
Algorithms and Data Structures
A9. Runtime Analysis: Application

Gabriele Röger and Patrick Schnider

University of Basel

March 5, 2025



Recap Application Summary

Content of the Course

A&DS

sorting

complexity
analysis

asymptotic
notation

master theoremfundamental
data structures

searching

graph
algorithms

concepts



Recap Application Summary

Recap



Recap Application Summary

Symbols

“f grows asymptotically as fast as g”

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

“f grows no faster than g”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows no slower than g”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}



Recap Application Summary

Symbols

“f grows asymptotically as fast as g”

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

“f grows no faster than g”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows no slower than g”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}



Recap Application Summary

Symbols

“f grows asymptotically as fast as g”

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

“f grows no faster than g”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows no slower than g”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}



Recap Application Summary

Symbol Theta: Illustration

f ∈ Θ(g)



Recap Application Summary

Some Relevant Classes of Functions

In increasing order (except for the general nk):

g growth

1 constant
log n logarithmic

n linear
n log n linearithmic

n2 quadratic
n3 cubic
nk polynomial (constant k)
2n exponential



Recap Application Summary

Connections

It holds that:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(for k ≥ 2)

O(nk1) ⊂ O(nk2) for k1 < k2
e.g. O(n2) ⊂ O(n3)



Recap Application Summary

Connections

It holds that:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(for k ≥ 2)

O(nk1) ⊂ O(nk2) for k1 < k2
e.g. O(n2) ⊂ O(n3)



Recap Application Summary

Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Recap Application Summary

Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Recap Application Summary

Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Recap Application Summary

Application



Recap Application Summary

Quick O-Analysis for Common Code Patterns I

Constant-time operation:

var = 4 O(1)

Sequence of constant-time operations:

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)



Recap Application Summary

Quick O-Analysis for Common Code Patterns I

Constant-time operation:

var = 4 O(1)

Sequence of constant-time operations:

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)



Recap Application Summary

Quick O-Analysis for Common Code Patterns II

Loop:

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i depends on n.



Recap Application Summary

Quick O-Analysis for Common Code Patterns II

Loop:

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i depends on n.



Recap Application Summary

Quick O-Analysis for Common Code Patterns III

if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Attention: Can lead to unnecessarily loose bound
Attention: if the expensive case only occurs with small n
Attention: (bound by a constant).



Recap Application Summary

Quick O-Analysis for Common Code Patterns III

if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Attention: Can lead to unnecessarily loose bound
Attention: if the expensive case only occurs with small n
Attention: (bound by a constant).



Recap Application Summary

Example: Worst Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break never happens.

O(1 + n · n · 1) = O(n2)

Over-estimated?
No, each of the two loops has Ω(n) iterations.



Recap Application Summary

Example: Worst Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break never happens.

O(1 + n · n · 1) = O(n2)

Over-estimated?
No, each of the two loops has Ω(n) iterations.



Recap Application Summary

Example: Worst Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break never happens.

O(1 + n · n · 1) = O(n2)

Over-estimated?
No, each of the two loops has Ω(n) iterations.



Recap Application Summary

Example: Worst Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break never happens.

O(1 + n · n · 1) = O(n2)

Over-estimated?
No, each of the two loops has Ω(n) iterations.



Recap Application Summary

Example: Best Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break always immediately with j = i

O(1 + n · 1 · 1) = O(n)

Over-estimated?
No, the outer loop has Ω(n) iterations.



Recap Application Summary

Example: Best Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break always immediately with j = i

O(1 + n · 1 · 1) = O(n)

Over-estimated?
No, the outer loop has Ω(n) iterations.



Recap Application Summary

Example: Best Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break always immediately with j = i

O(1 + n · 1 · 1) = O(n)

Over-estimated?
No, the outer loop has Ω(n) iterations.



Recap Application Summary

Example: Best Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break always immediately with j = i

O(1 + n · 1 · 1) = O(n)

Over-estimated?
No, the outer loop has Ω(n) iterations.



Recap Application Summary

Exam Question from 2019

Consider the following code fragment.
Specify the asymptotic running time (depending on n ∈ N)
in Θ notation and justify your answer (1-2 sentences).

1 int result = 0;

2 if (n > 23) {

3 return result;

4 }

5 for (int i = 0; i < n; i++) {

6 for (int j = 0; j < n; j++) {

7 result += j;

8 }

9 }

10 return result;



Recap Application Summary

Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Recap Application Summary

Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Recap Application Summary

Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Recap Application Summary

Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Recap Application Summary

Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Recap Application Summary

Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Recap Application Summary

Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Recap Application Summary

Summary



Recap Application Summary

Summary

In practice, we quite quickly can get an impression of the
running time of an algorithm with simple “cookbook recipes”.

Insertion sort has

in the best case running time Θ(n).
in the worst case running time Θ(n2).


	Recap
	

	Application
	

	Summary
	


