
Algorithms and Data Structures
B1. Arrays and Linked Lists

Gabriele Röger and Patrick Schnider

University of Basel

March 26, 2025

1 / 39

Algorithms and Data Structures
March 26, 2025 — B1. Arrays and Linked Lists

B1.1 Data Structures

B1.2 Arrays

B1.3 Linked Lists

B1.4 Summary

2 / 39

B1. Arrays and Linked Lists Data Structures

B1.1 Data Structures

3 / 39

B1. Arrays and Linked Lists Data Structures

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

4 / 39



B1. Arrays and Linked Lists Data Structures

Data Structures

▶ Programming goes beyond
writing algorithms.
▶ Organisation of data is

central.

▶ Elegant data structures lead
to elegant code.

▶ Programmers. . .
▶ need a catalogue of data

structures, and
▶ need to know their

characteristics.

5 / 39

B1. Arrays and Linked Lists Data Structures

Overview

problems
 

sort data
search data

analyze structure
compress data

algorithms

divide & conquer
greedy

randomization

data structures

lists
trees

graphs

properties

runtime complexity memory complexity
correctness optimality

solutions and applications

abstraction

6 / 39

B1. Arrays and Linked Lists Data Structures

Data Structures

Bad programmers worry about the code. Good programmers worry
about data structures and their relationships.

Linus Torwalds

7 / 39

B1. Arrays and Linked Lists Data Structures

Data Structures

Show me your algorithm and conceal your data structures,
and I shall continue to be mystified.

Show me your data structures, and I won’t usually need your
algorithm; it will be obvious.

Fred Brooks (paraphrased)

8 / 39



B1. Arrays and Linked Lists Arrays

B1.2 Arrays

9 / 39

B1. Arrays and Linked Lists Arrays

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

searching

graph
algorithms

concepts

10 / 39

B1. Arrays and Linked Lists Arrays

Data Structure: Array

▶ Arrays are one of the fundamental data structures, that can
be found in (almost) every programming language.

▶ An array stores a sequence of elements (of the same memory
size) as a contiguous sequence of bytes in memory.

▶ The number of elements is fixed.

▶ We can access elements by their index.

In Java:

byte[] myByteArray = new byte[100];

char[] myCharArray = new char[50];

11 / 39

B1. Arrays and Linked Lists Arrays

Example: char Array

▶ One char occupies 1 byte.

▶ The first element is at memory address 2000
(7D0 in hexadecimal).

▶ The first element has index 0.

▶ Then the element with index i is at address 2000 + i.

0 1 2 3 4 5 6 7 8 9 10

h e l l o w o r l d

Index

Memory
address
(hex)

2000

0x7D0

2001

0x7D1

2002

0x7D2

2003

0x7D3

2004

0x7D4

2005

0x7D5

2006

0x7D6

2007

0x7D7

2008

0x7D8

2009

0x7D9

2010

0x7DA

12 / 39



B1. Arrays and Linked Lists Arrays

Array: Position of i -th Element Easy to Compute

In general:

▶ First position typically indexed with 0 or 1.
In the following, s for the index of the first element.

▶ Suppose the array starts at memory address a and each array
element occupies b bytes.

▶ Then the element with index i occupies bytes a+ b(i − s) to
a+ b(i − s + 1)− 1.

With 32-bit integers (4 byte)

42 23

Index

Memory
address
(hex)

2000

0x7D0

2001

0x7D1

2002

0x7D2

2003

0x7D3

2004

0x7D4

2005

0x7D5

2006

0x7D6

2007

0x7D7

0 1

13 / 39

B1. Arrays and Linked Lists Arrays

Operations and their Running Time?

▶ Size of entry is constant for a specific array type
(such as an int array).

▶ After allocating the memory, the array stores
▶ the size of the array (number of elements) and
▶ the address of the start of the allocated memory.

▶ What is the running time of the following operations
(relative to the size n of the array)?
▶ get(i) – return element at position i ⇝ Θ(1)
▶ set(i, x) – write object x to position i ⇝ Θ(1)
▶ length() – return length of the array ⇝ Θ(1)
▶ find(x) – return index of element x or None if not included.
⇝ iterates over the array and stops if element found.
⇝ Best case Θ(1), Avg. and worst case Θ(n)

▶ What is the memory complexity?

Observation
Complexity is direct consequence of data representation.

