
Algorithms and Data Structures
A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Röger and Patrick Schnider

University of Basel

March 6, 2025

1 / 25

Algorithms and Data Structures
March 6, 2025 — A10. Runtime Analysis: Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer Algorithms

A10.2 Recurrences

2 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer
Algorithms

3 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

4 / 25



A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Recap: Merge Sort

Sort input range with n elements:

▶ n ≤ 1: nothing to do

▶ n > 1: proceed as follows:

Divide the range into two roughly equally-sized ranges.
Conquer each of them by recursively sorting them.
Combine the sorted subranges to a fully sorted range.

5 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly
without recursing.

Recursive case: Otherwise

Divide the problem into one or more
subproblems that are smaller instances
of the same problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

6 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices

Square matrix An×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 am2 · · · ann


Let A,B be n × n matrices. We want to compute C = A · B.

For i , j ∈ {1, . . . , n}: Set cij =
∑n

k=1 aik · bkj .

7 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
Direct Computation

1 def matrix_multiply(A, B, n):

2 for i in range(1,n+1): # i = 1,...,n

3 for j in range(1,n+1): # j = 1,...,n

4 for k in range(1,n+1): # k = 1,...,n

5 C[i][j] += A[i][k] * B[k][j]

Running time Θ(n3)

8 / 25



A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumption: n = 2k for some k ∈ N.

Idea: Divide each matrix into four n/2× n/2 matrices:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]

Can compute C = A · B as[
C11 C12

C21 C22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]
Eight n/2× n/2 multiplications and four n/2× n/2 additions

9 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

function matrix-multiply-recursive(A, B, n)
if n == 1 then

c11 = a11 · b11
return

partition A and B into n/2× n/2 submatrices
A11,A12,A21,A22,B11, . . . ,B22

(details omitted; takes constant time)
P1111 =matrix-multiply-recursive(A11, B11, n/2)

. . . (8 recursive calls total)
P2222 =matrix-multiply-recursive(A22, B22, n/2)
C11 = P1111 + P1221

. . . (4 additions total)
C22 = P2112 + P2222

10 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
Strassen’s Algorithm

▶ The previous algorithm still has running time Θ(n3).

▶ Strassen’s algorithm is similar but uses only 7 recursive calls.

▶ Idea (with scalars): Compute x2 + y2 as (x + y)(x − y) with
2 additions, 1 multiplication instead of
2 multiplications, 1 addition

▶ Computes the four submatrices C11,C12,C21,C22 with four
steps (next slide).

11 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
Strassen’s Algorithm

Setting
P1 = (A11 + A22) · (B11 + B22)

P2 = (A21 + A22) · B11

P3 = A11 · (B12 − B22)

P4 = A22 · (B21 − B11)

P5 = (A21 + A12) · B22

P6 = (A21 − A11) · (B11 + B12)

P7 = (A12 − A22) · (B21 + B22)

we can compute C = A · B as[
C11 C12

C21 C22

]
=

[
P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 − P2 + P3 + P6

]
12 / 25



A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

1 If n is 1, proceeds as in matrix-multiply-recursive,
otherwise, partition matrices A, B as in
matrix-multiply-recursive. This takes Θ(1) time.

2 Create n/2× n/2 matrices S1, S2, . . . ,S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2× n/2 matrices P1, . . . ,P7

to hold seven matrix products (next step).
All 17 matrices can be created/initialized in Θ(n2) time.

3 Recursively compute each of the seven products P1, . . . ,P7.

4 Update the four submatrices C11, . . . ,C22 by adding or
subtracting various Pi matrices. This takes Θ(n2) time.

Running time Θ(nlg 7) (with lg 7 ≈ 2.8073549 < 3)

13 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Divide-and-Conquer Algorithms

Questions

Your Questions?

How can we analyze the running time of such algorithms?

14 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

A10.2 Recurrences

15 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

16 / 25



A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Recurrences

A recurrence is a recursively defined function f : N0 → R where
for almost all n, the value f (n) is defined in terms of the values
f (m) for m < n.

