
Algorithms and Data Structures
B3. Heaps, Priority Queues and Heapsort

Gabriele Röger and Patrick Schnider

University of Basel

April 3, 2025

Introduction Heap Heapsort Priority Queue Summary

Introduction

Introduction Heap Heapsort Priority Queue Summary

Our Plan for Today

Data structure heap

Algorithm heapsort that uses a heap.

Abstract data type priority queue,
that can be implemented with a heap.

Introduction Heap Heapsort Priority Queue Summary

Heap

Introduction Heap Heapsort Priority Queue Summary

Binary Trees

Binary tree: each node has at most two successor nodes.

We distinguish the left and the right child of a node.

A single child can be the left or the right child.

A nearly complete binary tree is completely filled on all levels
except possibly the lowest, which is filled from left to right.

Introduction Heap Heapsort Priority Queue Summary

Nearly Complete Binary Trees as Arrays

Consider 1-indexed arrays.

Every such array can be interpreted as a nearly complete
binary tree and vice versa.

Assign numbers 1, 2, . . . to nodes in tree from root to leaves
and left to right on each level.
The number is the index in the array.
The left child of node i gets 2i and the right child 2i + 1.

R

1

O2

H4

D8 A 9

C5

K 3

B 6 I 7

1 2 3 4 5 6 7 8 9

R O K H C B I D A

Introduction Heap Heapsort Priority Queue Summary

Helper Functions

def left(i):

return 2 * i

def right(i):

return 2 * i + 1

def parent(i):

return i // 2

Introduction Heap Heapsort Priority Queue Summary

Heap: Max-Heap

Definition: Max-Heap

A nearly complete binary tree is a max-heap if the key stored in
each node is greater or equal to the keys of each of its children.

R

O

H

D A

C

K

B I

The largest key in a max-heap is at the root.

Introduction Heap Heapsort Priority Queue Summary

Heap: Max-Heap

Definition: Max-Heap

A nearly complete binary tree is a max-heap if the key stored in
each node is greater or equal to the keys of each of its children.

R

O

H

D A

C

K

B I

The largest key in a max-heap is at the root.

Introduction Heap Heapsort Priority Queue Summary

Heap: Min-Heap

Definition: Min-Heap

A nearly complete binary tree is a min-heap if the key stored in
each node is smaller or equal to the keys of each of its children.

3

6

8

10 14

12

7

16 8

The smallest key in a min-heap is at the root.

We will focus on max-heaps. Min-heaps are implemented analogously.

Introduction Heap Heapsort Priority Queue Summary

Heap: Min-Heap

Definition: Min-Heap

A nearly complete binary tree is a min-heap if the key stored in
each node is smaller or equal to the keys of each of its children.

3

6

8

10 14

12

7

16 8

The smallest key in a min-heap is at the root.

We will focus on max-heaps. Min-heaps are implemented analogously.

Introduction Heap Heapsort Priority Queue Summary

Max-heaps: Operations

We will implement the following operations:

build max heap transforms an array into a max-heap.

max heap maximum returns the largest element.

max heap extract max removes and returns the largest
element.

max heap insert adds an item to the heap.

We will use two helper functions that fix local violations of the
heap property:

sink moves an element with a too small key downwards.

swim moves an element with a too large key upwards.

Introduction Heap Heapsort Priority Queue Summary

Helper Function: Sink

Sink assumes that the left and right subtree of node i are
max-heaps but the key at i might be smaller than the keys at
2i or 2i + 1 (root of left and right sub-tree), violating the
heap property.

Idea: Let the entry recursively “float down” into the subtree
with the larger key at its root.

In the book by Cormen et al. the function is called max heapify.

