Algorithms and Data Structures A10. Runtime Analysis: Divide-and-Conquer Algorithms

Gabriele Röger and Patrick Schnider

University of Basel

March 6, 2025

Algorithms and Data Structures

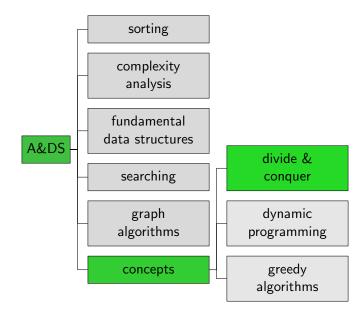
March 6, 2025 — A10. Runtime Analysis: Divide-and-Conquer Algorithms

A10.1 Divide-and-Conquer Algorithms

A10.2 Recurrences

A10.1 Divide-and-Conquer Algorithms

Content of the Course



Recap: Merge Sort

Sort input range with n elements:

- ▶ $n \le 1$: nothing to do
- ightharpoonup n > 1: proceed as follows:

Divide the range into two roughly equally-sized ranges. Conquer each of them by recursively sorting them. Combine the sorted subranges to a fully sorted range.

Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly without recursing.

Recursive case: Otherwise

Divide the problem into one or more subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the subproblem solutions to form a solution to the original problem.

Example: Multiplication of Square Matrices

Square matrix
$$A_{n \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{m2} & \cdots & a_{nn} \end{bmatrix}$$

Let A, B be $n \times n$ matrices. We want to compute $C = A \cdot B$.

For
$$i, j \in \{1, \dots, n\}$$
: Set $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$.

Example: Multiplication of Square Matrices Direct Computation

Running time $\Theta(n^3)$

Example: Multiplication of Square Matrices

A Simple Divide-and-Conquer Algorithm

Assumption: $n = 2^k$ for some $k \in \mathbb{N}$.

Idea: Divide each matrix into four $n/2 \times n/2$ matrices:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Can compute $C = A \cdot B$ as

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{bmatrix}$$

Eight $n/2 \times n/2$ multiplications and four $n/2 \times n/2$ additions

Example: Multiplication of Square Matrices A Simple Divide-and-Conquer Algorithm

```
function MATRIX-MULTIPLY-RECURSIVE (A, B, n)
    if n == 1 then
        c_{11} = a_{11} \cdot b_{11}
        return
    partition A and B into n/2 \times n/2 submatrices
         A11, A12, A21, A22, B11, ..., B22
         (details omitted; takes constant time)
    P_{1111} = \text{MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11}, n/2)
         ... (8 recursive calls total)
    P_{2222} = \text{MATRIX-MULTIPLY-RECURSIVE}(A_{22}, B_{22}, n/2)
    C_{11} = P_{1111} + P_{1221}
         ... (4 additions total)
    C_{22} = P_{2112} + P_{2222}
```

Example: Multiplication of Square Matrices Strassen's Algorithm

- ▶ The previous algorithm still has running time $\Theta(n^3)$.
- Strassen's algorithm is similar but uses only 7 recursive calls.
- ▶ Idea (with scalars): Compute $x^2 + y^2$ as (x + y)(x y) with 2 additions, 1 multiplication instead of 2 multiplications, 1 addition
- ▶ Computes the four submatrices C_{11} , C_{12} , C_{21} , C_{22} with four steps (next slide).

Example: Multiplication of Square Matrices Strassen's Algorithm

Setting

$$P_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = (A_{21} + A_{12}) \cdot B_{22}$$

$$P_{6} = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

we can compute $C = A \cdot B$ as

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} P_1 + P_4 - P_5 + P_7 & P_3 + P_5 \\ P_2 + P_4 & P_1 - P_2 + P_3 + P_6 \end{bmatrix}$$

Example: Multiplication of Square Matrices Strassen's Algorithm (Sketch)

- If n is 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE, otherwise, partition matrices A, B as in MATRIX-MULTIPLY-RECURSIVE. This takes $\Theta(1)$ time.
- ② Create $n/2 \times n/2$ matrices S_1, S_2, \ldots, S_{10} , each of which is the sum or difference of two submatrices from step 1. Create and zero the entries of seven $n/2 \times n/2$ matrices P_1, \ldots, P_7 to hold seven matrix products (next step). All 17 matrices can be created/initialized in $\Theta(n^2)$ time.
- **3** Recursively compute each of the seven products P_1, \ldots, P_7 .
- Update the four submatrices C_{11}, \ldots, C_{22} by adding or subtracting various P_i matrices. This takes $\Theta(n^2)$ time.

Running time $\Theta(n^{\lg 7})$ (with $\lg 7 \approx 2.8073549 < 3$)

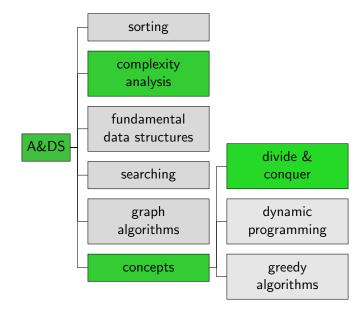
Questions

Your Questions?

