
Algorithms and Data Structures
A11. Runtime Analysis: Solving Recurrences

Gabriele Röger and Patrick Schnider

University of Basel

March 6, 2025



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Solving Recurrences



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Introduction

In Ch. A10, we derived (algorithmic) recurrences from
divide-and-conquer algorithms:

T (m) = T (m/2) + Θ(m)
for merge sort.

T (n) = 8T (n/2) + Θ(1)
for simple recursive matrix multiplication.

T (n) = 7T (n/2) + Θ(n2)
for Strassen’s algorithm for matrix multiplication.

For the asymptotic running time, we want an expression that only
depends on the input size (and not recursively on T )!

How can we solve such recurrences?



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Approaches

substitution method

recursion-tree method

master theorem

Akra-Bazzi method

Generalization of the master theorem.
Not covered in this course.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Substitution Method



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Substitution Method

1 Guess the form of the solution using symbolic constants.

2 Use mathematical induction to show that the solution works.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I
Try to Guess the Form of the Solution

Consider T (m) = 2T (m/2) + Θ(m)

Consider m = 2k with k ∈ N>0

T (m) = 2T (m/2) + c ′m

= 2(2T (m/4) + c ′(m/2)) + c ′m

= 2c ′m + 4T (m/4)

= 2c ′m + 4(2T (m/8) + c ′(m/4))

= 3c ′m + 8T (m/8)

= . . .

= kc ′m + 2kc0 (use c0 for T (1))

= c ′m log2m +mc0 (k = log2m, 2k = m)

≤ (c0 + c ′)m log2m (log2m = k ≥ 1)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Guess Solution and Formulate Hypothesis

Guess: T (m) ∈ O(m log2m)

Hypothesis: T (m) ≤ cm log2m for all m ≥ m0

for some constants c ,m0 > 0 (taken care of later).

Let’s try the inductive step with this hypothesis.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Guess Solution and Formulate Hypothesis

Guess: T (m) ∈ O(m log2m)

Hypothesis: T (m) ≤ cm log2m for all m ≥ m0

for some constants c ,m0 > 0 (taken care of later).

Let’s try the inductive step with this hypothesis.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Guess Solution and Formulate Hypothesis

Guess: T (m) ∈ O(m log2m)

Hypothesis: T (m) ≤ cm log2m for all m ≥ m0

for some constants c ,m0 > 0 (taken care of later).

Let’s try the inductive step with this hypothesis.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Inductive Case)

Assume by induction that
T (m′) ≤ cm′ log2(m

′) for all m′ with m0 ≤ m′ < m.

Inductive step: m − 1 → m, where m ≥ 2m0:

T (m) = 2T (m/2) + c ′m

≤ 2c(m/2) log2(m/2) + c ′m (induction hypothesis)

= cm log2(m)− cm log2 2 + c ′m

= cm log2(m)− cm + c ′m

≤ cm log2(m) if c > c ′

Inductive steps works if we constrain c to be sufficiently large
such that cm ≥ c ′m for all m ≥ 2m0

(with c ′ hidden constant from O(m)).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Inductive Case)

Assume by induction that
T (m′) ≤ cm′ log2(m

′) for all m′ with m0 ≤ m′ < m.

Inductive step: m − 1 → m, where m ≥ 2m0:

T (m) = 2T (m/2) + c ′m

≤ 2c(m/2) log2(m/2) + c ′m (induction hypothesis)

= cm log2(m)− cm log2 2 + c ′m

= cm log2(m)− cm + c ′m

≤ cm log2(m) if c > c ′

Inductive steps works if we constrain c to be sufficiently large
such that cm ≥ c ′m for all m ≥ 2m0

(with c ′ hidden constant from O(m)).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Inductive Case)

Assume by induction that
T (m′) ≤ cm′ log2(m

′) for all m′ with m0 ≤ m′ < m.

Inductive step: m − 1 → m, where m ≥ 2m0:

T (m) = 2T (m/2) + c ′m

≤ 2c(m/2) log2(m/2) + c ′m (induction hypothesis)

= cm log2(m)− cm log2 2 + c ′m

= cm log2(m)− cm + c ′m

≤ cm log2(m) if c > c ′

Inductive steps works if we constrain c to be sufficiently large
such that cm ≥ c ′m for all m ≥ 2m0

(with c ′ hidden constant from O(m)).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Base Case)

Show that T (m) ≤ cm log2(m) for all m with m0 ≤ m < 2m0.
Consider m0 = 2.

