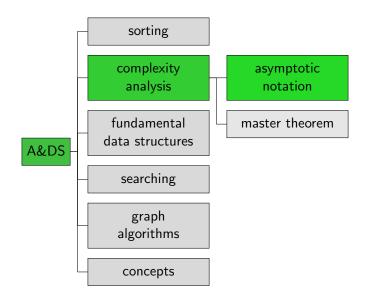
Algorithms and Data Structures A9. Runtime Analysis: Application

Gabriele Röger and Patrick Schnider

University of Basel

March 5, 2025

Content of the Course



Recap

Symbols

"f grows asymptotically as fast as g"

 $\Theta(g) = \{f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n)\}$

Symbols

"f grows asymptotically as fast as g"

 $\Theta(g) = \{f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n)\}$

■ "f grows no faster than g"

 $O(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

Symbols

"f grows asymptotically as fast as g"

 $\Theta(g) = \{f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n)\}$

■ "f grows no faster than g"

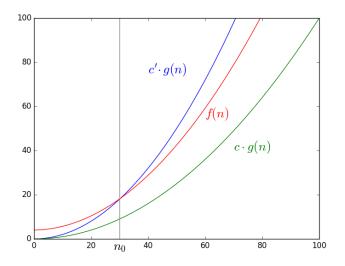
 $O(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

■ "f grows no slower than g"

 $\Omega(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

Symbol Theta: Illustration

 $f \in \Theta(g)$



Some Relevant Classes of Functions

In increasing order (except for the general n^k):

g	growth
1	constant
log n	logarithmic
п	linear
n log n	linearithmic
n ²	quadratic
n ³	cubic
n ^k	polynomial (constant <i>k</i>)
2 ⁿ	exponential

Connections

It holds that:

•
$$O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$$

(for $k \ge 2$)

Connections

It holds that:

• $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (for $k \ge 2$)

•
$$O(n^{k_1}) \subset O(n^{k_2})$$
 for $k_1 < k_2$
e.g. $O(n^2) \subset O(n^3)$

Calculation Rules

Product $f_1 \in O(g_1)$ and $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$

Calculation Rules

Product $f_1 \in O(g_1) \text{ and } f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$ Sum $f_1 \in O(g_1) \text{ and } f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$

Calculation Rules

Product

$$f_1 \in O(g_1)$$
 and $f_2 \in O(g_2) \Rightarrow f_1f_2 \in O(g_1g_2)$

Sum

$$f_1\in \mathit{O}(g_1)$$
 and $f_2\in \mathit{O}(g_2) \Rightarrow f_1+f_2\in \mathit{O}(g_1+g_2)$

Multiplication with a constant

$$k > 0 ext{ and } f \in O(g) \Rightarrow kf \in O(g)$$

 $k > 0 \Rightarrow O(kg) = O(g)$

Application

Quick O-Analysis for Common Code Patterns I

Constant-time operation:

$$var = 4 O(1)$$

Quick O-Analysis for Common Code Patterns I

Constant-time operation:

var = 4 | O(1)

Sequence of constant-time operations:

var1 = 4	O(1)	
var2 = 4	O(1)	$O(123\cdot 1)=O(1)$
• • •		$O(123 \cdot 1) = O(1)$
var123 = 4	O(1)	

Quick O-Analysis for Common Code Patterns II

Loop:

<pre>for i in range(n): res += i * m</pre>	<i>O</i> (<i>n</i>)	O(n, 1) = O(n)
res += i * m	O(1)	$O(n \cdot 1) = O(n)$

Quick O-Analysis for Common Code Patterns II

Loop:

<pre>for i in range(n): res += i * m</pre>	<i>O</i> (<i>n</i>)	O(n, 1) = O(n)
res += i * m	O(1)	$O(n \cdot 1) = O(n)$

<pre>for i in range(n):</pre>	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	
<pre>for j in range(i):</pre>	O(n)	<i>O</i> (<i>n</i>)	$O(n^{2})$
res += i * (m - j)	O(1)	0(11)	

i depends on n.

Quick O-Analysis for Common Code Patterns III

if-then-else

if var < bound:	O(1)	O(1)	
res += var	O(1)	O(1)	$O(1 + \max\{1, n\})$
else:			= O(n)
<pre>for i in range(n):</pre>	O(n)	$O(n \cdot 1)$	= O(n)
res += i * n	O(1)	= O(n)	

Quick O-Analysis for Common Code Patterns III

if-then-else

if var < bound:	O(1)	O(1)	
res += var	O(1)	O(1)	$O(1 + \max\{1, n\})$
else:			= O(n)
<pre>for i in range(n):</pre>	O(n)	$O(n \cdot 1)$	= O(n)
res += i * n	O(1)	= O(n)	

Attention: Can lead to unnecessarily loose bound if the expensive case only occurs with small *n* (bound by a constant).