Introduction Heap Heapsort Priority Queue Summary

Sink: Example

R

Bi

H

D A

E

C

K

B I

R

H

Bi

D A

E

C

K

B I

R

H

D

Bi A

E

C

K

B I

Introduction Heap Heapsort Priority Queue Summary

Sink: Example

R

Bi

H

D A

E

C

K

B I

R

H

Bi

D A

E

C

K

B I

R

H

D

Bi A

E

C

K

B I

Introduction Heap Heapsort Priority Queue Summary

Sink: Example

R

Bi

H

D A

E

C

K

B I

R

H

Bi

D A

E

C

K

B I

R

H

D

Bi A

E

C

K

B I

Introduction Heap Heapsort Priority Queue Summary

Jupyter Notebook

Jupyter notebook: heaps.ipynb

Introduction Heap Heapsort Priority Queue Summary

Sink: Implementation

def sink(heap, i, heap_size=None):

if heap_size is None:

heap_size = len(heap) - 1

l = left(i)

r = right(i)

if l <= heap_size and heap[l] > heap[i]:

largest = l

else:

largest = i

if r <= heap_size and heap[r] > heap[largest]:

largest = r

if largest != i:

heap[i], heap[largest] = heap[largest], heap[i]

sink(heap, largest, heap_size)

Parameter heap size can be used to exclude some entries at the
end of the array from the heap (these positions will be ignored).

Introduction Heap Heapsort Priority Queue Summary

Sink: Running time

Simple insight:

Let h be the height of the subtree rooted at position i .

Then the worst-case running time of sink is O(h).

Full story:

Let n be the number of nodes of the subtree rooted at
position i .

Determining the final value of largest is Θ(1).

Each subtree has size at most 2n/3, so for the worst-case
running time T of sink, we have

T (n) ≤ T (2n/3) + Θ(1).

By master theorem (case 2), T (n) ∈ O(log2 n).

Introduction Heap Heapsort Priority Queue Summary

Sink: Running time

Simple insight:

Let h be the height of the subtree rooted at position i .

Then the worst-case running time of sink is O(h).

Full story:

Let n be the number of nodes of the subtree rooted at
position i .

Determining the final value of largest is Θ(1).

Each subtree has size at most 2n/3, so for the worst-case
running time T of sink, we have

T (n) ≤ T (2n/3) + Θ(1).

By master theorem (case 2), T (n) ∈ O(log2 n).

Introduction Heap Heapsort Priority Queue Summary

Helper Function Swim

Sink lets an entry with a too small key recursively “float
down” into the subtree (a heap) with the larger key at its root.

We now consider the counterpart swim: let an entry with a
too large key float up in a tree that is otherwise a heap.

Introduction Heap Heapsort Priority Queue Summary

Swim: Example

R

H

D

B Mi

E

C

K

B I

R

H

Mi

B D

E

C

K

B I

R

Mi

H

B D

E

C

K

B I

Introduction Heap Heapsort Priority Queue Summary

Swim: Example

R

H

D

B Mi

E

C

K

B I

R

H

Mi

B D

E

C

K

B I

R

Mi

H

B D

E

C

K

B I

Introduction Heap Heapsort Priority Queue Summary

Swim: Example

R

H

D

B Mi

E

C

K

B I

R

H

Mi

B D

E

C

K

B I

R

Mi

H

B D

E

C

K

B I

Introduction Heap Heapsort Priority Queue Summary

Swim: Implementation

def swim(heap, i):

parent_index = parent(i)

as long as i is not the root and the parent

of i has a smaller key than i

while i > 1 and heap[parent_index] < heap[i]:

swap the entries of nodes i and its parent

heap[parent_index], heap[i] = heap[i], heap[parent_index]

continue floating up the entry from the parent

i = parent_index

parent_index = parent(i)

Running time: O(log2 n)
(height of a nearly complete binary tree with n nodes is ⌊log2 n⌋)

Introduction Heap Heapsort Priority Queue Summary

Swim: Implementation

def swim(heap, i):

parent_index = parent(i)

as long as i is not the root and the parent

of i has a smaller key than i

while i > 1 and heap[parent_index] < heap[i]:

swap the entries of nodes i and its parent

heap[parent_index], heap[i] = heap[i], heap[parent_index]

continue floating up the entry from the parent

i = parent_index

parent_index = parent(i)

Running time: O(log2 n)
(height of a nearly complete binary tree with n nodes is ⌊log2 n⌋)

