
Algorithms and Data Structures
B3. Heaps, Priority Queues and Heapsort

Gabriele Röger and Patrick Schnider

University of Basel

April 3, 2025

1 / 37

Algorithms and Data Structures
April 3, 2025 — B3. Heaps, Priority Queues and Heapsort

B3.1 Introduction

B3.2 Heap

B3.3 Heapsort

B3.4 Priority Queue

B3.5 Summary

2 / 37

B3. Heaps, Priority Queues and Heapsort Introduction

B3.1 Introduction

3 / 37

B3. Heaps, Priority Queues and Heapsort Introduction

Our Plan for Today

▶ Data structure heap

▶ Algorithm heapsort that uses a heap.

▶ Abstract data type priority queue,
that can be implemented with a heap.

4 / 37

B3. Heaps, Priority Queues and Heapsort Heap

B3.2 Heap

5 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Binary Trees

▶ Binary tree: each node has at most two successor nodes.

▶ We distinguish the left and the right child of a node.

▶ A single child can be the left or the right child.

▶ A nearly complete binary tree is completely filled on all levels
except possibly the lowest, which is filled from left to right.

6 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Nearly Complete Binary Trees as Arrays

▶ Consider 1-indexed arrays.
▶ Every such array can be interpreted as a nearly complete

binary tree and vice versa.
▶ Assign numbers 1, 2, . . . to nodes in tree from root to leaves

and left to right on each level.
▶ The number is the index in the array.
▶ The left child of node i gets 2i and the right child 2i + 1.

R

1

O2

H4

D8 A 9

C5

K 3

B 6 I 7

1 2 3 4 5 6 7 8 9

R O K H C B I D A

7 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Helper Functions

def left(i):

return 2 * i

def right(i):

return 2 * i + 1

def parent(i):

return i // 2

8 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Heap: Max-Heap

Definition: Max-Heap

A nearly complete binary tree is a max-heap if the key stored in
each node is greater or equal to the keys of each of its children.

R

O

H

D A

C

K

B I

The largest key in a max-heap is at the root.

9 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Heap: Min-Heap

Definition: Min-Heap

A nearly complete binary tree is a min-heap if the key stored in
each node is smaller or equal to the keys of each of its children.

3

6

8

10 14

12

7

16 8

The smallest key in a min-heap is at the root.

We will focus on max-heaps. Min-heaps are implemented analogously.

10 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Max-heaps: Operations

We will implement the following operations:

▶ build max heap transforms an array into a max-heap.

▶ max heap maximum returns the largest element.

▶ max heap extract max removes and returns the largest
element.

▶ max heap insert adds an item to the heap.

We will use two helper functions that fix local violations of the
heap property:

▶ sink moves an element with a too small key downwards.

▶ swim moves an element with a too large key upwards.

11 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Helper Function: Sink

▶ Sink assumes that the left and right subtree of node i are
max-heaps but the key at i might be smaller than the keys at
2i or 2i + 1 (root of left and right sub-tree), violating the
heap property.

▶ Idea: Let the entry recursively “float down” into the subtree
with the larger key at its root.

In the book by Cormen et al. the function is called max heapify.

12 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Sink: Example

R

Bi

H

D A

E

C

K

B I

R

H

Bi

D A

E

C

K

B I

R

H

D

Bi A

E

C

K

B I

13 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Jupyter Notebook

Jupyter notebook: heaps.ipynb

14 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Sink: Implementation

def sink(heap, i, heap_size=None):

if heap_size is None:

heap_size = len(heap) - 1

l = left(i)

r = right(i)

if l <= heap_size and heap[l] > heap[i]:

largest = l

else:

largest = i

if r <= heap_size and heap[r] > heap[largest]:

largest = r

if largest != i:

heap[i], heap[largest] = heap[largest], heap[i]

sink(heap, largest, heap_size)

Parameter heap size can be used to exclude some entries at the
end of the array from the heap (these positions will be ignored).

15 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Sink: Running time

Simple insight:

▶ Let h be the height of the subtree rooted at position i .

▶ Then the worst-case running time of sink is O(h).

Full story:

▶ Let n be the number of nodes of the subtree rooted at
position i .

▶ Determining the final value of largest is Θ(1).

▶ Each subtree has size at most 2n/3, so for the worst-case
running time T of sink, we have

T (n) ≤ T (2n/3) + Θ(1).

▶ By master theorem (case 2), T (n) ∈ O(log2 n).

16 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Helper Function Swim

▶ Sink lets an entry with a too small key recursively “float
down” into the subtree (a heap) with the larger key at its root.

▶ We now consider the counterpart swim: let an entry with a
too large key float up in a tree that is otherwise a heap.

17 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Swim: Example

R

H

D

B Mi

E

C

K

B I

R

H

Mi

B D

E

C

K

B I

R

Mi

H

B D

E

C

K

B I

18 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Swim: Implementation

def swim(heap, i):

parent_index = parent(i)

as long as i is not the root and the parent

of i has a smaller key than i

while i > 1 and heap[parent_index] < heap[i]:

swap the entries of nodes i and its parent

heap[parent_index], heap[i] = heap[i], heap[parent_index]

continue floating up the entry from the parent

i = parent_index

parent_index = parent(i)

Running time: O(log2 n)
(height of a nearly complete binary tree with n nodes is ⌊log2 n⌋)

19 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Build max heap

We can use sink to transform any array into a max-heap in a
bottom-up fashion, processing all nodes from the second-lowest
layer up to the root.

def build_max_heap(array):

heap_size = len(array) - 1

all elements from positions heap_size//2 + 1

to heap_size are leaves of the tree.

for i in range(heap_size//2, 0, -1):

sink(array, i, heap_size)

20 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Running Time of build max heap

▶ Heap with n elements has height ⌊log2 n⌋.
▶ There are at most

⌈
n

2h+1

⌉
nodes rooting subtrees of height h.