Let d = max{T (2),T (3)}
T (2) ≤ d ≤ d2 log2 2
T (3) ≤ d ≤ d3 log2 3

With c = max{c ′, d} it holds for all m ≥ 2 that

T (m) ≤ cm log2(m).

We have shown that T (m) ∈ O(m log2m).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Base Case)

Show that T (m) ≤ cm log2(m) for all m with m0 ≤ m < 2m0.
Consider m0 = 2.

Let d = max{T (2),T (3)}
T (2) ≤ d ≤ d2 log2 2
T (3) ≤ d ≤ d3 log2 3

With c = max{c ′, d} it holds for all m ≥ 2 that

T (m) ≤ cm log2(m).

We have shown that T (m) ∈ O(m log2m).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Base Case)

Show that T (m) ≤ cm log2(m) for all m with m0 ≤ m < 2m0.
Consider m0 = 2.

Let d = max{T (2),T (3)}
T (2) ≤ d ≤ d2 log2 2
T (3) ≤ d ≤ d3 log2 3

With c = max{c ′, d} it holds for all m ≥ 2 that

T (m) ≤ cm log2(m).

We have shown that T (m) ∈ O(m log2m).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II
Verify Guessed Solution with Induction (Base Case)

Show that T (m) ≤ cm log2(m) for all m with m0 ≤ m < 2m0.
Consider m0 = 2.

Let d = max{T (2),T (3)}
T (2) ≤ d ≤ d2 log2 2
T (3) ≤ d ≤ d3 log2 3

With c = max{c ′, d} it holds for all m ≥ 2 that

T (m) ≤ cm log2(m).

We have shown that T (m) ∈ O(m log2m).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Recursion-tree Method



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Recursion-tree Method

In a recursion tree, each node represents the cost of a single
subproblem somewhere in the set of recursive function invocations.

Analyse the cost on each level of the tree and the depth of the tree
to get an idea of the overall running time.

Suitable for making a good guess (to be verified by induction).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Recursion-tree Method

In a recursion tree, each node represents the cost of a single
subproblem somewhere in the set of recursive function invocations.

Analyse the cost on each level of the tree and the depth of the tree
to get an idea of the overall running time.

Suitable for making a good guess (to be verified by induction).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Recursion-tree Method

In a recursion tree, each node represents the cost of a single
subproblem somewhere in the set of recursive function invocations.

Analyse the cost on each level of the tree and the depth of the tree
to get an idea of the overall running time.

Suitable for making a good guess (to be verified by induction).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I

Consider again m = 2k with k ∈ N>0

T (m) = 2T (m/2) + Θ(m)

cm

T(m/2) T(m/2)

cm

cm/2

T(m/4) T(m/4)

cm/2

T(m/4) T(m/4)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort I

Consider again m = 2k with k ∈ N>0

T (m) = 2T (m/2) + Θ(m)

cm

T(m/2) T(m/2)

cm

cm/2

T(m/4) T(m/4)

cm/2

T(m/4) T(m/4)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II

cm

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

. . .

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

Θ(1)

Θ(m)

cm

cm

cm

log2(m)

2log2(m) = m times
Total: Θ(m log2m)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II

cm

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

. . .

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

Θ(1)

Θ(m)

cm

cm

cm

log2(m)

2log2(m) = m times
Total: Θ(m log2m)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II

cm

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

. . .

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

Θ(1)

Θ(m)

cm

cm

cm

log2(m)

2log2(m) = m times
Total: Θ(m log2m)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II

cm

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

. . .

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

Θ(1)

Θ(m)

cm

cm

cm

log2(m)

2log2(m) = m times

Total: Θ(m log2m)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II

cm

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

. . .

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

Θ(1) Θ(m)

cm

cm

cm

log2(m)

2log2(m) = m times

Total: Θ(m log2m)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Top-down Merge Sort II

cm

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

. . .

cm/2

cm/4

...

Θ(1)

...

Θ(1)

cm/4

...

Θ(1)

...

