
Algorithms and Data Structures
B2. Abstract Data Types: Stacks & Queues

Gabriele Röger and Patrick Schnider

University of Basel

March 27, 2025

1 / 24



Algorithms and Data Structures
March 27, 2025 — B2. Abstract Data Types: Stacks & Queues

B2.1 Abstract Data Type

B2.2 Stack

B2.3 Queue

B2.4 Deque

B2.5 Summary

2 / 24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

B2.1 Abstract Data Type

3 / 24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts

4 / 24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Type

Abstract Data Type

Description of a data type, summarizing the possible data and the
possible operations on this data.

▶ User perspective: How can I use the data type?

▶ In contrast to data structures, not specifying the concrete
representation of the data.

5 / 24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Advantages of Abstract Data Types

▶ User codes against an interface.
▶ The underlying data structure (representation) is

hidden/encapsulated.
▶ Representation can be replaced at any time.

▶ Separating two aspects:
1 What is the data type doing (interface)?
2 How is this achieved (internal structure)?

We can abstract away the dirty details and stay more flexible.

6 / 24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Abstract Data Types and Classes

▶ In object-oriented languages, abstract data types are often
implemented as interfaces.

▶ For example, lists in Java:

interface List <E>:

E get(int index );

void add(E element );

void add(int pos , E element );

...

7 / 24



B2. Abstract Data Types: Stacks & Queues Abstract Data Type

Today: Stacks and Queues

Stack (of plates) Queue (of persons)

8 / 24



B2. Abstract Data Types: Stacks & Queues Stack

B2.2 Stack

9 / 24



B2. Abstract Data Types: Stacks & Queues Stack

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts

10 / 24



B2. Abstract Data Types: Stacks & Queues Stack

Stack

A stack is a data structure following the last-in-first-out (LIFO)
principle supporting the following operations:

▶ push: puts an item on top
of the stack

▶ pop: removes the item at the
top of the stack

PopPush

Both operations should take constant time.

11 / 24



B2. Abstract Data Types: Stacks & Queues Stack

Application: Call Stack

The call stack stores information when running subroutines of a
computer program.
→ where to resume once the subroutine has terminated

12 / 24



B2. Abstract Data Types: Stacks & Queues Stack

Jupyter Notebook

Jupyter notebook: fundamental-adts.ipynb

13 / 24



B2. Abstract Data Types: Stacks & Queues Stack

Stack: Possible Implementation with Doubly Linked Lists

class Stack:

def __init__(self):

self.list = DoublyLinkedList()

def push(self, item):

self.list.prepend(item)

def pop(self):

if self.list.is_empty():

raise Exception("popping from empty stack")

else:

return self.list.remove_first()

14 / 24



B2. Abstract Data Types: Stacks & Queues Queue

B2.3 Queue

15 / 24



B2. Abstract Data Types: Stacks & Queues Queue

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

stack

queue

priority
queue

map

set

searching

graph
algorithms

concepts

16 / 24



B2. Abstract Data Types: Stacks & Queues Queue

Queue

A queue is a data structure following the first-in-first-out (FIFO)
principle supporting the following operations:

▶ enqueue: adds an item to the
tail of the queue

▶ dequeue: removes the item at
the head of the queue

EnqueueDequeue

Both operations should take constant time.

17 / 24



B2. Abstract Data Types: Stacks & Queues Queue

Application: Breadth-first Exploration

Queues are always helpful if we need to store elements and process
them in the same order.

With a breadth-first exploration, we want to visit all reachable
nodes in a graph in the order of their distance from a given start
node.

0

1

3

2

5

4

Starting from node 5, any of the
following visitation orders would be fine:

▶ 5 2 4 1 3 0

▶ 5 4 2 1 3 0

▶ 5 2 4 3 1 0

▶ 5 4 2 3 1 0

Implementation with queue in Jupyter notebook

18 / 24



B2. Abstract Data Types: Stacks & Queues Queue

Jupyter Notebook

Jupyter notebook: fundamental-adts.ipynb

19 / 24



B2. Abstract Data Types: Stacks & Queues Queue

Queue: Possible Implementation with Doubly Linked Lists

class Queue:

def __init__(self):

self.list = DoublyLinkedList()

def enqueue(self, item):

self.list.append(item)

def dequeue(self):

if self.list.is_empty():

raise Exception("dequeuing from empty queue")

else:

return self.list.remove_first()

20 / 24



B2. Abstract Data Types: Stacks & Queues Deque

B2.4 Deque

21 / 24



B2. Abstract Data Types: Stacks & Queues Deque

Deques

A double-ended queue (deque) generalizes both, queues and stacks:

▶ append: adds an item to the right side of the deque.

▶ appendleft: adds an item to the left side of the deque.

▶ pop: removes the item at the right end of the deque.

▶ popleft: removes the item at the left end of the deque.

Operation names can differ between programming languages.

All operations should take constant time.

How would you implement a deque?

22 / 24



B2. Abstract Data Types: Stacks & Queues Summary

B2.5 Summary

23 / 24



B2. Abstract Data Types: Stacks & Queues Summary

Summary

▶ Abstract data types (ADTs) specify the behavior of a data
type, not the internal representation.

▶ Stack: follows last-in-first-out (LIFO) principle.

▶ Queue: follows first-in-first-out (FIFO) principle.

▶ Deque: generalizes stack and queue.

▶ All: in principle just lists with limited functionality.

▶ Limitations help clarifying intended usage and
avoiding mistakes.

→ Preferably code against an ADT/interface.

24 / 24


	Abstract Data Type
	

	Stack
	

	Queue
	

	Deque
	

	Summary
	


