
Algorithms and Data Structures
B2. Abstract Data Types: Stacks & Queues

Gabriele Röger and Patrick Schnider

University of Basel

March 27, 2025



Abstract Data Type Stack Queue Deque Summary

Abstract Data Type



Abstract Data Type Stack Queue Deque Summary

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts



Abstract Data Type Stack Queue Deque Summary

Abstract Data Type

Abstract Data Type

Description of a data type, summarizing the possible data and the
possible operations on this data.

User perspective: How can I use the data type?

In contrast to data structures, not specifying the concrete
representation of the data.



Abstract Data Type Stack Queue Deque Summary

Advantages of Abstract Data Types

User codes against an interface.

The underlying data structure (representation) is
hidden/encapsulated.

Representation can be replaced at any time.

Separating two aspects:
1 What is the data type doing (interface)?
2 How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible.



Abstract Data Type Stack Queue Deque Summary

Advantages of Abstract Data Types

User codes against an interface.

The underlying data structure (representation) is
hidden/encapsulated.

Representation can be replaced at any time.

Separating two aspects:
1 What is the data type doing (interface)?
2 How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible.



Abstract Data Type Stack Queue Deque Summary

Abstract Data Types and Classes

In object-oriented languages, abstract data types are often
implemented as interfaces.

For example, lists in Java:

interface List <E>:

E get(int index );

void add(E element );

void add(int pos , E element );

...



Abstract Data Type Stack Queue Deque Summary

Today: Stacks and Queues

Stack (of plates) Queue (of persons)



Abstract Data Type Stack Queue Deque Summary

Stack



Abstract Data Type Stack Queue Deque Summary

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts



Abstract Data Type Stack Queue Deque Summary

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

push: puts an item on top
of the stack

pop: removes the item at the
top of the stack

PopPush

Both operations should take constant time.



Abstract Data Type Stack Queue Deque Summary

Application: Call Stack

The call stack stores information when running subroutines of a
computer program.
→ where to resume once the subroutine has terminated



Abstract Data Type Stack Queue Deque Summary

Jupyter Notebook

Jupyter notebook: fundamental-adts.ipynb



Abstract Data Type Stack Queue Deque Summary

Stack: Possible Implementation with Doubly Linked Lists

class Stack:

def __init__(self):

self.list = DoublyLinkedList()

def push(self, item):

self.list.prepend(item)

def pop(self):

if self.list.is_empty():

raise Exception("popping from empty stack")

else:

return self.list.remove_first()



Abstract Data Type Stack Queue Deque Summary

Questions

Questions?



Abstract Data Type Stack Queue Deque Summary

Queue



Abstract Data Type Stack Queue Deque Summary

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts



Abstract Data Type Stack Queue Deque Summary

Queue

A queue is a data structure following the first-in-first-out (FIFO)
principle supporting the following operations:

enqueue: adds an item to the
tail of the queue

dequeue: removes the item at
the head of the queue

EnqueueDequeue

Both operations should take constant time.



Abstract Data Type Stack Queue Deque Summary

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start
node.

0

1

3

2

5

4

Starting from node 5, any of the
following visitation orders would be fine:

5 2 4 1 3 0

5 4 2 1 3 0

5 2 4 3 1 0

5 4 2 3 1 0

Implementation with queue in Jupyter notebook



Abstract Data Type Stack Queue Deque Summary

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start
node.

0

1

3

2

5

4

Starting from node 5, any of the
following visitation orders would be fine:

5 2 4 1 3 0

5 4 2 1 3 0

5 2 4 3 1 0

5 4 2 3 1 0

Implementation with queue in Jupyter notebook



Abstract Data Type Stack Queue Deque Summary

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start
node.

0

1

3

2

5

4

Starting from node 5, any of the
following visitation orders would be fine:

5 2 4 1 3 0

5 4 2 1 3 0

5 2 4 3 1 0

5 4 2 3 1 0

Implementation with queue in Jupyter notebook



Abstract Data Type Stack Queue Deque Summary

Jupyter Notebook

Jupyter notebook: fundamental-adts.ipynb



Abstract Data Type Stack Queue Deque Summary

Queue: Possible Implementation with Doubly Linked Lists

class Queue:

def __init__(self):

self.list = DoublyLinkedList()

def enqueue(self, item):

self.list.append(item)

def dequeue(self):

if self.list.is_empty():

raise Exception("dequeuing from empty queue")

else:

return self.list.remove_first()



Abstract Data Type Stack Queue Deque Summary

Questions

Questions?



Abstract Data Type Stack Queue Deque Summary

Deque



Abstract Data Type Stack Queue Deque Summary

Deques

A double-ended queue (deque) generalizes both, queues and stacks:

append: adds an item to the right side of the deque.

appendleft: adds an item to the left side of the deque.

pop: removes the item at the right end of the deque.

popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.

All operations should take constant time.

How would you implement a deque?



Abstract Data Type Stack Queue Deque Summary

Deques

A double-ended queue (deque) generalizes both, queues and stacks:

append: adds an item to the right side of the deque.

appendleft: adds an item to the left side of the deque.

pop: removes the item at the right end of the deque.

popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.

All operations should take constant time.

How would you implement a deque?



Abstract Data Type Stack Queue Deque Summary

Summary



Abstract Data Type Stack Queue Deque Summary

Summary

Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.

Queue: follows first-in-first-out (FIFO) principle.

Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.

→ Preferably code against an ADT/interface.



Abstract Data Type Stack Queue Deque Summary

Summary

Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.

Queue: follows first-in-first-out (FIFO) principle.

Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.

→ Preferably code against an ADT/interface.



Abstract Data Type Stack Queue Deque Summary

Summary

Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.

Queue: follows first-in-first-out (FIFO) principle.

Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.

→ Preferably code against an ADT/interface.



Abstract Data Type Stack Queue Deque Summary

Summary

Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.

Queue: follows first-in-first-out (FIFO) principle.

Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

Limitations help clarifying intended usage and
avoiding mistakes.

→ Preferably code against an ADT/interface.


	Abstract Data Type
	

	Stack
	

	Queue
	

	Deque
	

	Summary
	