Θ(1) Θ(m)

cm

cm

cm

log2(m)

2log2(m) = m times
Total: Θ(m log2m)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Theorem



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Content of the Course

A&DS

sorting

complexity
analysis

asymptotic
notation

master theorem

fundamental
data structures

searching

graph
algorithms

concepts



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Recurrences

A common instantiation of the divide-and-conquer
algorithm scheme works as follows:

For inputs of small size n < C , solve the problem directly.

Otherwise:
1 Construct A smaller inputs of size n/B.
2 Recursively solve these inputs using the same algorithm.
3 Compute the result from the recursively computed results.

If 1.+3. take time f (n), the overall run-time for n > C
can be expressed as T (n) = A · T (n/B) + f (n).

We call this a master recurrence.

f (n) is called the driving function.

We do not care about run-time for n < C
because it does not affect asymptotic analysis.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Recurrences

A common instantiation of the divide-and-conquer
algorithm scheme works as follows:

For inputs of small size n < C , solve the problem directly.

Otherwise:
1 Construct A smaller inputs of size n/B.
2 Recursively solve these inputs using the same algorithm.
3 Compute the result from the recursively computed results.

If 1.+3. take time f (n), the overall run-time for n > C
can be expressed as T (n) = A · T (n/B) + f (n).

We call this a master recurrence.

f (n) is called the driving function.

We do not care about run-time for n < C
because it does not affect asymptotic analysis.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Recurrences – Examples

Reminder:

1 Construct A smaller inputs of size n/B.

2 Recursively solve these inputs using the same algorithm.

3 Compute the result from the recursively computed results.

master recurrence: T (n) = A · T (n/B) + f (n)

Examples:

Merge sort: A = 2, B = 2, f (n) = Θ(n)

Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Theorem

The theorem compares the asymptotic growth of the driving
function to the one of the watershed function nlogB A:

Theorem

Let A ≥ 1,B > 1 be constants and f (n) be a driving function that
is defined and nonnegative on all sufficiently large reals. Let T
satisfy the master recurrence T (n) = A · T (n/B) + f (n). Then:

If f (n) = O(nlogB A−ε) for some ε > 0,
then T (n) = Θ(nlogB A).

If f (n) = Θ(nlogB A logk2 n) for some k ≥ 0,
then T (n) = Θ(nlogB A logk+1

2 n).

If f (n) = Ω(nlogB A+ε) for some ε > 0 and
if Af (n/B) ≤ cf (n) for some c < 1 and all sufficiently large n,
then T (n) = Θ(f (n)).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Theorem

The theorem compares the asymptotic growth of the driving
function to the one of the watershed function nlogB A:

Theorem

Let A ≥ 1,B > 1 be constants and f (n) be a driving function that
is defined and nonnegative on all sufficiently large reals. Let T
satisfy the master recurrence T (n) = A · T (n/B) + f (n). Then:

If f (n) = O(nlogB A−ε) for some ε > 0,
then T (n) = Θ(nlogB A).

If f (n) = Θ(nlogB A logk2 n) for some k ≥ 0,
then T (n) = Θ(nlogB A logk+1

2 n).

If f (n) = Ω(nlogB A+ε) for some ε > 0 and
if Af (n/B) ≤ cf (n) for some c < 1 and all sufficiently large n,
then T (n) = Θ(f (n)).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Theorem: Intuition (Case 1)

f (n) = O(nlogB A−ε)

Watershed function grows polynomially faster than the driving
function.

Cost per level in recursion tree grows at least geometrically
from root to leaves.

Cost of leaves dominates total cost of inner nodes.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Theorem: Intuition (Case 2)

f (n) = Θ(nlogB A logk2 n)

logk2 n = (log2 n)
k

Both functions grow at nearly the same asymptotic rates.

Precisely: driving function only grows faster than the
watershed function by a factor of logk2 n.

Each level of the tree costs approximately the same.

With k = 0, the second case covers case f (n) = Θ(nlogB A).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Master Theorem: Intuition (Case 3)

f (n) = Ω(nlogB A+ε)

Driving function grows polynomially faster than the watershed
function.

Regularity condition Af (n/B) ≤ cf (n) is typically satisfied (no
big growth differences of driving function in different areas of
the recursion tree).

