Algorithms and Data Structures
March 27, 2025 — B2. Abstract Data Types: Stacks & Queues

Algorithms and Data Structures B2.1 Abstract Data Type
B2. Abstract Data Types: Stacks & Queues
B2.2 Stack
Gabriele Roger and Patrick Schnider B2.3 Queue
University of Basel
B2.4 Deque

March 27, 2025
B2.5 Summary

1/24 2/ 24

B2. Abstract Data Types: Stacks & Queues Abstract Data Type B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Content of the Course

— sorting
B complexity = array
B2.1 Abstract Data Type analyss e
— inked lis

-- e |[L——
ueu

|| graph
algorithms map
= concepts] set

3 /24 4/ 24

B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Type

Abstract Data Type
Description of a data type, summarizing the possible data and the
possible operations on this data.

» User perspective: How can | use the data type?

> In contrast to data structures, not specifying the concrete
representation of the data.

B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Advantages of Abstract Data Types

» User codes against an interface.
» The underlying data structure (representation) is
hidden/encapsulated.
P Representation can be replaced at any time.
> Separating two aspects:

© What is the data type doing (interface)?
@ How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible.

B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Types and Classes

> In object-oriented languages, abstract data types are often
implemented as interfaces.

» For example, lists in Java:

interface List<E>:
E get(int index);
void add(E element);
void add(int pos, E element);

Jjava.util.List

java.util.ArrayList

java.util.LinkedList

6 /24
B2. Abstract Data Types: Stacks & Queues Abstract Data Type
Today: Stacks and Queues
Stack (of plates) Queue (of persons)
8 /24

B2. Abstract Data Types: Stacks & Queues Stack

Content of the Course

— sorting
B complexity = array
o i =
] linked list
] - — queue
— searching - priority
queue
B graph
algorithms N map
— set
— concepts

10 / 24

B2. Abstract Data Types: Stacks & Queues Stack
9/24
Stack

B2. Abstract Data Types: Stacks & Queues

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

[[
» push: puts an item on top Pus?y ﬂ;
of the stack

> pop: removes the item at the
top of the stack

i

Both operations should take constant time.

11 /24

B2. Abstract Data Types: Stacks & Queues Stack

Application: Call Stack

The call stack stores information when running subroutines of a

computer program.
— where to resume once the subroutine has terminated

merge_sort.py - Visual studio Code

5 > teaching > algorithmen-datenstrubturen-s2024 > sides > ad-b02-code >
merge(array, tap, lo, mid, hi)
10

ge(lo, hi+ 1)
i or (1 <= mid and array[i] <= arroy(j))
pik) = array(i)

et

else
pik] = array(j]
a1

j
for k in range(lo, hi + 1)
array[k) = taprk]

def sort(array):
1

en(array)
ay, tmp, ©, len(array) - 1)

array, tap, lo, hi)
1o

[“return
Bid= 1o+ (hi - 1o) 1/ 2
(arzay. tap, Lo, mid)
“ux(armay, T, md + 1, i)
S(arzay, tp, 1o, nid, hi)

6 array = [8,3,0,4,8,2]
7 sort(arzay)
print (array)

12 / 24

B2. Abstract Data Types: Stacks & Queues Stack

Jupyter Notebook

).

Jupyter
o

Jupyter notebook: fundamental-adts.ipynb

B2. Abstract Data Types: Stacks & Queues Stack

Stack: Possible Implementation with Doubly Linked Lists

class Stack:
def __init__(self):
self.list = DoublyLinkedList ()

def push(self, item):
self.list.prepend(item)

def pop(self):
if self.list.is_empty():
raise Exception("popping from empty stack")
else:
return self.list.remove_first()

14 / 24

13 / 24
B2. Abstract Data Types: Stacks & Queues Queue
15 / 24

B2. Abstract Data Types: Stacks & Queues Queue

Content of the Course

— sorting

complexity = array
analysis

1 linked list M e

s ., |
ueu

L graph
algorithms map
= concepts] set

16 / 24

B2. Abstract Data Types: Stacks & Queues

Queue

A queue is a data structure following the first-in-first-out (FIFO)
principle supporting the following operations:

» enqueue: adds an item to the
tail of the queue

K\Dequeue Enqueue)

(O [e e

» dequeue: removes the item at
the head of the queue

Both operations should take constant time.

Queue

17 / 24

B2. Abstract Data Types: Stacks & Queues Queue

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start
node.

o s

Implementation with queue in Jupyter notebook

Starting from node 5, any of the
following visitation orders would be fine:

> 524130
> 542130
> 524310
> 542310

18 / 24

B2. Abstract Data Types: Stacks & Queues

Jupyter Notebook

)
o
Jupyter
) —

Jupyter notebook: fundamental-adts.ipynb

Queue

19 / 24

B2. Abstract Data Types: Stacks & Queues Queue

Queue: Possible Implementation with Doubly Linked Lists

class Queue:
def __init__(self):
self.list = DoublyLinkedList()

def enqueue(self, item):
self.list.append(item)

def dequeue(self):
if self.list.is_empty():
raise Exception("dequeuing from empty queue")
else:
return self.list.remove_first()

20 / 24

B2. Abstract Data Types: Stacks & Queues Deque

Deques

A double-ended queue (deque) generalizes both, queues and stacks:
P append: adds an item to the right side of the deque.
» appendleft: adds an item to the left side of the deque.
> pop: removes the item at the right end of the deque.
> popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.
All operations should take constant time.

How would you implement a deque?

B2. Abstract Data Types: Stacks & Queues Deque
21 / 24
B2. Abstract Data Types: Stacks & Queues Summary

B2.5 Summary

23 / 24

22 / 24
B2. Abstract Data Types: Stacks & Queues Summary
Summary
» Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.
» Stack: follows last-in-first-out (LIFO) principle.
» Queue: follows first-in-first-out (FIFO) principle.
» Deque: generalizes stack and queue.
» All: in principle just lists with limited functionality.
> Limitations help clarifying intended usage and
avoiding mistakes.
— Preferably code against an ADT /interface.
24 / 24

	Abstract Data Type
	

	Stack
	

	Queue
	

	Deque
	

	Summary
	

