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Symbols

“f grows asymptotically as fast as g”

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

“f grows no faster than g”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

“f grows no slower than g”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}
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Symbol Theta: Illustration

f ∈ Θ(g)
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Some Relevant Classes of Functions

In increasing order (except for the general nk):

g growth

1 constant
log n logarithmic

n linear
n log n linearithmic

n2 quadratic
n3 cubic
nk polynomial (constant k)
2n exponential
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Connections

It holds that:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(for k ≥ 2)

O(nk1) ⊂ O(nk2) for k1 < k2
e.g. O(n2) ⊂ O(n3)
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Calculation Rules

Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)
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Quick O-Analysis for Common Code Patterns I

Constant-time operation:

var = 4 O(1)

Sequence of constant-time operations:

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)
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Quick O-Analysis for Common Code Patterns II

Loop:

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i depends on n.
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Quick O-Analysis for Common Code Patterns III

if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Attention: Can lead to unnecessarily loose bound
Attention: if the expensive case only occurs with small n
Attention: (bound by a constant).
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Example: Worst Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break never happens.

O(1 + n · n · 1) = O(n2)

Over-estimated?
No, each of the two loops has Ω(n) iterations.
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Example: Best Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break always immediately with j = i

O(1 + n · 1 · 1) = O(n)

Over-estimated?
No, the outer loop has Ω(n) iterations.
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Exam Question from 2019

Consider the following code fragment.
Specify the asymptotic running time (depending on n ∈ N)
in Θ notation and justify your answer (1-2 sentences).

1 int result = 0;

2 if (n > 23) {

3 return result;

4 }

5 for (int i = 0; i < n; i++) {

6 for (int j = 0; j < n; j++) {

7 result += j;

8 }

9 }

10 return result;
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Why are we Interested in All This?

Because algorithms/data structures with bad runtime
complexity strike back!

Example: for several years, GTA online took several minutes
to load.

Several minutes for parsing 10 megabyte of JSON data!
Probably bad library for parsing
Unsuitable data structure for duplication check
After fix: 70% less loading time
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
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Summary

In practice, we quite quickly can get an impression of the
running time of an algorithm with simple “cookbook recipes”.

Insertion sort has

in the best case running time Θ(n).
in the worst case running time Θ(n2).
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