1 de	f insertion_sort(array):
2	n = len(array)
3	for i in range(1, n): # $i = 1,, n - 1$
4	<pre># move array[i] to the left until it is</pre>
5	# at the correct position.
6	for j in range(i, 0, -1): $\# j = i,, 1$
7	if array[j] < array[j-1]:
8	array[j], array[j-1] = array[j-1], array[j]
9	else:
10	break

2 n = len(array)	
3 for i in range(1, n): $\# i = 1,, n - 1$	
4 <i># move array[i] to the left until it is</i>	
5 # at the correct position.	
6 for j in range(i, 0, -1): $\# j = i,, 1$	
<pre>7 if array[j] < array[j-1]:</pre>	
<pre>8 array[j], array[j-1] = array[j-1], array[</pre>	j]
9 else:	
10 break	

Worst case: break never happens.

1 (<pre>def insertion_sort(array):</pre>
2	n = len(array)
3	for i in range(1, n): # $i = 1,, n - 1$
4	# move $array[i]$ to the left until it is
5	# at the correct position.
6	for j in range(i, 0, -1): $\# j = i,, 1$
7	if array[j] < array[j-1]:
8	array[j], array[j-1] = array[j-1], array[j]
9	else:
10	break

Worst case: break never happens.

$$O(1+n\cdot n\cdot 1)=O(n^2)$$

1	<pre>def insertion_sort(array):</pre>
2	n = len(array)
3	for i in range(1, n): $\# i = 1, \dots, n - 1$
4	<pre># move array[i] to the left until it is</pre>
5	# at the correct position.
6	for j in range(i, 0, -1): $\# j = i,, 1$
7	if array[j] < array[j-1]:
8	array[j], array[j-1] = array[j-1], array[j]
9	else:
10	break

Worst case: break never happens.

$$O(1+n\cdot n\cdot 1)=O(n^2)$$

Over-estimated?

No, each of the two loops has $\Omega(n)$ iterations.

1 d e	ef insertion_sort(array):
2	n = len(array)
3	for i in range(1, n): # $i = 1,, n - 1$
4	<pre># move array[i] to the left until it is</pre>
5	# at the correct position.
6	for j in range(i, 0, -1): $\# j = i,, 1$
7	if array[j] < array[j-1]:
8	array[j], array[j-1] = array[j-1], array[j]
9	else:
10	break

1	<pre>def insertion_sort(array):</pre>
2	n = len(array)
3	for i in range(1, n): $\# i = 1,, n - 1$
4	<pre># move array[i] to the left until it is</pre>
5	# at the correct position.
6	for j in range(i, 0, -1): $\# j = i,, 1$
7	if array[j] < array[j-1]:
8	array[j], array[j-1] = array[j-1], array[j]
9	else:
10	break

Best case: break always immediately with j = i

1 (<pre>def insertion_sort(array):</pre>
2	n = len(array)
3	for i in range(1, n): # $i = 1,, n - 1$
4	# move $array[i]$ to the left until it is
5	# at the correct position.
6	for j in range(i, 0, -1): $\# j = i,, 1$
7	if array[j] < array[j-1]:
8	array[j], array[j-1] = array[j-1], array[j]
9	else:
10	break

Best case: break always immediately with j = i

$$O(1+n\cdot 1\cdot 1)=O(n)$$

1	def insertion_sort(array):
2	n = len(array)
3	for i in range(1, n): # $i = 1,, n - 1$
4	<pre># move array[i] to the left until it is</pre>
5	# at the correct position.
6	for j in range(i, 0, -1): $\# j = i,, 1$
7	if array[j] < array[j-1]:
8	array[j], array[j-1] = array[j-1], array[j]
9	else:
10	break

- Best case: break always immediately with j = i
- $\bullet O(1+n\cdot 1\cdot 1)=O(n)$
- Over-estimated?

No, the outer loop has $\Omega(n)$ iterations.

Exam Question from 2019

Consider the following code fragment. Specify the asymptotic running time (depending on $n \in \mathbb{N}$) in Θ notation and justify your answer (1-2 sentences).

```
int result = 0;
1
   if (n > 23) {
2
        return result;
3
   }
4
   for (int i = 0; i < n; i++) {
5
        for (int j = 0; j < n; j++) {
6
            result += j;
7
        }
8
    }
9
   return result;
10
```

Because algorithms/data structures with bad runtime complexity strike back!

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing
 - Unsuitable data structure for duplication check

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing
 - Unsuitable data structure for duplication check
 - After fix: 70% less loading time

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing
 - Unsuitable data structure for duplication check
 - After fix: 70% less loading time
 - https://nee.lv/2021/02/28/
 How-I-cut-GTA-Online-loading-times-by-70/index.
 html

Summary

Summary

- In practice, we quite quickly can get an impression of the running time of an algorithm with simple "cookbook recipes".
- Insertion sort has
 - in the best case running time $\Theta(n)$.
 - in the worst case running time $\Theta(n^2)$.