Introduction Heap Heapsort Priority Queue Summary

Build max heap

We can use sink to transform any array into a max-heap in a
bottom-up fashion, processing all nodes from the second-lowest
layer up to the root.

def build_max_heap(array):

heap_size = len(array) - 1

all elements from positions heap_size//2 + 1

to heap_size are leaves of the tree.

for i in range(heap_size//2, 0, -1):

sink(array, i, heap_size)

Introduction Heap Heapsort Priority Queue Summary

Running Time of build max heap

Heap with n elements has height ⌊log2 n⌋.
There are at most

⌈
n

2h+1

⌉
nodes rooting subtrees of height h.

The call of sink for each such node is O(h).
Use c for the constant hidden in the asymptotic notation.

T (n) ≤
⌊log2 n⌋∑
h=0

⌈ n

2h+1

⌉
ch

≤
⌊log2 n⌋∑
h=0

n

2h
ch = nc

⌊log2 n⌋∑
h=0

h

2h

≤ nc
∞∑
h=0

h

2h
≤ nc

1/2

(1− 1/2)2
∈ O(n)

(cf. Cormen et al., p. 169 for reasons for inequalities; you may ignore the math.)

We can create a heap in linear time in the number of entries.

Introduction Heap Heapsort Priority Queue Summary

Running Time of build max heap

Heap with n elements has height ⌊log2 n⌋.
There are at most

⌈
n

2h+1

⌉
nodes rooting subtrees of height h.

The call of sink for each such node is O(h).
Use c for the constant hidden in the asymptotic notation.

T (n) ≤
⌊log2 n⌋∑
h=0

⌈ n

2h+1

⌉
ch

≤
⌊log2 n⌋∑
h=0

n

2h
ch = nc

⌊log2 n⌋∑
h=0

h

2h

≤ nc
∞∑
h=0

h

2h
≤ nc

1/2

(1− 1/2)2
∈ O(n)

(cf. Cormen et al., p. 169 for reasons for inequalities; you may ignore the math.)

We can create a heap in linear time in the number of entries.

Introduction Heap Heapsort Priority Queue Summary

Running Time of build max heap

Heap with n elements has height ⌊log2 n⌋.
There are at most

⌈
n

2h+1

⌉
nodes rooting subtrees of height h.

The call of sink for each such node is O(h).
Use c for the constant hidden in the asymptotic notation.

T (n) ≤
⌊log2 n⌋∑
h=0

⌈ n

2h+1

⌉
ch

≤
⌊log2 n⌋∑
h=0

n

2h
ch = nc

⌊log2 n⌋∑
h=0

h

2h

≤ nc
∞∑
h=0

h

2h
≤ nc

1/2

(1− 1/2)2
∈ O(n)

(cf. Cormen et al., p. 169 for reasons for inequalities; you may ignore the math.)

We can create a heap in linear time in the number of entries.

Introduction Heap Heapsort Priority Queue Summary

Determining the Maximum Element

In a max-heap, it is trivial to determine the largest element:
it is the element at the root.

def max_heap_maximum(heap, heap_size):

if heap_size < 1:

raise Exception("empty heap")

else:

return heap[1]

Running time: Θ(1)

Introduction Heap Heapsort Priority Queue Summary

Determining the Maximum Element

In a max-heap, it is trivial to determine the largest element:
it is the element at the root.

def max_heap_maximum(heap, heap_size):

if heap_size < 1:

raise Exception("empty heap")

else:

return heap[1]

Running time: Θ(1)

Introduction Heap Heapsort Priority Queue Summary

Extracting the Maximum Element

If we remove the largest element, we fill the position with the
bottom-right element and restore the heap property with sink on
position 1.

def max_heap_extract_max(heap, heap_size):

maximum = max_heap_maximum(heap, heap_size)

heap[1] = heap[heap_size]

sink(heap, 1, heap_size)

return maximum

the externally handled heap_size

needs to be decremented

Running time: O(log2 n) (with n size of the heap)

