
Algorithms and Data Structures
B4. Hash Tables
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B4. Hash Tables Introduction

Direct-address Table

▶ Assume you want to store elements that are associated with
keys from a fixed universe U = {0, 1, . . . , k}.

▶ For every key, you need to store at most one element.

▶ Idea: Use array T (= direct access table), storing at position i
a pointer to the element with key i .

▶ Inserting, removing and accessing the element for a key takes
constant time.

0 1 2 3 4 5 6 7 8

key: 3 [satellite data]

key: 6 [satellite data]

key: 8 [satellite data]

- - - - - -
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B4. Hash Tables Introduction

Disadvantages of Direct-address Table

▶ If the universe is large or infinite, storing a table of size |U|
may be impractical or impossible.

▶ If the number of stored entries is small compared to the size
of the universe, most space allocated for T would be wasted.
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B4. Hash Tables Introduction

Hash Table

▶ Use a smaller array T (= the hash table) of size m, and

▶ a hash function h : U → {0, . . . ,m− 1}, mapping the universe
of keys into the possible positions in T .
For example h(k) = k mod m

▶ We call h(k) the hash value of key k .
▶ Problem: possible collisions

▶ Different keys mapped to same hash value.
▶ Unavoidable if |U| > m.

▶ Need collision resolution strategy. We will cover two methods:

▶ Chaining
▶ Open Addressing
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B4. Hash Tables Chaining

B4.2 Chaining
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B4. Hash Tables Chaining
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B4. Hash Tables Chaining

Hashing with Chaining

Every non-empty hash-table position i points to a doubly linked list
(the chain) of all the keys whose hash value is i :

Universe U
(of keys)

used keys
k0

k1

k2

k3

k4

k5

k6

k7

k8 / k6 k0 k7 /

/ k4 k3 /

/ k1 /

h(k0) = h(k6) = h(k7) = 0
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B4. Hash Tables Chaining

Chaining: Implementation

▶ Search for an entry with key k
▶ Search for entry with key k in list T [h(k)].

▶ Remove entry with key k
▶ Search for and remove element with key k from list T [h(k)].

▶ Insert an entry e with key k
▶ Search for entry with key k in list T [h(k)].
▶ If found: update linked list node to hold e.
▶ If not found: prepend entry to list at T [h(k)].
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B4. Hash Tables Chaining

Chaining: Running Time I

▶ Assumption: Computing h(k) takes constant time.

▶ The running time of all operations is dominated by the
running time of the linked-list operations.

▶ All operations linear in the size of the involved linked list.

▶ Worst-case: All entries have the same hash value.
⇝ worst-case running time linear in the number of entries
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B4. Hash Tables Chaining

Independent Uniform Hashing

▶ “Ideal” hash function: for each key k , hash value h(k) is
randomly and independently chosen uniformly from the range
{0, . . . ,m − 1} (with m size of hash table).

▶ Subsequent calls of h(k) for the same key k give the same
output.

▶ Such a h is called a independent uniform hash function.

▶ Cannot reasonably be implemented in practise but useful for
theoretical analysis.
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B4. Hash Tables Chaining

Chaining: Running Time II

▶ Load factor α is defined as n/m, where
▶ m is the number of positions (slots) in the hash table, and
▶ n is the number of stored elements.

▶ α is the average number of entries in a chain.
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B4. Hash Tables Chaining

Chaining: Running Time III

Theorem
In a hash table in which collisions are resolved by chaining, a
search (successful or unsuccessful) takes Θ(1 + α) time on
average, under the assumption of independent uniform hashing.

Consequence

If the number of elements n is at most proportional to the number
of slots m (n ≤ cm for constant c > 0), then α ≤ cm/m ∈ O(1).
→ average running time of insertion, deletion and search is O(1).
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B4. Hash Tables Chaining

Adapting the Size of the Hash Table

▶ To maintain an upper bound on the load factor
(and thus constant average running times of operations),
we may need to increase the size of the table.

▶ The change from the previous size m to size m′ requires an
adaptation of the hash function.

▶ In contrast to a size change of an array (where we just move
every entry to the same index of the new memory range), we
need to rehash all elements and insert them anew.
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B4. Hash Tables Open Addressing

B4.3 Open Addressing
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B4. Hash Tables Open Addressing
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B4. Hash Tables Open Addressing

Open Addressing

▶ In contrast to chaining, with open addressing
the entries are stored in the hash table itself.

▶ Hash table cannot hold more entries than size m
(load factor cannot exceed 1).

▶ Size adaptation is analogous to chaining
(need to rehash and reinsert all entries).