14 / 39

B1. Arrays and Linked Lists Arrays

Lists in Python

▶ Python lists can contain arbitrarily mixed objects.
e.g. ["word", 42, ([39, "hi"])]
▶ Elements “live” somewhere else in memory.
▶ The memory range of the array only stores their address.

▶ Python lists do not have a fixed size.
e.g. ["word", 42, ([39, "hi"])].append(3)

→ dynamic array

15 / 39

B1. Arrays and Linked Lists Arrays

Dynamic Arrays

(Static) arrays have fixed capacity that must be specified at
allocation.

▶ Need arrays that can grow dynamically.

▶ Runtime complexity of previous operations should be
preserved.

Additional operations:

▶ append(x) (or push) – append element x at the end.

▶ insert(i, x) – insert element x at position i.

▶ pop() - remove the last element.

▶ remove(i) - remove the element at position i.

16 / 39



B1. Arrays and Linked Lists Arrays

Changing the Array Size: Naive Method

▶ append and insert increase the size of the array.

▶ pop and remove decrease the size.
▶ Naive method:

▶ Allocate new memory range that is one element larger/smaller.
▶ Move all (but the potentially removed) element over.

With this approach, these operations would take linear time
in the current size of the array!

17 / 39

B1. Arrays and Linked Lists Arrays

Better Approach: Overallocate Memory

▶ Allocate more memory than needed for the current array size.
▶ Distinguish

▶ capacity = number of elements that fit in the allocated space.
▶ size = number of currently contained elements.

18 / 39

B1. Arrays and Linked Lists Arrays

Better Approach: Append/Insert

Append
▶ If capacity > size:

▶ Write the new element to position size and increment size.

▶ Otherwise (capacity = size):
▶ Allocate new memory that is larger than necessary

(e.g. twice the previous capacity).
▶ Copy all elements to the new memory (release the old one).
▶ Update the capacity and continue as in case capacity > size.

Insert at pos i : Analogously but move all elements at positions i to
size-1 one position to the right before writing the new element to i .

19 / 39

B1. Arrays and Linked Lists Arrays

Better Approach: Pop/Remove

▶ If capacity much too large (e.g. capacity > 4 · size),
move all elements into new smaller memory range
(e.g. with half the previous capacity)

▶ Pop: remove element at position size - 1 and decrement size.

▶ Remove: remove element at position i and move all elements
right of i one position to the left, decrement size.

20 / 39



B1. Arrays and Linked Lists Arrays

Amortized Analysis

▶ Worst-case analysis often pessimistic: append takes linear
time if new memory allocated but in a sequence of append
operations, this will happen rarely.

▶ Amortized analysis determines the average cost of an
operation over an entire sequence of operations.

▶ Don’t confuse this with an average-case analysis.
▶ Different methods

▶ Aggregate analysis
▶ Accounting method ← now
▶ Potential method

21 / 39

B1. Arrays and Linked Lists Arrays

Accounting Method

▶ Assign charges to operations.

▶ Some operations charged more or less than they actually cost.

▶ If charged more: save difference as credit

▶ If charged less: use up some credit to pay for the difference.

▶ Credit must be non-negative all the time.

▶ Then the total amortized cost is always an upper bound on
the actual total costs so far.

22 / 39

B1. Arrays and Linked Lists Arrays

Accounting Method: Append I

▶ Append without resize: constant cost (e.g. 1).
Just insert the element at the right position.

▶ Append with resize: linear cost (1 for every element).
▶ If the append element gets position 2i (i ∈ N>0),
▶ we first allocate overall space for 2i+1 elements, and
▶ move all 2i − 1 existing elements to the new space.

▶ Starting from an empty array executing a sequence of append
operations, we observe cost sequence
1, 1, 3, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1 . . .

23 / 39

B1. Arrays and Linked Lists Arrays

Accounting Method: Append II

Charge cost 3 for every append operation.

size (after append) capacity charge cost credit
1 2 3 1 2
2 2 3 1 4
3 4 3 3 4
4 4 3 1 6
5 8 3 5 4
6 8 3 1 6
7 8 3 1 8
8 8 3 1 10
9 16 3 9 4
10 16 3 1 6

Charging 3 per operation covers all “running time costs”.
→ Append has constant amortized running time.