Introduction Heap Heapsort Priority Queue Summary

Extracting the Maximum Element

If we remove the largest element, we fill the position with the
bottom-right element and restore the heap property with sink on
position 1.

def max_heap_extract_max(heap, heap_size):

maximum = max_heap_maximum(heap, heap_size)

heap[1] = heap[heap_size]

sink(heap, 1, heap_size)

return maximum

the externally handled heap_size

needs to be decremented

Running time: O(log2 n) (with n size of the heap)

Introduction Heap Heapsort Priority Queue Summary

Extracting the Maximum Element: Example

R

H

D

B A

E

C

K

B I

C

H

D

B A

E

K

B I

Let the element sink from the root to a suitable node:

K

H

D

B A

E

C

B I

K

H

D

B A

E

I

B C

Introduction Heap Heapsort Priority Queue Summary

Extracting the Maximum Element: Example

R

H

D

B A

E

C

K

B I

C

H

D

B A

E

K

B I

Let the element sink from the root to a suitable node:

K

H

D

B A

E

C

B I

K

H

D

B A

E

I

B C

Introduction Heap Heapsort Priority Queue Summary

Extracting the Maximum Element: Example

R

H

D

B A

E

C

K

B I

C

H

D

B A

E

K

B I

Let the element sink from the root to a suitable node:

K

H

D

B A

E

C

B I

K

H

D

B A

E

I

B C

Introduction Heap Heapsort Priority Queue Summary

Inserting an Element

We insert an element as a new leaf and
let it swim to restore the heap property:

def max_heap_insert(heap, item, heap_size):

if heap_size < len(heap) - 1:

we still have space in the array

heap[heap_size + 1] = item

else:

assert heap_size == len(heap) - 1

heap.append(item)

swim(heap, heap_size + 1)

Running time: O(log2 n) (with n size of the heap)
Only amortized if we are precise wrt. the append operation.

Introduction Heap Heapsort Priority Queue Summary

Inserting an Element

We insert an element as a new leaf and
let it swim to restore the heap property:

def max_heap_insert(heap, item, heap_size):

if heap_size < len(heap) - 1:

we still have space in the array

heap[heap_size + 1] = item

else:

assert heap_size == len(heap) - 1

heap.append(item)

swim(heap, heap_size + 1)

Running time: O(log2 n) (with n size of the heap)
Only amortized if we are precise wrt. the append operation.

Introduction Heap Heapsort Priority Queue Summary

Inserting an Element: Example

R

H

D

B A

E

C

K

B I

R

H

D

B A

E

C L

K

B I

Let the element swim from the leaf to a suitable node:

R

H

D

B A

L

C E

K

B I

R

L

D

B A

H

C E

K

B I

Introduction Heap Heapsort Priority Queue Summary

Inserting an Element: Example

R

H

D

B A

E

C

K

B I

R

H

D

B A

E

C L

K

B I

Let the element swim from the leaf to a suitable node:

R

H

D

B A

L

C E

K

B I

R

L

D

B A

H

C E

K

B I

Introduction Heap Heapsort Priority Queue Summary

Inserting an Element: Example

R

H

D

B A

E

C

K

B I

R

H

D

B A

E

C L

K

B I

Let the element swim from the leaf to a suitable node:

R

H

D

B A

L

C E

K

B I

R

L

D

B A

H

C E

K

B I

Introduction Heap Heapsort Priority Queue Summary

Heapsort

Introduction Heap Heapsort Priority Queue Summary

Heapsort

Basic idea as in selection sort but from right to left:
Successively swap the largest element to the end of the
non-sorted range.

We can represent the heap directly in the input sequence,
so that heapsort only needs constant additional memory.

Introduction Heap Heapsort Priority Queue Summary

Jupyter Notebook

Jupyter notebook: heaps.ipynb

Introduction Heap Heapsort Priority Queue Summary

Heapsort

assumes that array[0] is not part of the input sequence

def heapsort(array):

build_max_heap(array)

i ranges from last position down to position 1

for i in range(len(array) - 1, 0, -1):

swap largest element from heap to position i

array[i], array[1] = array[1], array[i]

restore heap_property for heap (in range 1,...,i-1)

sink(array, 1, i-1)

Building the heap takes linear time in n (length of array).

