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Quicksort: Idea

Like merge sort a divide-and-conquer algorithm.

In contrast to merge sort, the sequence is not divided by
position but by values.

For this purpose, select one element P (the so-called pivot).

Divide (rearrange) the array, such that P is at its final
position, left of P there are only elements ≤ P, and right of P
only elements ≥ P.

P≤ P ≥ P

Conquer by calling quicksort recursively for the ranges left of
P and right of P.

Combine by doing nothing (recursive calls already lead to fully
sorted array).
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Quicksort: Algorithm

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)

8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)
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How do we Choose the Pivot?

For the correctness of the algorithm, any choice is fine. (Why?)

Example strategies:

Näıve: Always use the first element.

Median of Three: Use median of first, middle and last
element.

Randomized: Use a random element.

Good pivots separate the range into roughly equally-sized ranges.
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How do we Partition the Range?

array
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Quicksort: Partitioning

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i = lo + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i += 1

8 while array[j] > pivot:

9 j -= 1

10 if i >= j:

11 break

12

13 array[i], array[j] = array[j], array[i]

14 i, j = i + 1, j - 1

15 array[lo], array[j] = array[j], array[lo]

16 return j
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Exercise

What is the content of array [6, 5, 7, 8, 3]
after a call of partition for the entire range
(from position 0 to 4)?
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Partitioning: Variants

partitioning performs Hoare’s partitioning method.

Tony Hoare: British computer scientist, inventor of quicksort

There is also Lomuto’s partitioning:

Inferior to Hoare’s method.
Three times more swaps on average.
Leads to bad running time if all elements are equal.
Since it is easier to explain and analyze, used in some teaching
resources (e.g. Cormen et al. textbook).

We only consider Hoare’s method.
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Quicksort: Running Time I

Best case: Pivot separates into equally-sized ranges.

O(log2 n) recursive calls

Each has hi-lo key comparisons during partitioning.

On a single recursion depth overall O(n) comparisons in
partitioning.

→ O(n log n)

Worst case: Pivot always smallest or largest element.

overall n-1 (nontrivial) recursive calls for length n, n− 1, . . . , 2.

Each has hi-lo key comparisons during partitioning.

→ Θ(n2)
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Quicksort: Running Time II

Average case:

Assumption: n different elements,
each of the n! permutations has equal probability,
random choice of pivot

O(log n) recursive calls

overall O(n log n)

≈ 39% slower than best case

With a random choice of the pivot, the worst case is extremely
unlikely. Therefore, quicksort is often considered an O(n log n)
algorithm.
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Heapsort

Heap: data structure that allows to find and remove the
largest element quickly:
find: Θ(1), remove: Θ(log n)

Basic idea as in selection sort but from right to left:
Successively swap the largest element to the end of the
non-sorted range.

We can represent the heap directly in the input sequence, so
that heap sort only needs constant additional storage.

The running time is linearithmic.

We cover the details once we have introduced heaps.
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Summary

Quicksort is a divide-and-conquer approach that divides the
range relative to a pivot element.

In the worst case, quicksort has quadratic running time.

In the average case, the running time is linearithmic.

With a random choice of the pivot, the worst case is
extremely unlikely.
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