Example (Fibonacci Series)

F (0) = 0 (1st base case)

F (1) = 1 (2nd base case)

F (n) = F (n − 2) + F (n − 1) for all n ≥ 2 (recursive case)

Recurrences occur naturally for the running time of
divide-and-conquer algorithms.

17 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Top-Down Merge Sort

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 sort_aux(array, tmp, lo, mid)

10 sort_aux(array, tmp, mid + 1, hi)

11 merge(array, tmp, lo, mid, hi)

Analysis for m = hi− lo + 1
c0 for lines 6–7
c1 for lines 6–8
c2m for merge step (takes linear time)

18 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Top-Down Merge Sort

Assumption: n = 2k for some k ∈ N

Running time sort aux

▶ T (1) = c0
▶ T (m) = c1 + 2T (m/2) + c2m

19 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
An Adapted Divide-and-Conquer Algorithm

The following algorithm computes C = C + A · B:
function matrix-multiply-recursive(A, B, C , n)

if n == 1 then
c11 = c11 + a11 · b11
return

partition A, B, and C into n/2× n/2 submatrices
A11,A12,A21,A22,B11, . . . ,B22,C11, . . . ,C22

(details omitted; takes constant time)
matrix-multiply-recursive(A11, B11, C11, n/2)

. . . (8 recursive calls total)
matrix-multiply-recursive(A22, B22, C22, n/2)

20 / 25



A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
A Simple Divide-and-Conquer Algorithm

Assumptions:

▶ n = 2k for some k ∈ N,
▶ c0 is the running time in case n = 1, and

▶ c1 is the time for the partition into submatrices.

Specify a recurrence for the running time T (n) of the
algorithm.

Solution:

T (1) = c0

T (n) = c1 + 8T (n/2) for n > 1

21 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Algorithmic Recurrences

A recurrence T (n) is algorithmic if, for every sufficiently large
n0 > 0, the following two properties hold:

1 For all n < n0, we have T (n) = Θ(1).

2 For all n ≥ n0, every path of recursion terminates in a defined
base case within a finite number of recursive invocations.

22 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Convention

▶ Whenever a recurrence is stated without an explicit base case,
we assume that the recurrence is algorithmic.

▶ For non-recursive aspects, we use Θ(·) (or O(·) if only
interested in upper bound).

Examples:

▶ T (m) = 2T (m/2) + Θ(m)
for merge sort.

▶ T (n) = 8T (n/2) + Θ(1)
for simple recursive matrix multiplication.

23 / 25

A10. Runtime Analysis: Divide-and-Conquer Algorithms Recurrences

Example: Multiplication of Square Matrices
Strassen’s Algorithm (Sketch)

1 If n is 1, proceeds as in matrix-multiply-recursive,
otherwise, partition matrices A, B, C as in
matrix-multiply-recursive. This takes Θ(1) time.

2 Create n/2× n/2 matrices S1, S2, . . . ,S10, each of which is
the sum or difference of two submatrices from step 1. Create
and zero the entries of seven n/2× n/2 matrices P1, . . . ,P7

to hold seven matrix products (next step).
All 17 matrices can be created/initialized in Θ(n2) time.

3 Recursively compute each of the seven products P1, . . . ,P7.

4 Update the four submatrices C11, . . . ,C22 by adding or
subtracting various Pi matrices. This takes Θ(n2) time.

T (n) = Θ(1) + Θ(n2) + 7T (n/2) + Θ(n2) = 7T (n/2) + Θ(n2)

24 / 25



A10. Runtime Analysis: Divide-and-Conquer Algorithms Summary

Summary

▶ Divide-and-conquer algorithms divide the problem into smaller
problems of the same kind, solve them (typically recursively)
and combine their solution into a solution of the full problem.

▶ Their running time can often easily be described with a
recurrence.

25 / 25


	Divide-and-Conquer Algorithms
	

	Recurrences
	

	Summary

