
Algorithms and Data Structures
A14. Sorting: Counting Sort & Radix Sort

Gabriele Röger and Patrick Schnider

University of Basel

March 20, 2025

1 / 18

Algorithms and Data Structures
March 20, 2025 — A14. Sorting: Counting Sort & Radix Sort

A14.1 Counting Sort

A14.2 Radix Sort

A14.3 Summary

2 / 18

A14. Sorting: Counting Sort & Radix Sort Counting Sort

A14.1 Counting Sort

3 / 18

A14. Sorting: Counting Sort & Radix Sort Counting Sort

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

counting sort

radix sort
overview and

outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

4 / 18

A14. Sorting: Counting Sort & Radix Sort Counting Sort

Counting Sort: Idea

“Sort by counting”

▶ Assumption: Keys are from the range 0, . . . , k − 1.

▶ Iterate once over the input array and determine the number
#i of elements for each key i .

▶ From these counts we can determine the positions that the
elements for each key should occupy in the sorted output.
▶ elements with key 0 fill positions 0 to #0− 1.
▶ elements with key 1 fill positions #0 to #0 +#1− 1.
▶ elements with key 2 fill positions #0 +#1 to

#0 +#1 +#2− 1.
▶ . . .
▶ elements with key i fill positions

∑i−1
j=0 #j to(∑i−1

j=0 #j
)
+#i − 1.

▶ (Backwards) iterate over the input array and copy the entries
to the corresponding positions in the output array.

5 / 18

A14. Sorting: Counting Sort & Radix Sort Counting Sort

Counting Sort: Algorithm

1 def sort(array, k):

2 counts = [0] * (k + 1) # list of k + 1 zeros

3 result = [0] * len(array) # list of same size as array

4

5 for elem in array:

6 counts[elem] += 1

7 # counts[j] contains number of occurrences of j

8

9 for i in range(1, k+1): # i = 1,2, ... , k

10 counts[i] += counts[i-1]

11 # counts[j] now contains number of occurrences of elements <= j

12

13 # copy elements from array to result, starting from the end

14 for elem in reversed(array):

15 result[counts[elem]-1] = elem

16 counts[elem] -= 1

17

18 return result

6 / 18

A14. Sorting: Counting Sort & Radix Sort Counting Sort

Jupyter Notebook

Jupyter notebook: counting sort.ipynb

7 / 18

A14. Sorting: Counting Sort & Radix Sort Counting Sort

Counting Sort: Properties

▶ Counting sort is not adaptive.

▶ Running time: Θ(n + k) (n size of input sequence)
→ For fixed k or k ∈ O(n) linear.

▶ Memory: Θ(n + k) (not in-place)

▶ Counting sort is stable. Why?

8 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

A14.2 Radix Sort

9 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

counting sort

radix sort
overview and

outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

10 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

Radix Sort: Idea

▶ Assumption: Keys are decimal numbers
z.B. 763, 983, 96, 286, 462

▶ Separate items by the least significant (= last) digit:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

▶ Collect items from left to right/top to bottom:
462, 763, 983, 96, 286

▶ Separate items by the second last digit and collect them.

▶ Separate items by the third last digit and collect them.

▶ . . . until you considered all positions of digits.

11 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

Radix Sort: Example

▶ Input: 263, 983, 96, 462, 286
▶ Separation by last digit:

0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

After collection: 462, 263, 983, 96, 286

▶ Separation by second last digit:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

After collection: 462, 263, 983, 286, 96

▶ Separation by third last digit:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

After collection: 96, 263, 286, 462, 983
12 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

Jupyter Notebook

Jupyter notebook: radix sort.ipynb

13 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

Radix Sort: Algorithm (for arbitrary base)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element

6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) % base

10 buckets[digit].append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1

14 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

Radix Sort: Running Time

▶ m: Maximal number of digits in representation
with given base b.

▶ n: length of input sequence

▶ Running time O(m · (n + b))

For fixed m and b, radix sort has linear running time.

15 / 18

A14. Sorting: Counting Sort & Radix Sort Radix Sort

Radix Sort: High-level Perspective

All entries in the array have d digits, where the lowest-order digit is
at position 0 and the highest-order digit at position d-1.

1 def radix_sort(array, d)

2 for i in range(d):

3 # use a stable sort to sort array on the digit at position i

16 / 18

A14. Sorting: Counting Sort & Radix Sort Summary

A14.3 Summary

17 / 18

A14. Sorting: Counting Sort & Radix Sort Summary

Summary

▶ Counting sort and radix sort are not comparison-based
and allow us (under certain restrictions) to sort in linear time.

▶ However, they place additional restrictions on the keys used.

18 / 18

	Counting Sort
	

	Radix Sort
	

	Summary
	