Cost per level in recursion tree drops at least geometrically
from root to leaves.

Cost of root dominates cost of other nodes in the recursion
tree.



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

Case 1 f (n) = O(n1−ε) for some ε > 0?

⇝ No.

Case 2 f (n) = Θ(n1 logk2 n) for some k?

⇝ Yes with k = 0!
⇝ T (n) = Θ(n1 log2 n)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

Case 1 f (n) = O(n1−ε) for some ε > 0?

⇝ No.

Case 2 f (n) = Θ(n1 logk2 n) for some k?

⇝ Yes with k = 0!
⇝ T (n) = Θ(n1 log2 n)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

Case 1 f (n) = O(n1−ε) for some ε > 0?

⇝ No.

Case 2 f (n) = Θ(n1 logk2 n) for some k?

⇝ Yes with k = 0!
⇝ T (n) = Θ(n1 log2 n)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

Case 1 f (n) = O(n1−ε) for some ε > 0? ⇝ No.

Case 2 f (n) = Θ(n1 logk2 n) for some k?

⇝ Yes with k = 0!
⇝ T (n) = Θ(n1 log2 n)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

Case 1 f (n) = O(n1−ε) for some ε > 0? ⇝ No.

Case 2 f (n) = Θ(n1 logk2 n) for some k?

⇝ Yes with k = 0!
⇝ T (n) = Θ(n1 log2 n)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

Case 1 f (n) = O(n1−ε) for some ε > 0? ⇝ No.

Case 2 f (n) = Θ(n1 logk2 n) for some k? ⇝ Yes with k = 0!

⇝ T (n) = Θ(n1 log2 n)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Merge Sort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Merge sort: A = 2, B = 2, f (n) = Θ(n)
⇝ logB A = log2 2 = 1

Case 1 f (n) = O(n1−ε) for some ε > 0? ⇝ No.

Case 2 f (n) = Θ(n1 logk2 n) for some k? ⇝ Yes with k = 0!
⇝ T (n) = Θ(n1 log2 n)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Strassen’s Algorithm

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)
⇝ logB A = log2 7 ≈ 2.807 . . .

Case 1 f (n) = O(nlog2 7−ε) for some ε > 0?

⇝ Yes, for instance with ε = 0.8! ⇝ T (n) = Θ(nlog2 7)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Strassen’s Algorithm

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)
⇝ logB A = log2 7 ≈ 2.807 . . .

Case 1 f (n) = O(nlog2 7−ε) for some ε > 0?

⇝ Yes, for instance with ε = 0.8! ⇝ T (n) = Θ(nlog2 7)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Strassen’s Algorithm

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)
⇝ logB A = log2 7 ≈ 2.807 . . .

Case 1 f (n) = O(nlog2 7−ε) for some ε > 0?

⇝ Yes, for instance with ε = 0.8! ⇝ T (n) = Θ(nlog2 7)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Strassen’s Algorithm

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)
⇝ logB A = log2 7 ≈ 2.807 . . .

Case 1 f (n) = O(nlog2 7−ε) for some ε > 0?
⇝ Yes, for instance with ε = 0.8!

⇝ T (n) = Θ(nlog2 7)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Application: Strassen’s Algorithm

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) ⇝ T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A logk2 n) ⇝ T (n) = Θ(nlogB A logk+1
2 n)

f (n) = Ω(nlogB A+ε) ⇝ T (n) = Θ(f (n))

Strassen’s algorithm: A = 7, B = 2, f (n) = Θ(n2)
⇝ logB A = log2 7 ≈ 2.807 . . .

Case 1 f (n) = O(nlog2 7−ε) for some ε > 0?
⇝ Yes, for instance with ε = 0.8! ⇝ T (n) = Θ(nlog2 7)



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Floors and Ceilings?



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Merge Sort Revisited

We used T (m) = 2T (m/2) + Θ(m) as recurrence for merge sort.

If m = 5, we have one recursive call for 2 and one for 3 elements.

The precise recurrence for the running time is

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + Θ(m).

Does this make a difference for the asymptotic growth?



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Merge Sort Revisited

We used T (m) = 2T (m/2) + Θ(m) as recurrence for merge sort.

If m = 5, we have one recursive call for 2 and one for 3 elements.