▶ To find a slot to insert an element, probe the hash table
for the key until you find an empty slot:
▶ If first choice for key occupied, try the second choice,
▶ if second choice for key occupied, try the third choice,
▶ . . .

▶ To search for an element with key k , probe the table for the
key until you find a slot that holds an element with key k .
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B4. Hash Tables Open Addressing

Hash Functions for Open Addressing

▶ The hash function contains the probe number as a second
input:

h : U × {0, . . . ,m − 1} → {0, . . . ,m − 1}

▶ Probe sequence for key k:
⟨h(k , 0), h(k , 1), h(k, 2), . . . , h(k,m − 1)⟩.

▶ For every key, the probe sequence must be
a permutation of {0, . . . ,m − 1}:
every position in the hash table included exactly once.
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B4. Hash Tables Open Addressing

Open Addressing: Insertion and Search

Assumption: key(e) = e. Fix hash function h, hash table size m.

1 def hash_insert(T, k):

2 for i in range(m): # i = 0, 1, ..., m-1

3 pos = h(k, i)

4 if T[pos] is None: # position empty

5 T[pos] = k

6 return pos

7 raise Exception("hash table overflow")

1 def hash_search(T, k):

2 for i in range(m):

3 pos = h(k, i)

4 if T[pos] == k:

5 return pos

6 if T[pos] is None:

7 break

8 return None # does not contain k
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B4. Hash Tables Open Addressing

Open Addressing: Deletion?

▶ When deleting the element, we may not simply set the slot to
None (Why?).

▶ Can mark the slot as deleted.
▶ Insertion treats it like an empty slot.
▶ Search treats it as an occupied slot.

▶ Disadvantage: Search times no longer depend on load factor
but can take longer.

▶ If keys need to be deleted: consider chaining instead.

▶ Linear probing (a special case of open addressing)
avoids need for deleted (later today).
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B4. Hash Tables Open Addressing

Open Addressing: Running Time I

▶ Assumptions for running time analysis:
▶ α < 1 (at least one slot empty)
▶ no deletions
▶ independent uniform permutation hashing:

the probe sequence for a key is equally likely to be any
permutation of {0, . . . ,m − 1}.

▶ Unsuccessful search: every probe but the last accesses an
occupied slot (not containing the search key), last slot is
empty.

▶ Successful search: some probe in the probe sequence accesses
a slot with the searched key.
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B4. Hash Tables Open Addressing

Open Addressing: Running Time II

Theorem

For a open-address hash table with load factor α = n/m < 1, the
expected number of probes in an unsuccessful search is at most
1/(1− α), assuming independent uniform permutation hashing
and no deletions.

Intuition:

1/(1− α) = 1 + α+ α2 + α3 + . . .

First probe always occurs, with probability α the probed slot is
occupied, so a second probe occurs, . . .

Corollary

Under the same assumption as in the theorem, inserting an
element requires at most 1/(1− α) probes on average.
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B4. Hash Tables Open Addressing

Open Addressing: Running Time III

Theorem
For a open-address hash table with load factor α < 1, the expected
number of probes in a successful search is at most 1

α loge
1

1−α ,
assuming independent uniform permutation hashing with no
deletions and assuming that each key in the table is equally likely
to be searched for.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10 1/ loge (1/(1 ))
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B4. Hash Tables Open Addressing

Double Hashing

▶ Double hashing uses two auxiliary hash functions
h1 : U → {0, . . . ,m − 1} and h2 : U → {0, . . . ,m − 1}.

▶ Hash function h(k , i) = (h1(k) + i · h2(k)) mod m

▶ Initial probe position h1(k) and step size h2(k) depend on k .

▶ h2(k) must be relatively prime to m
(the only common divisor of h2(k) and m is 1).

For example:
▶ m power of 2 and h2(k) odd number, or
▶ m prime and h2(k) positive integer less than m.
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B4. Hash Tables Open Addressing

Double Hashing: Example

▶ m = 11, h1(k) = k mod 11, h2(k) = 1 + k mod 9
▶ Insert k = 57.

▶ 57 mod 11 = 2
▶ 57 mod 9 = 3

145 57 192 391 73 87
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B4. Hash Tables Open Addressing

Special Case: Linear Probing

Use hash function h1 : U → {0, . . . ,m − 1}
▶ Probe sequence:

⟨h1(k), h1(k) + 1, . . . , h1(m − 1), h1(0), h1(1), . . . , h1(k)− 1)⟩
▶ h(k , i) = (h1(k) + i) mod m

Why is this a special case of double hashing?
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B4. Hash Tables Open Addressing

Linear Probing: Deletion I

▶ Use function g(k, q) = (q − h1(k)) mod m.

