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Quicksort: Idea

▶ Like merge sort a divide-and-conquer algorithm.

▶ In contrast to merge sort, the sequence is not divided by
position but by values.

▶ For this purpose, select one element P (the so-called pivot).

▶ Divide (rearrange) the array, such that P is at its final
position, left of P there are only elements ≤ P, and right of P
only elements ≥ P.

P≤ P ≥ P

▶ Conquer by calling quicksort recursively for the ranges left of
P and right of P.

▶ Combine by doing nothing (recursive calls already lead to fully
sorted array).
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Quicksort: Algorithm

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)

8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)
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How do we Choose the Pivot?

For the correctness of the algorithm, any choice is fine. (Why?)

Example strategies:

▶ Näıve: Always use the first element.

▶ Median of Three: Use median of first, middle and last
element.

▶ Randomized: Use a random element.

Good pivots separate the range into roughly equally-sized ranges.
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How do we Partition the Range?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot is at position lo.

Initialize i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i to the right until element ≥ pivot

j to the left until element ≤ pivot
. . . 5 7

i

4 2 3

j

6 . . .. . .
If i < j : swap elements, i++, j−−

. . . 5 3 4

i

2

j

7 6 . . .. . . i to the right until element ≥ pivot

j to the left until element ≤ pivot
. . . 5 3 4 2

j

7

i

6 . . .. . .
i ≥ j : swap pivot to position j

. . . 2 3 4 5

j

7

i

6 . . .. . . Done!
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Quicksort: Partitioning

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i = lo + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i += 1

8 while array[j] > pivot:

9 j -= 1

10 if i >= j:

11 break

12

13 array[i], array[j] = array[j], array[i]

14 i, j = i + 1, j - 1

15 array[lo], array[j] = array[j], array[lo]

16 return j
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Exercise

What is the content of array [6, 5, 7, 8, 3]
after a call of partition for the entire range
(from position 0 to 4)?
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Partitioning: Variants

▶ partitioning performs Hoare’s partitioning method.
▶ Tony Hoare: British computer scientist, inventor of quicksort

▶ There is also Lomuto’s partitioning:
▶ Inferior to Hoare’s method.
▶ Three times more swaps on average.
▶ Leads to bad running time if all elements are equal.
▶ Since it is easier to explain and analyze, used in some teaching

resources (e.g. Cormen et al. textbook).

▶ We only consider Hoare’s method.
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Quicksort: Running Time I

Best case: Pivot separates into equally-sized ranges.

▶ O(log2 n) recursive calls

▶ Each has hi-lo key comparisons during partitioning.

▶ On a single recursion depth overall O(n) comparisons in
partitioning.

→ O(n log n)

Worst case: Pivot always smallest or largest element.

▶ overall n-1 (nontrivial) recursive calls for length n, n− 1, . . . , 2.

▶ Each has hi-lo key comparisons during partitioning.

→ Θ(n2)
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Quicksort: Running Time II

Average case:

▶ Assumption: n different elements,
each of the n! permutations has equal probability,
random choice of pivot

▶ O(log n) recursive calls

▶ overall O(n log n)

▶ ≈ 39% slower than best case

With a random choice of the pivot, the worst case is extremely
unlikely. Therefore, quicksort is often considered an O(n log n)
algorithm.
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A12.2 Heapsort
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Heapsort

▶ Heap: data structure that allows to find and remove the
largest element quickly:
find: Θ(1), remove: Θ(log n)

▶ Basic idea as in selection sort but from right to left:
Successively swap the largest element to the end of the
non-sorted range.

▶ We can represent the heap directly in the input sequence, so
that heap sort only needs constant additional storage.

▶ The running time is linearithmic.

▶ We cover the details once we have introduced heaps.
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A12.3 Summary
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Summary

▶ Quicksort is a divide-and-conquer approach that divides the
range relative to a pivot element.

▶ In the worst case, quicksort has quadratic running time.

▶ In the average case, the running time is linearithmic.

▶ With a random choice of the pivot, the worst case is
extremely unlikely.
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