The precise recurrence for the running time is

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + Θ(m).

Does this make a difference for the asymptotic growth?



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Merge Sort Revisited

We used T (m) = 2T (m/2) + Θ(m) as recurrence for merge sort.

If m = 5, we have one recursive call for 2 and one for 3 elements.

The precise recurrence for the running time is

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + Θ(m).

Does this make a difference for the asymptotic growth?



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Merge Sort Revisited

We used T (m) = 2T (m/2) + Θ(m) as recurrence for merge sort.

If m = 5, we have one recursive call for 2 and one for 3 elements.

The precise recurrence for the running time is

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + Θ(m).

Does this make a difference for the asymptotic growth?



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Good News

Ignoring floors and ceilings does not generally affect the order of
growth of the solution of a divide-and-conquer recurrence.

The master theorem also holds for recurrences

T (n) = A′T (⌊n/B⌋)) + A′′T (⌈n/B⌉)) + f (n)

for some constant A′,A′′ ≥ 0 (set A := A′ + A′′).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Good News

Ignoring floors and ceilings does not generally affect the order of
growth of the solution of a divide-and-conquer recurrence.

The master theorem also holds for recurrences

T (n) = A′T (⌊n/B⌋)) + A′′T (⌈n/B⌉)) + f (n)

for some constant A′,A′′ ≥ 0 (set A := A′ + A′′).



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Merge Sort (Optional Material)
Inductive Case Revisited

Assume by induction that
T (m′) ≤ cm′ log2(m

′) for all m′ with m0 ≤ m′ < m.

Inductive step: m − 1 → m, where m ≥ 2m0:

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + c ′m

≤ c⌊m/2⌋ log2(⌊m/2⌋) + c⌈m/2⌉ log2(⌈m/2⌉) + c ′m

≤ c⌊m/2⌋ log2(⌈m/2⌉) + c⌈m/2⌉ log2(⌈m/2⌉) + c ′m

≤ cm log2(⌈m/2⌉) + c ′m (⌊m/2⌋+ ⌈m/2⌉ = m)

≤ cm log2((m + 1)/2) + c ′m (⌈m/2⌉ ≤ (m + 1)/2)

= cm log2(m + 1)− cm + c ′m

≤ cm log2m + cm/m − cm + c ′m (log2(m + 1) ≤ log2(m) +
1

m
)

= cm log2m + c − cm + c ′m

≤ cm log2m if c > 2c ′ and m ≥ 2



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Example: Merge Sort (Optional Material)
Inductive Case Revisited

Assume by induction that
T (m′) ≤ cm′ log2(m

′) for all m′ with m0 ≤ m′ < m.

Inductive step: m − 1 → m, where m ≥ 2m0:

T (m) = T (⌊m/2⌋)) + T (⌈m/2⌉)) + c ′m

≤ c⌊m/2⌋ log2(⌊m/2⌋) + c⌈m/2⌉ log2(⌈m/2⌉) + c ′m

≤ c⌊m/2⌋ log2(⌈m/2⌉) + c⌈m/2⌉ log2(⌈m/2⌉) + c ′m

≤ cm log2(⌈m/2⌉) + c ′m (⌊m/2⌋+ ⌈m/2⌉ = m)

≤ cm log2((m + 1)/2) + c ′m (⌈m/2⌉ ≤ (m + 1)/2)

= cm log2(m + 1)− cm + c ′m

≤ cm log2m + cm/m − cm + c ′m (log2(m + 1) ≤ log2(m) +
1

m
)

= cm log2m + c − cm + c ′m

≤ cm log2m if c > 2c ′ and m ≥ 2



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Summary



Solving Recurrences Substitution Method Recursion-tree Method Master Theorem Floors and Ceilings? Summary

Summary

The substitution method is the most general one:

Guess the running time (typically by substituting the recursive
term a few times).
Prove by mathematical induction that the guess is correct.

The recursion-tree method is good for quickly getting an
impression of a running time.

The master theorem is not always applicable. If it is, it is the
quickest way to determine the running time.

Top-down merge sort has linearithmic running time
Θ(m log2m).


	Solving Recurrences
	

	Substitution Method
	

	Recursion-tree Method
	

	Master Theorem
	

	Floors and Ceilings?
	

	Summary
	


