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Content of the Course

—  selection sort

= insertion sort

— merge sort

] quicksort

-~ heapsort
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Question

m So far, merge sort and heapsort had with O(nlog, n) the best
(worst-case) running time.

m Can we do better?

m We show: Not with comparison-based approaches!
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How we Proceed

m Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.
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How we Proceed

m Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.

m Comparison-based approaches can only analyze the input by
means of key comparisons.

m They must sort every input correctly.

m From this, we can derive a lower bound on the number of key
comparisons in the worst case.
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Crash Course: Binary Trees

O

Binary tree: each node has at most two successor nodes.

u
m Nodes without successors are called leaves (squares in image).
m The node without a predecessor (at the top) is the root.

u

The depth of a leaf is the number of edges from the root to
the leaf.
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Crash Course: Binary Trees

O

Binary tree: each node has at most two successor nodes.

u
m Nodes without successors are called leaves (squares in image).
m The node without a predecessor (at the top) is the root.

u

The depth of a leaf is the number of edges from the root to
the leaf.

The maximal depth of a leaf in a binary tree
with k leaves is at least log, k.
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Exercise (Slido)

gt

What is the maximal depth
of a leaf in this tree?
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Abstract Behavior as Tree

Consider an arbitrary comparison-based sorting algorithm A.
m Its behavior only depends on the results of key comparisons.
m For each key comparison, there are two possibilities how the
algorithm proceeds.
m For an input of a given size, we can depict this graphically as
a decision tree.

m Execution of A corresponds to tracing a simple path from the
root down to a leaf.
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Result as Permutation

What does the algorithm have to be able to do?
m Assumption: all input elements distinct.

m Must sort all input sequences of size n correctly.
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m Must sort all input sequences of size n correctly.

m We can adapt all algorithms so that they trace from which
position to which position they move the elements.

m Then the result is not the sorted array, but the corresponding
permutation.
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Result as Permutation

What does the algorithm have to be able to do?
m Assumption: all input elements distinct.
m Must sort all input sequences of size n correctly.

m We can adapt all algorithms so that they trace from which
position to which position they move the elements.

m Then the result is not the sorted array, but the corresponding
permutation.

Since all possible inputs of size n must be sorted correctly,
the algorithm must be able to generate all n! possible
permutations.
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Example: Tree for Insertion Sort on Three Elements

Highlighted path e.g.
> for sorting sequence
(2.1 [a1 = 6,22 = 8,a3 = 5]

(1.32) (3.1.2) (23.1))

Source: Cormen et al., Introduction to Algorithms
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Each leaf in the tree corresponds to one permutation.

For input size n, the tree must thus have at least n! leaves.

The maximal depth of a leaf in the tree is therefore
> logy(n!).

m There is an input of size n with

> log,(n!) key comparisons.
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Lower bound on log,(n!)

m It holds that n! > (2)2

41=1-2-3 .4 >2?
>2 >2



Lower Bound on Necessary Comparison Operations

000000000 0e

Lower Bound Il

Lower bound on log,(n!)

m It holds that n! > (2)2
M=1.2.3.4>2
>2 >2
= logy(n!) > logo((3)?) = 4/
= (|0g2n+|0g

5(logy n —1)

2(Iog2 n-—

log; 2)
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Lower bound on log,(n!)

= It holds that n! > ()2
41=1.2-3 .4 >2?
>2 >2
m log,(n!) > logx((5)?) = 5logo (%)
= (Iog2n+|og %):
(Iogzn— 1)

5 (logy n — log, 2)

Every comparison-based sorting algorithm requires Q(nlog n) key
comparisons in the worst case. As a result, also the worst-case
running time is Q(nlog n).

Heapsort and merge sort are asymptotically optimal.
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Summary

m Every comparison-based sorting algorithm has
at least linearithmic worst-case running time.
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