▶ The call of sink for each such node is O(h).
▶ Use c for the constant hidden in the asymptotic notation.

T (n) ≤
⌊log2 n⌋∑
h=0

⌈ n

2h+1

⌉
ch

≤
⌊log2 n⌋∑
h=0

n

2h
ch = nc

⌊log2 n⌋∑
h=0

h

2h

≤ nc
∞∑
h=0

h

2h
≤ nc

1/2

(1− 1/2)2
∈ O(n)

(cf. Cormen et al., p. 169 for reasons for inequalities; you may ignore the math.)

We can create a heap in linear time in the number of entries.

21 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Determining the Maximum Element

In a max-heap, it is trivial to determine the largest element:
it is the element at the root.

def max_heap_maximum(heap, heap_size):

if heap_size < 1:

raise Exception("empty heap")

else:

return heap[1]

Running time: Θ(1)

22 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Extracting the Maximum Element

If we remove the largest element, we fill the position with the
bottom-right element and restore the heap property with sink on
position 1.

def max_heap_extract_max(heap, heap_size):

maximum = max_heap_maximum(heap, heap_size)

heap[1] = heap[heap_size]

sink(heap, 1, heap_size)

return maximum

the externally handled heap_size

needs to be decremented

Running time: O(log2 n) (with n size of the heap)

23 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Extracting the Maximum Element: Example

R

H

D

B A

E

C

K

B I

C

H

D

B A

E

K

B I

Let the element sink from the root to a suitable node:

K

H

D

B A

E

C

B I

K

H

D

B A

E

I

B C

24 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Inserting an Element

We insert an element as a new leaf and
let it swim to restore the heap property:

def max_heap_insert(heap, item, heap_size):

if heap_size < len(heap) - 1:

we still have space in the array

heap[heap_size + 1] = item

else:

assert heap_size == len(heap) - 1

heap.append(item)

swim(heap, heap_size + 1)

Running time: O(log2 n) (with n size of the heap)
Only amortized if we are precise wrt. the append operation.

25 / 37

B3. Heaps, Priority Queues and Heapsort Heap

Inserting an Element: Example

R

H

D

B A

E

C

K

B I

R

H

D

B A

E

C L

K

B I

Let the element swim from the leaf to a suitable node:

R

H

D

B A

L

C E

K

B I

R

L

D

B A

H

C E

K

B I

26 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

B3.3 Heapsort

27 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Heapsort

▶ Basic idea as in selection sort but from right to left:
Successively swap the largest element to the end of the
non-sorted range.

▶ We can represent the heap directly in the input sequence,
so that heapsort only needs constant additional memory.

28 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Jupyter Notebook

Jupyter notebook: heaps.ipynb

29 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Heapsort

assumes that array[0] is not part of the input sequence

def heapsort(array):

build_max_heap(array)

i ranges from last position down to position 1

for i in range(len(array) - 1, 0, -1):

swap largest element from heap to position i

array[i], array[1] = array[1], array[i]

restore heap_property for heap (in range 1,...,i-1)

sink(array, 1, i-1)

▶ Building the heap takes linear time in n (length of array).

▶ We have a linear number of iterations of the for loop,
each running in O(log2 n).

▶ Overall running time O(n log2 n).

30 / 37

B3. Heaps, Priority Queues and Heapsort Heapsort

Remarks

▶ Heapsort is asymptotically optimal wrt. running time and
memory requirements:
▶ Running time O(n log n).
▶ Additional memory O(1) (in-place)

▶ Practical disadvantage: Does not efficiently use the CPU
cache because of poor locality of reference (swapping
elements that do not have close storage locations)

▶ As an in-place approach still relevant,
e.g. for embedded systems.

31 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

B3.4 Priority Queue

32 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

ADT Priority Queue

A priority queue is an ADT for maintaining a collection of
elements, each with an associated key.

A max-priority queue supports the following operations:

▶ insert(x, k) inserts element x with key k.

▶ maximum() returns the element with the largest key.

▶ extract max() returns and removes the element with the
largest key.

Min-priority queues analogously prioritize elements with small keys.

33 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

Priority Queues: Applications

▶ Protocols for local area networks use them to ensure that
high-priority applications experience lower latency than other
applications.

▶ Prim’s algorithm for minimum spanning trees and Dijkstra’s
algorithm for finding shortest paths in graphs use them for the
processing order of the nodes of the graph (Ch. C4/C6).

▶ Huffman coding for lossless data compression uses them to
prioritize nodes with high probability.

34 / 37

B3. Heaps, Priority Queues and Heapsort Priority Queue

Jupyter Notebook

We can implement a priority queue with a heap:

Jupyter notebook: heaps.ipynb

35 / 37

B3. Heaps, Priority Queues and Heapsort Summary

B3.5 Summary

36 / 37

B3. Heaps, Priority Queues and Heapsort Summary

Summary

▶ (Max-)Heaps support the following operations:
▶ Build heap from array: O(n)
▶ Return largest element: O(1)
▶ Remove largest element: O(log n)
▶ Insert element: O(log n)

▶ Heapsort uses a heap to sort an array.
▶ Can maintain the heap in the space of its input array.
▶ In-place sorting algorithm.

▶ A priority queue is an abstract data type.
▶ Can insert items with a priority (= key).
▶ Can obtain the item with the highest priority.
▶ Implementation with heaps

(or AVL trees or Fibonacchi heaps; not covered in this course).

37 / 37

	Introduction
	

	Heap
	

	Heapsort
	

	Priority Queue
	

	Summary
	

