Algorithms and Data Structures B5. Binary Search Trees

Gabriele Röger and Patrick Schnider

University of Basel

April 10, 2025

1 / 29

Algorithms and Data Structures

April 10, 2025 — B5. Binary Search Trees

B5.1 Binary Search Trees

B5.2 Queries

B5.3 Insertion and Deletion

B5.4 Summary

2 / 29

Content of the Course sorting complexity analysis fundamental data structures hash table binary search tree graph algorithms concepts

B5. Binary Search Trees

Binary Search Trees

B5.1 Binary Search Trees

Binary Search Trees

Binary Search Tree

Definition (Binary Search Tree)

A binary search tree T is a binary tree that satisfies the binary search tree property: For every node \times in T

- ▶ all nodes y in the left subtree of x have a key smaller than x $(y.key \le x.key)$, and
- ▶ all nodes y in the right subtree of x have a key larger than x $(y.key \ge x.key)$.

5 / 29

B5. Binary Search Trees

Binary Search Trees

Binary Search Tree: Representation

We use a class Node for the nodes of the tree.

```
class Node:

def __init__(self, key, value):

self.key = key

self.value = value

self.parent = None  # will be set to parent node

self.left = None  # will be set to left child node

self.right = None  # will be set to right child node
```

B5. Binary Search Trees Binary Search Trees

Binary Search Trees: Operations

We will support the following operations:

- ▶ search(n, k) given node n and key k, returns pointer to element with key k in the tree rooted by n, or None if there is no such element in the tree.
- ▶ insert(n, k, v) adds a node with key k and value v to tree rooted in node n.
- ▶ delete(n) given a pointer n to a node in the tree, removes n.
- minimum(n) and maximum(n) return the element with the smallest and largest key, respectively, from the tree rooted in node n.
- ► successor(n) given node n whose key is from a totally ordered set, returns a pointer to the next larger element in the tree, or None if n holds the maximum element.
- predecessor(n) given node n whose key is from a totally ordered set, returns a pointer to the next smaller element in the tree, or None if n holds the minimum element.

6 / 29

B5. Binary Search Trees

Binary Search Trees

Binary Tree: Inorder Tree Walk

An inorder tree walk prints the key of a root of a subtree between the values of the left subtree and those in the right subtree:

```
1 def inorder_tree_walk(node):
2     if node is not None:
3         inorder_tree_walk(node.left)
4         print(node.key, end=" ")
5         inorder_tree_walk(node.right)
```

An inorder tree walk from the root of a binary search tree prints all keys in sorted order.

Analogously:

- preorder tree walk: root, then left subtree, then right subtree
- postorder tree walk: left subtree, then right subtree, then root

Binary Search Trees

Jupyter Notebook

Jupyter notebook: bst.ipynb

9 / 29

11 / 29

B5. Binary Search Trees

B5.2 Queries

B5. Binary Search Trees

Binary Search Trees

Inorder Tree Walk: Running Time

Theorem

If the subtree rooted at node has n nodes then $inorder_tree_walk(node)$ has running time $\Theta(n)$.

- ▶ Every node gets printed $\rightarrow \Omega(n)$.
- Let *d* be an upper bound on the (constant) running time of everything except for the recursive calls.
- Let k < n be the number of nodes in the left subtree (and thus n k 1 be the number of nodes in the right subtree).
- ▶ We prove by induction that T(n) < 2dn + d.
- ▶ Base case (n = 0, empty tree): $T(0) \le d = 2d \cdot 0 + d$
- ▶ Ind. hypothesis: for all $0 \le m < n$: T(m) < 2dm + d
- ▶ Ind. step: $n-1 \rightarrow n$

$$T(n) \le T(k) + T(n-k-1) + d$$

 $\le 2dk + d + 2d(n-k-1) + d + d = 2dn + d$

10 / 29

B5. Binary Search Trees

Queries

Search

Find an entry with the given key k or return None if there is no such entry in the tree with the given root:

```
def search(root, k):
    node = root
    while node is not None:
        if node.key == k:
            return node
        elif node.key > k:
            node = node.left
        else:
            node = node.right
        return None # no node with key k in tree
```

The nodes encountered during the search form a simple path downward from the root, so the running time is in O(h), where h is the height of the tree.

B5. Binary Search Trees

Search: Illustration

Search for k = 3 (red) and for k = 9 (green).

13 / 29

B5. Binary Search Trees

Successor

Given element x, return a pointer to the successor in an inorder tree walk or None if x is the maximum node.

If keys are distinct, this is the next larger element in the tree (otherwise?).

