Algorithms and Data Structures
A13. Sorting: Lower Bound

Gabriele Roger and Patrick Schnider

University of Basel

March 19, 2025

Lower Bound on Necessary Comparison Operations

©0000000000

Lower Bound on Necessary
Comparison Operations

complexity
analysis

fundamental
data structures

not comparison-
based

— searching

overview and
outlook

graph
algorithms

— concepts

Lower Bound on Necessary Comparison Operations
0@000000000

Content of the Course

— selection sort

= insertion sort

— merge sort

] quicksort

-~ heapsort

Lower Bound on Necessary Comparison Operations Summar

00@00000000

Question

m So far, merge sort and heapsort had with O(nlog, n) the best
(worst-case) running time.

m Can we do better?

m We show: Not with comparison-based approaches!

Lower Bound on Necessary Comparison Operations Summar

000e0000000

How we Proceed

m Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.

Lower Bound on Necessary Comparison Operations Summar

000e0000000

How we Proceed

m Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.

m Comparison-based approaches can only analyze the input by
means of key comparisons.

Lower Bound on Necessary Comparison Operations

000e0000000

How we Proceed

m Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.

m Comparison-based approaches can only analyze the input by
means of key comparisons.

m They must sort every input correctly.

Lower Bound on Necessary Comparison Operations

000e0000000

How we Proceed

m Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.

m Comparison-based approaches can only analyze the input by
means of key comparisons.

m They must sort every input correctly.

m From this, we can derive a lower bound on the number of key
comparisons in the worst case.

Lower Bound on Necessary Comparison Operations

0O000@000000

Crash Course: Binary Trees

O

Binary tree: each node has at most two successor nodes.

u
m Nodes without successors are called leaves (squares in image).
m The node without a predecessor (at the top) is the root.

u

The depth of a leaf is the number of edges from the root to
the leaf.

Lower Bound on Necessary Comparison Operations Summar

0O000@000000

Crash Course: Binary Trees

O

Binary tree: each node has at most two successor nodes.

u
m Nodes without successors are called leaves (squares in image).
m The node without a predecessor (at the top) is the root.

u

The depth of a leaf is the number of edges from the root to
the leaf.

The maximal depth of a leaf in a binary tree
with k leaves is at least log, k.

Lower Bound on Necessary Comparison Operations Summar

0O0000e00000

Exercise (Slido)

gt

What is the maximal depth
of a leaf in this tree?

Lower Bound on Necessary Comparison Operations

00000080000

Abstract Behavior as Tree

Consider an arbitrary comparison-based sorting algorithm A.
m Its behavior only depends on the results of key comparisons.
m For each key comparison, there are two possibilities how the
algorithm proceeds.
m For an input of a given size, we can depict this graphically as
a decision tree.

m Execution of A corresponds to tracing a simple path from the
root down to a leaf.

Lower Bound on Necessary Comparison Operations Summar

00000008000

Result as Permutation

What does the algorithm have to be able to do?
m Assumption: all input elements distinct.

m Must sort all input sequences of size n correctly.

Lower Bound on Necessary Comparison Operations

00000008000

Result as Permutation

What does the algorithm have to be able to do?
m Assumption: all input elements distinct.
m Must sort all input sequences of size n correctly.

m We can adapt all algorithms so that they trace from which
position to which position they move the elements.

m Then the result is not the sorted array, but the corresponding
permutation.

Lower Bound on Necessary Comparison Operations

00000008000

Result as Permutation

What does the algorithm have to be able to do?
m Assumption: all input elements distinct.
m Must sort all input sequences of size n correctly.

m We can adapt all algorithms so that they trace from which
position to which position they move the elements.

m Then the result is not the sorted array, but the corresponding
permutation.

Since all possible inputs of size n must be sorted correctly,
the algorithm must be able to generate all n! possible
permutations.

Lower Bound on Necessary Comparison Operations
00000000800

Example: Tree for Insertion Sort on Three Elements

Highlighted path e.g.
> for sorting sequence
(2.1 [a1 = 6,22 = 8,a3 = 5]

(1.32) (3.1.2) (23.1))

Source: Cormen et al., Introduction to Algorithms

Lower Bound on Necessary Comparison Operations

0000000000

Lower Bound |

Each leaf in the tree corresponds to one permutation.

For input size n, the tree must thus have at least n! leaves.

The maximal depth of a leaf in the tree is therefore
> logy(n!).

m There is an input of size n with

> log,(n!) key comparisons.

Lower Bound on Necessary Comparison Operations
00000000000

Lower Bound Il

Lower bound on log,(n!)

m It holds that n! > (2)2

41=1-2-3 .4 >2?
>2 >2

Lower Bound on Necessary Comparison Operations

000000000 0e

Lower Bound Il

Lower bound on log,(n!)

m It holds that n! > (2)2
M=1.2.3.4>2
>2 >2
= logy(n!) > logo((3)?) = 4/
= (|0g2n+|0g

5(logy n —1)

2(Iog2 n-—

log; 2)

Lower Bound on Necessary Comparison Operations Summar

000000000 0e

Lower Bound Il

Lower bound on log,(n!)

= It holds that n! > ()2
41=1.2-3 .4 >2?
>2 >2
m log,(n!) > logx((5)?) = 5logo (%)
= (Iog2n+|og %):
(Iogzn— 1)

5 (logy n — log, 2)

Every comparison-based sorting algorithm requires Q(nlog n) key
comparisons in the worst case. As a result, also the worst-case
running time is Q(nlog n).

Heapsort and merge sort are asymptotically optimal.

Summan
0

Summary

Summary
oce

Summary

m Every comparison-based sorting algorithm has
at least linearithmic worst-case running time.

	Lower Bound on Necessary Comparison Operations
	

	Summary
	

