
Algorithms and Data Structures
A13. Sorting: Lower Bound
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Question

▶ So far, merge sort and heapsort had with O(n log2 n) the best
(worst-case) running time.

▶ Can we do better?

▶ We show: Not with comparison-based approaches!
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How we Proceed

▶ Difficulty: We cannot analyze a specific algorithm but must
make an argument for all possible approaches.

▶ Comparison-based approaches can only analyze the input by
means of key comparisons.

▶ They must sort every input correctly.

▶ From this, we can derive a lower bound on the number of key
comparisons in the worst case.
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Crash Course: Binary Trees

▶ Binary tree: each node has at most two successor nodes.

▶ Nodes without successors are called leaves (squares in image).

▶ The node without a predecessor (at the top) is the root.

▶ The depth of a leaf is the number of edges from the root to
the leaf.

The maximal depth of a leaf in a binary tree
with k leaves is at least log2 k.
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Exercise (Slido)

What is the maximal depth
of a leaf in this tree?
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Abstract Behavior as Tree

Consider an arbitrary comparison-based sorting algorithm A.

▶ Its behavior only depends on the results of key comparisons.

▶ For each key comparison, there are two possibilities how the
algorithm proceeds.

▶ For an input of a given size, we can depict this graphically as
a decision tree.

▶ Execution of A corresponds to tracing a simple path from the
root down to a leaf.
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Result as Permutation

What does the algorithm have to be able to do?

▶ Assumption: all input elements distinct.

▶ Must sort all input sequences of size n correctly.

▶ We can adapt all algorithms so that they trace from which
position to which position they move the elements.

▶ Then the result is not the sorted array, but the corresponding
permutation.

▶ Since all possible inputs of size n must be sorted correctly,
the algorithm must be able to generate all n! possible
permutations.
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Example: Tree for Insertion Sort on Three Elements

Source: Cormen et al., Introduction to Algorithms

Highlighted path e.g.
for sorting sequence
[a1 = 6, a2 = 8, a3 = 5]
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Lower Bound I

▶ Each leaf in the tree corresponds to one permutation.

▶ For input size n, the tree must thus have at least n! leaves.

▶ The maximal depth of a leaf in the tree is therefore
≥ log2(n!).

▶ There is an input of size n with
≥ log2(n!) key comparisons.
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Lower Bound II

Lower bound on log2(n!)

▶ It holds that n! ≥ (n2 )
n
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Theorem

Every comparison-based sorting algorithm requires Ω(n log n) key
comparisons in the worst case. As a result, also the worst-case
running time is Ω(n log n).

Heapsort and merge sort are asymptotically optimal.
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Summary

▶ Every comparison-based sorting algorithm has
at least linearithmic worst-case running time.
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