Algorithms and Data Structures
B2. Abstract Data Types: Stacks & Queues

Gabriele Roger and Patrick Schnider

University of Basel

March 27, 2025



Algorithms and Data Structures
March 27, 2025 — B2. Abstract Data Types: Stacks & Queues

B2.1 Abstract Data Type
B2.2 Stack
B2.3 Queue
B2.4 Deque

B2.5 Summary

2 /24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

B2.1 Abstract Data Type

3 /24



B2. Abstract Data Types: Stacks & Queues

Content of the Course

[

Abstract Data Type

sorting
complexity - array
analysis
. . - tack
— linked list Stac
queue
graph
algorithms map
set
concepts

4 /24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Type

Abstract Data Type
Description of a data type, summarizing the possible data and the
possible operations on this data.

» User perspective: How can | use the data type?

> In contrast to data structures, not specifying the concrete
representation of the data.



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Advantages of Abstract Data Types

» User codes against an interface.
» The underlying data structure (representation) is
hidden/encapsulated.
» Representation can be replaced at any time.
> Separating two aspects:

@ What is the data type doing (interface)?
@ How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible.



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Types and Classes

» In object-oriented languages, abstract data types are often
implemented as interfaces.

» For example, lists in Java:

interface List<E>:
E get(int index);
void add(E element);

‘ void add(int pos, E element);
java.util.LinkedList

java.util.ArrayList




B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Today: Stacks and Queues

< ——

Stack (of plates) Queue (of persons)

8 /24



B2. Abstract Data Types: Stacks & Queues Stack

B2.2 Stack

9 /24



B2. Abstract Data Types: Stacks & Queues

Content of the Course

sorting

complexity - array

e 4 e
linked list

[

[

queue
queue
graph
algorithms ] map
— set
concepts

Stack

10 / 24



B2. Abstract Data Types: Stacks & Queues

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

[ [
» push: puts an item on top Pus?y Pop
of the stack [

P> pop: removes the item at the
top of the stack

A

Both operations should take constant time.

Stack

11

/ 24



Stack

B2. Abstract Data Types: Stacks & Queues

Application: Call Stack

The call stack stores information when running subroutines of a

computer program.
— where to resume once the subroutine has terminated

merge_sort.py - Visual Studio Code

Flle EdIt Selection View Go Run Terminal Help
RuNAND DEBLC b?¥1TO0

¢-602.code > % meroe_sortpy > © sort_aux

 vARIBLES

& | or kin range(lo, hi + 1)

- 5 if § > hi or (i <= mid and array(i] <= array(j]):

8. 0,0, 0l 6 toplk] = array[i]
, 1
s else
Y wplk) = arzay(})
10 e
1 for Kk in range(lo, hi + 1)
2 array[k] = topik]
5

A 1 def sort(array)

15 twp= (o] * len(array)
16 | sort_sux(arsay, tap, ©, len(array) - 1)

def sort_aux(array, tmp, lo, hi)
o

~ watc Teturn
mid = 1o + (hi - 10) /7 2
22 sort_aux(array, tmp, lo, mid)
23 sort_aux(array, tmp, mid + 1, hi)
2 nerge(array, trp, lo, mid, hi)
25
2 array = [8,3,0,4,8,2]
sort(array)
print (array)
Sort_aux merge_sortpy %1
sort_aux n
sort
<nodules merge.

12/

24



B2. Abstract Data Types: Stacks & Queues Stack

Jupyter Notebook

L
_
Jupyter
o

Jupyter notebook: fundamental-adts.ipynb

13 / 24



B2. Abstract Data Types: Stacks & Queues Stack

Stack: Possible Implementation with Doubly Linked Lists

class Stack:
def __init__(self):
self.list = DoublyLinkedList ()

def push(self, item):
self.list.prepend(item)

def pop(self):
if self.list.is_empty():
raise Exception("popping from empty stack")
else:
return self.list.remove_first()

14 / 24



B2. Abstract Data Types: Stacks & Queues Queue

B2.3 Queue

15 / 24



B2. Abstract Data Types: Stacks & Queues

Content of the Course

sorting

complexity - array
analysis

- stack

linked list

[

[

ueu

graph
algorithms ] map
concepts ] set

Queue

16 / 24



B2. Abstract Data Types: Stacks & Queues

Queue

A queue is a data structure following the first-in-first-out (FIFO)
principle supporting the following operations:

P> enqueue: adds an item to the
. [ |
tail of the queue
) Dequeue Enqueue
» dequeue: removes the item at K
the head of the queue N I .

Both operations should take constant time.

Queue

17 / 24



B2. Abstract Data Types: Stacks & Queues

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start

node. :
Starting from node 5, any of the

following visitation orders would be fine:

m‘@"‘@’@ > 524130
> 542130
9‘@ > 524310

> 542310

Implementation with queue in Jupyter notebook

Queue

18



B2. Abstract Data Types: Stacks & Queues Queue

Jupyter Notebook

L
_
Jupyter
o

Jupyter notebook: fundamental-adts.ipynb

19 / 24



B2. Abstract Data Types: Stacks & Queues Queue

Queue: Possible Implementation with Doubly Linked Lists

class Queue:
def __init__(self):

self.list = DoublyLinkedList ()

def enqueue(self, item):
self.list.append(item)

def dequeue(self):
if self.list.is_empty():
raise Exception("dequeuing from empty queue")
else:
return self.list.remove_first()

20 / 24



B2. Abstract Data Types: Stacks & Queues Deque

B2.4 Deque

21 /24



B2. Abstract Data Types: Stacks & Queues Deque

Deques

A double-ended queue (deque) generalizes both, queues and stacks:
» append: adds an item to the right side of the deque.
» appendleft: adds an item to the left side of the deque.
» pop: removes the item at the right end of the deque.
» popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.
All operations should take constant time.

How would you implement a deque?

22



B2. Abstract Data Types: Stacks & Queues Summary

B2.5 Summary

23 /24



B2. Abstract Data Types: Stacks & Queues Summary

Summary

v

Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

Stack: follows last-in-first-out (LIFO) principle.
Queue: follows first-in-first-out (FIFO) principle.
Deque: generalizes stack and queue.

All: in principle just lists with limited functionality.

vVvYyyvyy

Limitations help clarifying intended usage and
avoiding mistakes.

— Preferably code against an ADT /interface.

24 /24



	Abstract Data Type
	

	Stack
	

	Queue
	

	Deque
	

	Summary
	


