
Algorithms and Data Structures
A13. Sorting: Lower Bound

Gabriele Röger and Patrick Schnider

University of Basel

March 19, 2025

1 / 15

Algorithms and Data Structures
March 19, 2025 — A13. Sorting: Lower Bound

A13.1 Lower Bound on Necessary Comparison
Operations

A13.2 Summary

2 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

A13.1 Lower Bound on Necessary
Comparison Operations

3 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

quicksort

lower bound

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

4 / 15



A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Question

▶ So far, merge sort and heapsort had with O(n log2 n) the best
(worst-case) running time.

▶ Can we do better?

▶ We show: Not with comparison-based approaches!

5 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

How we Proceed

▶ Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.

▶ Comparison-based approaches can only analyze the input by
means of key comparisons.

▶ They must sort every input correctly.

▶ From this, we can derive a lower bound on the number of key
comparisons in the worst case.

6 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Crash Course: Binary Trees

▶ Binary tree: each node has at most two successor nodes.

▶ Nodes without successors are called leaves (squares in image).

▶ The node without a predecessor (at the top) is the root.

▶ The depth of a leaf is the number of edges from the root to
the leaf.

The maximal depth of a leaf in a binary tree
with k leaves is at least log2 k.

7 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Exercise (Slido)

What is the maximal depth
of a leaf in this tree?

8 / 15



A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Abstract Behavior as Tree

Consider an arbitrary comparison-based sorting algorithm A.

▶ Its behavior only depends on the results of key comparisons.

▶ For each key comparison, there are two possibilities how the
algorithm proceeds.

▶ For an input of a given size, we can depict this graphically as
a decision tree.

▶ Execution of A corresponds to tracing a simple path from the
root down to a leaf.

9 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Result as Permutation

What does the algorithm have to be able to do?

▶ Assumption: all input elements distinct.

▶ Must sort all input sequences of size n correctly.

▶ We can adapt all algorithms so that they trace from which
position to which position they move the elements.

▶ Then the result is not the sorted array, but the corresponding
permutation.

▶ Since all possible inputs of size n must be sorted correctly,
the algorithm must be able to generate all n! possible
permutations.

10 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Example: Tree for Insertion Sort on Three Elements

Source: Cormen et al., Introduction to Algorithms

Highlighted path e.g.
for sorting sequence
[a1 = 6, a2 = 8, a3 = 5]

11 / 15

A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Lower Bound I

▶ Each leaf in the tree corresponds to one permutation.

▶ For input size n, the tree must thus have at least n! leaves.

▶ The maximal depth of a leaf in the tree is therefore
≥ log2(n!).

▶ There is an input of size n with
≥ log2(n!) key comparisons.

12 / 15



A13. Sorting: Lower Bound Lower Bound on Necessary Comparison Operations

Lower Bound II

Lower bound on log2(n!)

▶ It holds that n! ≥ (n2 )
n
2

4! = 1 · 2 · 3
≥2

· 4
≥2

≥ 22

▶ log2(n!) ≥ log2((
n
2 )

n
2 ) = n

2 log2(
n
2 )

log2(n!) =
n
2 (log2 n + log2

1
2) =

n
2 (log2 n − log2 2)

log2(n!) =
n
2 (log2 n − 1)

Theorem

Every comparison-based sorting algorithm requires Ω(n log n) key
comparisons in the worst case. As a result, also the worst-case
running time is Ω(n log n).

Heapsort and merge sort are asymptotically optimal.

13 / 15

A13. Sorting: Lower Bound Summary

A13.2 Summary

14 / 15

A13. Sorting: Lower Bound Summary

Summary

▶ Every comparison-based sorting algorithm has
at least linearithmic worst-case running time.

15 / 15


	Lower Bound on Necessary Comparison Operations
	

	Summary
	