24 / 39



B1. Arrays and Linked Lists Arrays

Worst-Case Running Time Array

Operation Array

Access element by position O(1)
Prepend/remove first element O(n)
Append O(1) (amortized)
Remove last element O(1) (amortized)
Insert, remove from the middle O(n)
Traverse all elements O(n)

25 / 39

B1. Arrays and Linked Lists Linked Lists

B1.3 Linked Lists

26 / 39

B1. Arrays and Linked Lists Linked Lists

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

array

linked list

heap

abstract data
types

searching

graph
algorithms

concepts

27 / 39

B1. Arrays and Linked Lists Linked Lists

Motivation

▶ Arrays need a large continuous block of memory.

▶ Inserting elements at arbitrary positions is expensive.

Alternative that allows us to distribute the elements in memory?

28 / 39



B1. Arrays and Linked Lists Linked Lists

Question?

▶ How can we order elements that are distributed in memory?

Practise

makes

perfect

first

ne
xt

next

last

prev

pr
ev

29 / 39

B1. Arrays and Linked Lists Linked Lists

(Doubly) Linked Lists

▶ Every node stores its entry as well as a reference/pointer next
to its successor and a reference/pointer prev to its
predecessor.

▶ Need special value for next of the last element and prev of
the first element (e.g. None).

▶ The list maintains a pointer to the first and the last node.

Item 1
next
prev

Item 2
next
prev

Item 3
next
prev

lastfirst

None

30 / 39

B1. Arrays and Linked Lists Linked Lists

Jupyter Notebook

Jupyter notebook: doubly linked lists.ipynb

31 / 39

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: Implementation

1 class Node:

2 def __init__(self, item, next=None, prev=None):

3 self.item = item

4 self.next = next

5 self.prev = prev

6

7 class DoublyLinkedList:

8 def __init__(self):

9 self.first = None

10 self.last = None

11

12 def is_empty(self):

13 return self.first is None

14

15 # other methods on next slides

32 / 39



B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: prepend

15 def prepend(self, item):

16 if self.is_empty():

17 self.first = Node(item)

18 self.last = self.first

19 else:

20 node = Node(item, self.first, None)

21 self.first.prev = node

22 self.first = node

Item 1
next
prev

Item 2
next
prev

Item 3
next
prev

lastfirst

None

Item 4
next
prev

33 / 39

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: append

24 def append(self, item):

25 if self.is_empty():

26 self.first = Node(item)

27 self.last = self.first

28 else:

29 node = Node(item, None, self.last)

30 self.last.next = node

31 self.last = node

Item 1
next
prev

Item 2
next
prev

Item 3
next
prev

lastfirst

None

Item 4
next
prev

34 / 39

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: remove first

33 def remove_first(self):

34 if self.is_empty():

35 raise Exception("removing from empty list")

36 item = self.first.item

37 self.first = self.first.next

38 if self.first is not None:

39 self.first.prev = None

40 else:

41 self.last = None

42 return item

Item 1
next
prev

Item 2
next
prev

lastfirst

None

Item A
next
prev

lastfirst

None

35 / 39

B1. Arrays and Linked Lists Linked Lists

Doubly Linked Lists: remove last

Removing the last element is analogous to removing the first one:

44 def remove_last(self):

45 if self.is_empty():

46 raise Exception("removing from empty list")

47 item = self.last.item

48 self.last = self.last.prev

49 if self.last is not None:

50 self.last.next = None

51 else:

52 self.first = None

53 return item

36 / 39



B1. Arrays and Linked Lists Linked Lists

Worst-Case Running Time Array / Doubly Linked List

Operation Array Doubly Linked List
Prepend/remove first element O(n) O(1)
Append O(1) (amort.) O(1)
Remove last element O(1) (amort.) O(1)
Insert, remove in the middle O(n) O(n)/O(1)∗

Traverse all elements O(n) O(n)
Find an element O(n) O(n)
Access element by position O(1) –

Additional memory O(1) O(n)
* constant, if node at the position is parameter

Take-home Message

Different data structures have different trade-offs.

37 / 39

B1. Arrays and Linked Lists Summary

B1.4 Summary

38 / 39

B1. Arrays and Linked Lists Summary

Summary

▶ An amortized analysis determines the average cost of an
operation over an entire sequence of operations.

▶ Arrays and linked lists store sequences of items.
▶ Arrays store items in a continuous space and can efficiently

access an item by index.
▶ (Doubly) linked lists store items in nodes with references to

the next and to the previous node.

39 / 39


	Data Structures
	

	Arrays
	

	Linked Lists
	

	Summary
	


