
Algorithms and Data Structures
A9. Runtime Analysis: Application

Gabriele Röger and Patrick Schnider

University of Basel

March 5, 2025

1 / 19



Algorithms and Data Structures
March 5, 2025 — A9. Runtime Analysis: Application

A9.1 Recap

A9.2 Application

A9.3 Summary

2 / 19



Content of the Course

A&DS

sorting

complexity
analysis

asymptotic
notation

master theoremfundamental
data structures

searching

graph
algorithms

concepts

3 / 19



A9. Runtime Analysis: Application Recap

A9.1 Recap

4 / 19



A9. Runtime Analysis: Application Recap

Symbols

▶ “f grows asymptotically as fast as g”

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

▶ “f grows no faster than g”

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

▶ “f grows no slower than g”

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

5 / 19



A9. Runtime Analysis: Application Recap

Symbol Theta: Illustration

f ∈ Θ(g)

6 / 19



A9. Runtime Analysis: Application Recap

Some Relevant Classes of Functions

In increasing order (except for the general nk):

g growth

1 constant
log n logarithmic

n linear
n log n linearithmic

n2 quadratic
n3 cubic
nk polynomial (constant k)
2n exponential

7 / 19



A9. Runtime Analysis: Application Recap

Connections

It holds that:

▶ O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(for k ≥ 2)

▶ O(nk1) ⊂ O(nk2) for k1 < k2
e.g. O(n2) ⊂ O(n3)

8 / 19



A9. Runtime Analysis: Application Recap

Calculation Rules

▶ Product
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

▶ Sum
f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

▶ Multiplication with a constant
k > 0 and f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)

9 / 19



A9. Runtime Analysis: Application Application

A9.2 Application

10 / 19



A9. Runtime Analysis: Application Application

Quick O-Analysis for Common Code Patterns I

▶ Constant-time operation:

var = 4 O(1)

▶ Sequence of constant-time operations:

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)

11 / 19



A9. Runtime Analysis: Application Application

Quick O-Analysis for Common Code Patterns II

▶ Loop:

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i depends on n.

12 / 19



A9. Runtime Analysis: Application Application

Quick O-Analysis for Common Code Patterns III

▶ if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Attention: Can lead to unnecessarily loose bound
Attention: if the expensive case only occurs with small n
Attention: (bound by a constant).

13 / 19



A9. Runtime Analysis: Application Application

Example: Worst Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

▶ Worst case: break never happens.

▶ O(1 + n · n · 1) = O(n2)

▶ Over-estimated?
No, each of the two loops has Ω(n) iterations.

14 / 19



A9. Runtime Analysis: Application Application

Example: Best Case for Insertion Sort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

▶ Best case: break always immediately with j = i

▶ O(1 + n · 1 · 1) = O(n)

▶ Over-estimated?
No, the outer loop has Ω(n) iterations.

15 / 19



A9. Runtime Analysis: Application Application

Exam Question from 2019

Consider the following code fragment.
Specify the asymptotic running time (depending on n ∈ N)
in Θ notation and justify your answer (1-2 sentences).

1 int result = 0;

2 if (n > 23) {

3 return result;

4 }

5 for (int i = 0; i < n; i++) {

6 for (int j = 0; j < n; j++) {

7 result += j;

8 }

9 }

10 return result;

16 / 19



A9. Runtime Analysis: Application Application

Why are we Interested in All This?

▶ Because algorithms/data structures with bad runtime
complexity strike back!

▶ Example: for several years, GTA online took several minutes
to load.
▶ Several minutes for parsing 10 megabyte of JSON data!
▶ Probably bad library for parsing
▶ Unsuitable data structure for duplication check
▶ After fix: 70% less loading time
▶ https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

17 / 19

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


A9. Runtime Analysis: Application Summary

A9.3 Summary

18 / 19



A9. Runtime Analysis: Application Summary

Summary

▶ In practice, we quite quickly can get an impression of the
running time of an algorithm with simple “cookbook recipes”.

▶ Insertion sort has
▶ in the best case running time Θ(n).
▶ in the worst case running time Θ(n2).

19 / 19


	Recap
	

	Application
	

	Summary
	


