Algorithms and Data Structures A9. Runtime Analysis: Application

Gabriele Röger and Patrick Schnider

University of Basel

March 5, 2025

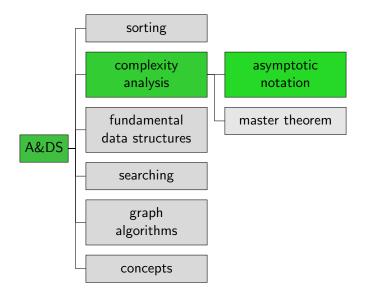
Algorithms and Data Structures March 5, 2025 — A9. Runtime Analysis: Application

A9.1 Recap

A9.2 Application

A9.3 Summary

Content of the Course



A9.1 Recap

Recap

Symbols

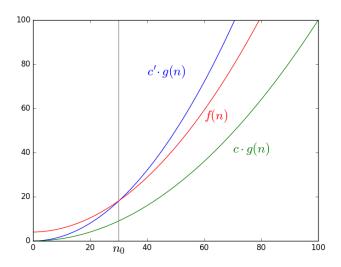
• "f grows asymptotically as fast as g" $\Theta(g) = \{f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \le c' \cdot g(n)\}$

"f grows no faster than g"
O(g) = {f | ∃c > 0 ∃n₀ > 0 ∀n ≥ n₀ : f(n) ≤ c · g(n)}
"f grows no slower than g"

 $\Omega(g) = \{f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n)\}$

Symbol Theta: Illustration

 $f \in \Theta(g)$



Some Relevant Classes of Functions

_

In increasing order (except for the general n^k):

g	growth
1	constant
log n	logarithmic
п	linear
n log n	linearithmic
n^2	quadratic
n ³	cubic
n ^k	polynomial (constant <i>k</i>)
2 ⁿ	exponential

Connections

It holds that:

► $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (for $k \ge 2$)

•
$$O(n^{k_1}) \subset O(n^{k_2})$$
 for $k_1 < k_2$
e.g. $O(n^2) \subset O(n^3)$

Calculation Rules

Product f₁ ∈ O(g₁) and f₂ ∈ O(g₂) ⇒ f₁f₂ ∈ O(g₁g₂) Sum f₁ ∈ O(g₁) and f₂ ∈ O(g₂) ⇒ f₁ + f₂ ∈ O(g₁ + g₂) Multiplication with a constant k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)

 $k > 0 \Rightarrow O(kg) = O(g)$

A9.2 Application

Quick O-Analysis for Common Code Patterns I

Constant-time operation:

var = 4
$$O(1)$$

Sequence of constant-time operations:

var1 = 4
var2 = 4
$$O(1)$$

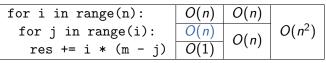
 $O(1)$
... $O(1)$
 $O(123 \cdot 1) = O(1)$...
var123 = 4 $O(1)$

A9. Runtime Analysis: Application

Application

Quick O-Analysis for Common Code Patterns II

<pre>for i in range(n): res += i * m</pre>	O(n)	O(n,1) = O(n)
res += i * m	O(1)	$O(n \cdot 1) = O(n)$



i depends on n.

Quick O-Analysis for Common Code Patterns III

if-then-else

if var < bound:	O(1)	O(1)	
res += var	O(1)	O(1)	$O(1 + \max\{1, n\})$
else:			$O(1 + \max\{1, n\}) = O(n)$
<pre>for i in range(n):</pre>	O(n)	$O(n \cdot 1)$	= O(n)
res += i * n	O(1)	= O(n)	

Attention: Can lead to unnecessarily loose bound if the expensive case only occurs with small *n* (bound by a constant).

Example: Worst Case for Insertion Sort

```
def insertion_sort(array):
2
      n = len(array)
      for i in range(1, n): \# i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): # j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
7
                   array[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                   break
10
```

- Worst case: break never happens.
- $\triangleright \quad O(1+n\cdot n\cdot 1)=O(n^2)$
- Over-estimated?

No, each of the two loops has $\Omega(n)$ iterations.

Example: Best Case for Insertion Sort

```
def insertion_sort(array):
 1
2
      n = len(array)
       for i in range(1, n): \# i = 1, ..., n - 1
3
           # move array[i] to the left until it is
4
           # at the correct position.
5
           for j in range(i, 0, -1): # j = i, ..., 1
6
               if array[j] < array[j-1]:</pre>
7
                    arrav[j], array[j-1] = array[j-1], array[j]
8
               else:
9
                    break
10
```

- Best case: break always immediately with j = i
- $\triangleright \quad O(1+n\cdot 1\cdot 1)=O(n)$
- Over-estimated?

No, the outer loop has $\Omega(n)$ iterations.

Exam Question from 2019

```
Consider the following code fragment.
Specify the asymptotic running time (depending on n \in \mathbb{N})
in \Theta notation and justify your answer (1-2 sentences).
```

```
int result = 0;
1
  if (n > 23) {
2
        return result;
3
   }
4
   for (int i = 0; i < n; i++) {
5
        for (int j = 0; j < n; j++) {
6
            result += j;
7
        }
8
   7
9
   return result;
10
```

Why are we Interested in All This?

- Because algorithms/data structures with bad runtime complexity strike back!
- Example: for several years, GTA online took several minutes to load.
 - Several minutes for parsing 10 megabyte of JSON data!
 - Probably bad library for parsing
 - Unsuitable data structure for duplication check
 - After fix: 70% less loading time
 - https://nee.lv/2021/02/28/
 How-I-cut-GTA-Online-loading-times-by-70/index.
 html

A9.3 Summary

- In practice, we quite quickly can get an impression of the running time of an algorithm with simple "cookbook recipes".
- Insertion sort has
 - in the best case running time $\Theta(n)$.
 - in the worst case running time $\Theta(n^2)$.