How can we analyze the running time of such algorithms?

A10.2 Recurrences

Content of the Course



Recurrences

A recurrence is a recursively defined function $f: \mathbb{N}_0 \to \mathbb{R}$ where for almost all n, the value f(n) is defined in terms of the values f(m) for m < n.

```
Example (Fibonacci Series)
```

$$F(0) = 0$$
 (1st base case)
 $F(1) = 1$ (2nd base case)
 $F(n) = F(n-2) + F(n-1)$ for all $n \ge 2$ (recursive case)

Recurrences occur naturally for the running time of divide-and-conquer algorithms.

Example: Top-Down Merge Sort

```
1 def sort(array):
      tmp = [0] * len(array) # [0,...,0] with same size as array
2
       sort_aux(array, tmp, 0, len(array) - 1)
3
4
  def sort_aux(array, tmp, lo, hi):
       if hi <= lo:
6
           return
      mid = lo + (hi - lo) // 2
8
      sort_aux(array, tmp, lo, mid)
9
      sort_aux(array, tmp, mid + 1, hi)
10
      merge(array, tmp, lo, mid, hi)
11
```

```
Analysis for m = hi - lo + 1

c_0 for lines 6–7

c_1 for lines 6–8

c_2m for merge step (takes linear time)
```

Example: Top-Down Merge Sort

Assumption: $n = 2^k$ for some $k \in \mathbb{N}$

Running time sort_aux

- $T(1) = c_0$
- $T(m) = c_1 + 2T(m/2) + c_2m$

Example: Multiplication of Square Matrices An Adapted Divide-and-Conquer Algorithm

```
The following algorithm computes C = C + A \cdot B:
  function MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)
      if n == 1 then
          c_{11} = c_{11} + a_{11} \cdot b_{11}
          return
      partition A, B, and C into n/2 \times n/2 submatrices
            A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, \ldots, B_{22}, C_{11}, \ldots, C_{22}
            (details omitted; takes constant time)
      MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{11}, C_{11}, n/2)
                    (8 recursive calls total)
      MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22}, C_{22}, n/2)
```

Example: Multiplication of Square Matrices A Simple Divide-and-Conquer Algorithm

Assumptions:

- ▶ $n = 2^k$ for some $k \in \mathbb{N}$,
- $ightharpoonup c_0$ is the running time in case n=1, and
- $ightharpoonup c_1$ is the time for the partition into submatrices.

Specify a recurrence for the running time T(n) of the algorithm.

$$T(1) = c_0$$

 $T(n) = c_1 + 8T(n/2)$ for $n > 1$

Algorithmic Recurrences

A recurrence T(n) is algorithmic if, for every sufficiently large $n_0 > 0$, the following two properties hold:

- For all $n < n_0$, we have $T(n) = \Theta(1)$.
- ② For all $n \ge n_0$, every path of recursion terminates in a defined base case within a finite number of recursive invocations.

Convention

- ▶ Whenever a recurrence is stated without an explicit base case, we assume that the recurrence is algorithmic.
- For non-recursive aspects, we use $\Theta(\cdot)$ (or $O(\cdot)$ if only interested in upper bound).

Examples:

- T(m) = $2T(m/2) + \Theta(m)$ for merge sort.
- ► $T(n) = 8T(n/2) + \Theta(1)$ for simple recursive matrix multiplication.

Example: Multiplication of Square Matrices Strassen's Algorithm (Sketch)

- If n is 1, proceeds as in MATRIX-MULTIPLY-RECURSIVE, otherwise, partition matrices A, B, C as in MATRIX-MULTIPLY-RECURSIVE. This takes $\Theta(1)$ time.
- ② Create $n/2 \times n/2$ matrices S_1, S_2, \ldots, S_{10} , each of which is the sum or difference of two submatrices from step 1. Create and zero the entries of seven $n/2 \times n/2$ matrices P_1, \ldots, P_7 to hold seven matrix products (next step). All 17 matrices can be created/initialized in $\Theta(n^2)$ time.
- **3** Recursively compute each of the seven products P_1, \ldots, P_7 .
- Update the four submatrices C_{11}, \ldots, C_{22} by adding or subtracting various P_i matrices. This takes $\Theta(n^2)$ time.

$$T(n) = \Theta(1) + \Theta(n^2) + 7T(n/2) + \Theta(n^2) = 7T(n/2) + \Theta(n^2)$$

Summary

- Divide-and-conquer algorithms divide the problem into smaller problems of the same kind, solve them (typically recursively) and combine their solution into a solution of the full problem.
- ► Their running time can often easily be described with a recurrence.