▶ Every node gets printed → Ω(n).
▶ Let d be an upper bound on the (constant) running time of

everything except for the recursive calls.
▶ Let k < n be the number of nodes in the left subtree (and

thus n − k − 1 be the number of nodes in the right subtree).
▶ We prove by induction that T (n) < 2dn + d .
▶ Base case (n = 0, empty tree): T (0) ≤ d = 2d · 0 + d
▶ Ind. hypothesis: for all 0 ≤ m < n : T (m) < 2dm + d
▶ Ind. step: n − 1 → n

T (n) ≤ T (k) + T (n − k − 1) + d

≤ 2dk + d + 2d(n − k − 1) + d + d = 2dn + d

10 / 29

B5. Binary Search Trees Queries

B5.2 Queries

11 / 29

B5. Binary Search Trees Queries

Search

Find an entry with the given key k or return None if there is no
such entry in the tree with the given root:

1 def search(root, k):

2 node = root

3 while node is not None:

4 if node.key == k:

5 return node

6 elif node.key > k:

7 node = node.left

8 else:

9 node = node.right

10 return None # no node with key k in tree

The nodes encountered during the search form a simple path
downward from the root, so the running time is in O(h), where
h is the height of the tree.

12 / 29



B5. Binary Search Trees Queries

Search: Illustration

7

4

2

1 3

5

6

10

8 13

12

Search for k = 3 (red) and for k = 9 (green).

13 / 29

B5. Binary Search Trees Queries

Minimum and Maximum

Find an entry with the smallest among all keys in the tree rooted
by node:

1 def minimum(node):

2 while node.left is not None:

3 node = node.left

4 return node

Running time: O(h) with h height of tree.

Maximum: Find an entry with a largest key in the tree.
⇝ exercise in notebook

14 / 29

B5. Binary Search Trees Queries

Successor

Given element x, return a pointer to the successor in an inorder
tree walk or None if x is the maximum node.

If keys are distinct, this is the next larger element in the tree
(otherwise?).

We can determine the successor without inspecting the keys.

1 def successor(node):

2 if node.right is not None:

3 # return left-most node in the right subtree

4 return minimum(node.right)

5 # otherwise, we must go upwards in the tree

6 parent = node.parent

7 while parent is not None and node == parent.right:

8 node = parent

9 parent = node.parent

10 return parent

15 / 29

B5. Binary Search Trees Queries

Successor: Illustration and Running Time

7

4

2

1 3

5

6

10

8 13

12

Successor of node with k = 6 (red) and for k = 10 (green).

We either follow a simple path up the tree or down the tree.
→ Running time O(h)

16 / 29



B5. Binary Search Trees Queries

Predecessor

Given element x, return a pointer to the predecessor in an inorder
tree walk or None if x is the minimum node.

▶ Implementation is symmetric to successor.
Exercise in Jupyter notebook

▶ The resulting running time is O(h).

17 / 29

B5. Binary Search Trees Insertion and Deletion

B5.3 Insertion and Deletion

18 / 29

B5. Binary Search Trees Insertion and Deletion

Insertion

▶ Descend from root similar as in a search for the key (tracking
also the parent of the current node). → O(h)

▶ Insert the new node at the identified position.→ O(h)

▶ Overall running time O(h).

7

4

2

1 3

5

6

13

10

9

16

14

Insert k = 12

19 / 29

B5. Binary Search Trees Insertion and Deletion

Insertion: Implementation

1 def insert(root, key, value):

2 current = root

3 parent = None

4 # search for the right position

5 while current is not None:

6 parent = current

7 if current.key > key:

8 current = current.left

9 else:

10 current = current.right

11 # insert node

12 node = Node(key, value)

13 node.parent = parent

14 if parent is None: # tree was empty

15 self.root = node

16 elif key < parent.key:

17 parent.left = node

18 else:

19 parent.right = node

20 / 29



B5. Binary Search Trees Insertion and Deletion

Deletion

Deleting a node n is somewhat more complicated:

▶ Conceptually, we distinguish three cases, that we treat
differently.

▶ In the implementation, we organize the code a bit differently.

21 / 29

B5. Binary Search Trees Insertion and Deletion

Deletion Conceptually: Case 1

▶ If node n has no children, replace the child reference of the
parent with None.

p

n

⇒ p

22 / 29

B5. Binary Search Trees Insertion and Deletion

Deletion Conceptually: Case 2

▶ If node n has one child c , this child becomes the new child of
n’s parent node.

p

n

c

⇒ p

c

23 / 29

B5. Binary Search Trees Insertion and Deletion

Deletion Conceptually: Case 3

▶ If node n has two children, the successor s of n takes over n’s
position.

▶ The rest of n’s original right subtree becomes the right
subtree of s.

▶ The left subtree of n becomes the left subtree of s.

p

n

l r

s

R

⇒ p

s

l r

R
w/o s

24 / 29



B5. Binary Search Trees Insertion and Deletion

Helper Function transplant

Replace subtree rooted at node u with subtree rooted at node v.

1 def transplant(u, v):

2 # Also works if v is None.

3 if u.parent is None:

4 T.root = v

5 # v is new root of tree (cf. notebook)

6 elif u == u.parent.left:

7 u.parent.left = v

8 else:

9 u.parent.right = v

10 if v is not None:

11 v.parent = u.parent

Running time: O(1)

25 / 29

B5. Binary Search Trees Insertion and Deletion

Deletion: Implementation

1 def delete(node):

2 if node.left is None:

3 # Case 1 and case 2, where single child is right child.

4 transplant(node, node.right)

5 elif node.right is None:

6 # Case 2, where single child is right child.

7 transplant(node, node.left)

8 else: # Case 3

9 ... # next slide

26 / 29

B5. Binary Search Trees Insertion and Deletion

Deletion: Implementation (Continued)

8 else: # Case 3

9 s = minimum(node.right)

10 if node.right != s:

11 # remove s from right subtree

12 # (replacing it by its right # child), and

13 # make this subtree the right child of s.

14 transplant(s, s.right)

15 s.right = node.right

16 node.right.parent = s

17 # s takes over place of node with

18 # left subtree of node as left subtree

19 transplant(node, s)

20 s.left = node.left

21 s.left.parent = s

Running time: O(h) with h height of tree
(everything constant except for minimum).

27 / 29

B5. Binary Search Trees Summary

B5.4 Summary

28 / 29



B5. Binary Search Trees Summary

Summary

▶ In a binary search tree the left subtree of every node n with
key k only contains keys at most as large as k and the right
subtree only keys at least as large as k .

▶ The queries search, minimum, maximum, predecessor and
successor and the modifying operations insert and delete

have running time O(h), where h is the height of the tree.

▶ Binary search trees can degenerate to chains of nodes, in
which case these operations take linear time in the number of
entries.

29 / 29


	Binary Search Trees
	

	Queries
	

	Insertion and Deletion
	

	Summary
	