We have a linear number of iterations of the for loop,
each running in O(log2 n).

Overall running time O(n log2 n).

Introduction Heap Heapsort Priority Queue Summary

Heapsort

assumes that array[0] is not part of the input sequence

def heapsort(array):

build_max_heap(array)

i ranges from last position down to position 1

for i in range(len(array) - 1, 0, -1):

swap largest element from heap to position i

array[i], array[1] = array[1], array[i]

restore heap_property for heap (in range 1,...,i-1)

sink(array, 1, i-1)

Building the heap takes linear time in n (length of array).

We have a linear number of iterations of the for loop,
each running in O(log2 n).

Overall running time O(n log2 n).

Introduction Heap Heapsort Priority Queue Summary

Remarks

Heapsort is asymptotically optimal wrt. running time and
memory requirements:

Running time O(n log n).
Additional memory O(1) (in-place)

Practical disadvantage: Does not efficiently use the CPU
cache because of poor locality of reference (swapping
elements that do not have close storage locations)

As an in-place approach still relevant,
e.g. for embedded systems.

Introduction Heap Heapsort Priority Queue Summary

Priority Queue

Introduction Heap Heapsort Priority Queue Summary

ADT Priority Queue

A priority queue is an ADT for maintaining a collection of
elements, each with an associated key.

A max-priority queue supports the following operations:

insert(x, k) inserts element x with key k.

maximum() returns the element with the largest key.

extract max() returns and removes the element with the
largest key.

Min-priority queues analogously prioritize elements with small keys.

Introduction Heap Heapsort Priority Queue Summary

Priority Queues: Applications

Protocols for local area networks use them to ensure that
high-priority applications experience lower latency than other
applications.

Prim’s algorithm for minimum spanning trees and Dijkstra’s
algorithm for finding shortest paths in graphs use them for the
processing order of the nodes of the graph (Ch. C4/C6).

Huffman coding for lossless data compression uses them to
prioritize nodes with high probability.

Introduction Heap Heapsort Priority Queue Summary

Jupyter Notebook

We can implement a priority queue with a heap:

Jupyter notebook: heaps.ipynb

Introduction Heap Heapsort Priority Queue Summary

Summary

Introduction Heap Heapsort Priority Queue Summary

Summary

(Max-)Heaps support the following operations:

Build heap from array: O(n)
Return largest element: O(1)
Remove largest element: O(log n)
Insert element: O(log n)

Heapsort uses a heap to sort an array.

Can maintain the heap in the space of its input array.
In-place sorting algorithm.

A priority queue is an abstract data type.

Can insert items with a priority (= key).
Can obtain the item with the highest priority.
Implementation with heaps
(or AVL trees or Fibonacchi heaps; not covered in this course).

Introduction Heap Heapsort Priority Queue Summary

Summary

(Max-)Heaps support the following operations:

Build heap from array: O(n)
Return largest element: O(1)
Remove largest element: O(log n)
Insert element: O(log n)

Heapsort uses a heap to sort an array.

Can maintain the heap in the space of its input array.
In-place sorting algorithm.

A priority queue is an abstract data type.

Can insert items with a priority (= key).
Can obtain the item with the highest priority.
Implementation with heaps
(or AVL trees or Fibonacchi heaps; not covered in this course).

Introduction Heap Heapsort Priority Queue Summary

Summary

(Max-)Heaps support the following operations:

Build heap from array: O(n)
Return largest element: O(1)
Remove largest element: O(log n)
Insert element: O(log n)

Heapsort uses a heap to sort an array.

Can maintain the heap in the space of its input array.
In-place sorting algorithm.

A priority queue is an abstract data type.

Can insert items with a priority (= key).
Can obtain the item with the highest priority.
Implementation with heaps
(or AVL trees or Fibonacchi heaps; not covered in this course).

	Introduction
	

	Heap
	

	Heapsort
	

	Priority Queue
	

	Summary
	