We can determine the successor without inspecting the keys.

```
def successor(node):
    if node.right is not None:
        # return left-most node in the right subtree
        return minimum(node.right)
    # otherwise, we must go upwards in the tree
    parent = node.parent
    while parent is not None and node == parent.right:
        node = parent
        parent = node.parent
    return parent
```

B5. Binary Search Trees

Minimum and Maximum

Find an entry with the smallest among all keys in the tree rooted by node:

```
1 def minimum(node):
2    while node.left is not None:
3         node = node.left
4    return node
```

Running time: O(h) with h height of tree.

Maximum: Find an entry with a largest key in the tree.

→ exercise in notebook

14 / 29

B5. Binary Search Trees

Queries

Successor: Illustration and Running Time

Successor of node with k = 6 (red) and for k = 10 (green).

We either follow a simple path up the tree or down the tree. \rightarrow Running time O(h)

15 / 29

Predecessor

Given element x, return a pointer to the predecessor in an inorder tree walk or None if x is the minimum node.

- ▶ Implementation is symmetric to successor. Exercise in Jupyter notebook
- ▶ The resulting running time is O(h).

17 / 29

19 / 29

B5. Binary Search Trees

Insertion and Deletion

Insertion

- Descend from root similar as in a search for the key (tracking also the parent of the current node). $\rightarrow O(h)$
- ▶ Insert the new node at the identified position. \rightarrow O(h)
- \triangleright Overall running time O(h).

Insert k = 12

B5. Binary Search Trees

B5.3 Insertion and Deletion

18 / 29

Insertion and Deletion

B5. Binary Search Trees

```
Insertion: Implementation
 1 def insert(root, key, value):
       current = root
       parent = None
       # search for the right position
       while current is not None:
           parent = current
           if current.key > key:
               current = current.left
           else:
10
               current = current.right
       # insert node
11
       node = Node(key, value)
       node.parent = parent
13
       if parent is None: # tree was empty
14
           self.root = node
15
       elif key < parent.key:</pre>
16
17
           parent.left = node
18
           parent.right = node
                                                                       20 / 29
```

Insertion and Deletion

Deletion

Deleting a node n is somewhat more complicated:

- ► Conceptually, we distinguish three cases, that we treat differently.
- ▶ In the implementation, we organize the code a bit differently.

21 / 29

▶ If node *n* has no children, replace the child reference of the parent with None.

22 / 29

B5. Binary Search Trees

Insertion and Deletion

Deletion Conceptually: Case 2

If node n has one child c, this child becomes the new child of n's parent node.

B5. Binary Search Trees

B5. Binary Search Trees

Insertion and Deletion

Deletion Conceptually: Case 3

Deletion Conceptually: Case 1

- ▶ If node n has two children, the successor s of n takes over n's position.
- ► The rest of *n*'s original right subtree becomes the right subtree of *s*.
- ▶ The left subtree of n becomes the left subtree of s.

23 / 29

Insertion and Deletion

Helper Function transplant

Replace subtree rooted at node u with subtree rooted at node v.

```
1 def transplant(u, v):
       # Also works if v is None.
       if u.parent is None:
           T.root = v
4
           # v is new root of tree (cf. notebook)
5
       elif u == u.parent.left:
 6
           u.parent.left = v
7
       else:
8
           u.parent.right = v
9
       if v is not None:
10
           v.parent = u.parent
11
```

Running time: O(1)

25 / 29

27 / 29

```
B5. Binary Search Trees Insertion and Deleti
```

Deletion: Implementation (Continued)

```
else: # Case 3
               s = minimum(node.right)
9
               if node.right != s:
10
                   # remove s from right subtree
11
                   # (replacing it by its right # child), and
12
                   # make this subtree the right child of s.
13
                   transplant(s, s.right)
14
                   s.right = node.right
15
                   node.right.parent = s
16
               # s takes over place of node with
17
               # left subtree of node as left subtree
18
               transplant(node, s)
19
               s.left = node.left
20
               s.left.parent = s
```

Running time: O(h) with h height of tree (everything constant except for minimum).

```
B5. Binary Search Trees Insertion and Deletio
```

```
Deletion: Implementation
```

```
def delete(node):

if node.left is None:

# Case 1 and case 2, where single child is right child.

transplant(node, node.right)

elif node.right is None:

# Case 2, where single child is right child.

transplant(node, node.left)

else: # Case 3

... # next slide
```

26 / 29

B5. Binary Search Trees Summary

B5.4 Summary

B5. Binary Search Trees Summary

Summary

▶ In a binary search tree the left subtree of every node *n* with key *k* only contains keys at most as large as *k* and the right subtree only keys at least as large as *k*.

- ► The queries search, minimum, maximum, predecessor and successor and the modifying operations insert and delete have running time O(h), where h is the height of the tree.
- ▶ Binary search trees can degenerate to chains of nodes, in which case these operations take linear time in the number of entries.