▶ If h(k , i) = q then g(k , q) = i
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B4. Hash Tables Open Addressing

Linear Probing: Deletion II

1 def linear_probing_hash_delete(T, q): # delete entry at position q

2 T[q] = None

3 pos = q

4

5 # search for a key that would have been inserted at position q

6 # instead of its current position if q had been free.

7 while True:

8 pos = (pos + 1) % m # next slot in linear probing

9 if T[pos] is None:

10 # there is no key that would have been inserted at q.

11 return

12 key = T[pos] # this could be such a key

13 if g(key,q) < g(key,pos):

14 # indeed, this key should be moved to q.

15 break

16 # otherwise continue with next position

17

18 T[q] = key # move key into slot p

19 linear_probing_hash_delete(T, pos) # now pos needs to be emptied
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B4. Hash Tables Open Addressing

Linear Probing: (Dis-)Advantage

Disadvantage: Primary clustering

▶ An empty slot occurring after i full slots gets filled next with
probability (i + 1)/m.

▶ Linear probing has a tendency to build up long runs of
occupied slots (so-called clusters).

▶ Running time of search depends on size of clusters.

Advantage: Data locality

▶ Memory accessed by modern CPUs has a number of levels
(registers, cache, main memory, . . . ).

▶ For example, the cache always fetches entire cache blocks
from the main memory.

▶ Linear probing mostly “reuses” the same fetched block,
avoiding frequent (slow) access to the main memory.
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B4. Hash Tables Hash Functions

B4.4 Hash Functions
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B4. Hash Tables Hash Functions

Static Hashing: Division and Multiplication Method

For the moment, we consider keys that are non-negative integers
that fit in a machine word (32 or 64 bits).

Static hashing uses a single, fixed hash function.

Examples (m = hash table size):
▶ Division method: h(k) = k mod m

▶ Works well when m is a prime not too close to a power of 2.

▶ Multiplication method: pick some A with 0 < A < 1. Then

h(k) = ⌊m(kA− ⌊kA⌋)⌋.

▶ kA− ⌊kA⌋: fractional part of kA.
▶ Works best if m = 2ℓ for some integer ℓ that is smaller than

the number of bits in a machine word. ⇝ multiply-shift
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B4. Hash Tables Hash Functions

Static Hashing: Multiply-shift Method

r1 r2

a = A2w

k

×

w bits

ha(k)

extract ℓ bits

▶ m = 2ℓ for integer ℓ < w , where w is the number of bits in a
machine word.

▶ For 0 < A < 1, the result of k · A2w is an integer with ≤ 2w
bits (= 2 words).

▶ Use ℓ most significant bits of the low-order word of the
product as hash value.

▶ Fast but no formal guarantees.
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B4. Hash Tables Hash Functions

Random Hashing

▶ For every static hash function, an adversary can choose a
sequence of keys that are all hashed to the same slot.

▶ Random hashing chooses the hash function randomly and
independently of the keys that are going to be stored

▶ The special case of universal hashing guarantees good average
performance, independent of the sequence of keys.
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B4. Hash Tables Hash Functions

Random Hashing: Universal Hashing

▶ A family H of hash functions mapping universe U into slots
{0, . . . ,m − 1} is universal if for each pair of distinct keys
k, k ′ ∈ U there are at most |H|/m hash functions h ∈ H such
that h(k) = h(k ′).

▶ Universal hashing can be achieved in practise (e.g. using
multiply-shift).

▶ With universal hashing and chaining, any sequence of s
insert, delete and search operations takes Θ(s) expected
time, if it starts from an empty hash table with m slots and
includes at most O(m) insert operations
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B4. Hash Tables Hash Functions

Cryptographic Hashing

▶ Cryptographic hash functions are complex pseudorandom
functions, designed for applications requiring properties
beyond those needed here.

▶ Some CPUs contain specific instructions to support a fast
computation of some cryptographic functions.

▶ A cryptographic hash function takes as input an arbitrary byte
string and returns a fixed-length output.
▶ E.g. SHA-256 produces a 256-bit (32-byte) output for any

input.
▶ We can use h(k) = SHA-256(k) mod m, or
▶ create a family of such hash functions by prepending different

“salt” strings a to k .
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B4. Hash Tables Summary
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B4. Hash Tables Summary

Summary

▶ Hash functions map the keys of the universe to the m possible
slots of the hash table.

▶ Since there typically are more possible keys than slots,
collisions are unavoidable.

▶ We deal with them by chaining and open addressing
(e.g. using linear probing).

▶ Designing good hash functions is non-trivial and often uses a
random selection from a family of functions.

▶ With a good hash function and load factor management,
insertion and (successful) search is possible in constant
amortized time on average (logarithmic in the worst case).
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