Algorithms and Data Structures A8. Runtime Analysis: Asymptotic Notation

Gabriele Röger and Patrick Schnider

University of Basel

March 5, 2025

Algorithms and Data Structures

March 5, 2025 — A8. Runtime Analysis: Asymptotic Notation

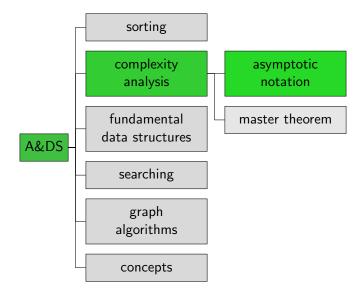
A8.1 Asymptotic Notation

A8.2 Rules

A8.3 Summary

A8.1 Asymptotic Notation

Content of the Course



Result for Merge Sort

"The running time of merge sort grows asymptotically as fast as $n \log_2 n$."

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

- ▶ When determining the bounds, we ignored lower-order terms (constant and *n*) or let them disappear.
- ▶ We were not interested in the exact values of the constants but were satisfied if there exist some suitable constants.
- ▶ The running time for small *n* is not that important.

Previous Results

Theorem

The merge step has linear running time, i.e., there are constants $c, c', n_0 > 0$ such that for all $n \ge n_0$: $cn \le T(n) \le c'n$.

Theorem

Merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \ge n_0$: $cn \log_2 n \le T(n) \le c' n \log_2 n$.

Theorem

Selection sort has quadratic running time, i.e., there are constants $c > 0, c' > 0, n_0 > 0$ such that for $n \ge n_0$: $cn^2 \le T(n) \le c'n^2$.

Can't we write this more compactly?

Asymptotic Notation/Landau-Bachmann Notation

Edmund Landau

- ► German mathematician (1877–1938)
- analytic number theory
- no friend of applied mathematics

Neutral term: Asymptotic notation

German: Landau notation

Internationally: Bachmann-Landau notation also after

Paul Gustav Heinrich Bachmann (German mathematician)

Symbol Theta

Definition

For a function $g: \mathbb{N} \to \mathbb{R}$, we denote by $\Theta(g)$ the set of all functions $f: \mathbb{N} \to \mathbb{R}$ that grow asymptotically as fast as g:

$$\Theta(g) = \{ f \mid \exists c > 0 \ \exists c' > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \\ c \cdot g(n) \le f(n) \le c' \cdot g(n) \}$$

```
"The running time of merge sort is in \Theta(n \log_2 n)."

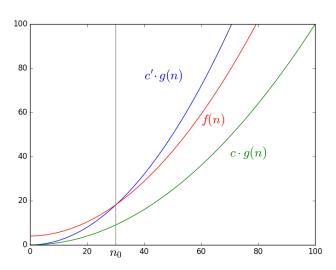
"f \in \Theta(n^2) with f(n) = 3n^2 + 5n + 39"

or by convention (abusing notation/terminology) also

"The running time of merge sort is \Theta(n \log_2 n)."

"3n^2 + 5n + 39 = \Theta(n^2)"
```

Symbol Theta: Illustration



Jupyter Notebook (with Exercises)

Jupyter notebook: asymptotic_notation.ipynb

More Symbols for Asymptotic Growth

• "f grows no faster than g."

$$O(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

- O for "Ordnung" (order) of the function.
- "f grows at least as fast as g."

$$\Omega(g) = \{ f \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : c \cdot g(n) \leq f(n) \}$$

- $\blacktriangleright \ \Theta(g) = O(g) \cap \Omega(g)$
- ▶ $f \in \Omega(g)$ if and only if $g \in O(f)$.
- In computer science, we are often only interested in an upper bound on the growth of the running time: O instead of Θ

Pronunciation: Θ : Theta, Ω : Omega, O: Oh

Less Frequently needed Symbols

• "f grows slower than g."

$$o(g) = \{f \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \geq n_0 : f(n) \leq c \cdot g(n)\}$$

► "f grows faster than g."

$$\omega(g) = \{ f \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : c \cdot g(n) \le f(n) \}$$

Pronunciation: ω : little-omega

Some Relevant Classes of Functions

In increasing order (except for the general n^k):

growth
constant
logarithmic
linear
linearithmic
quadratic
cubic
polynomial (constant k)
exponential

A8.2 Rules

Examples for Θ

- ▶ In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
 - $f_1(n) = 5n^2 + 3n 9 \in \Theta(n^2)$
 - $f_2(n) = 3n \log_2 n + 2n^2 \in \Theta(n^2)$
 - $f_3(n) = 9n \log_2 n + n + 17 \in \Theta(n \log n)$
 - $f_4(n) = 8 \in \Theta(1)$

Examples for Big-O

- In the analysis, only the highest-order term (= fastest-growing summand) of a function is relevant.
- Examples:
 - $f_1(n) = 8n^2 3n 9 \in O(n^2)$
 - $f_2(n) = n^3 3n \log_2 n \in O(n^3)$
 - $f_3(n) = 3n \log_2 n + 1000n + 10^{200} \in O(n \log n)$
- ► Why is this the case?

Connections

It holds that:

- $O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^k) \subset O(2^n)$ (for $k \ge 2$)
- $O(n^{k_1}) \subset O(n^{k_2}) \text{ for } k_1 < k_2$ e.g. $O(n^2) \subset O(n^3)$

Calculation Rules

- Product $f_1 \in O(g_1)$ and $f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 g_2)$
- Sum $f_1 \in O(g_1)$ and $f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$
- Multiplication with a constant k > 0 and $f \in O(g) \Rightarrow kf \in O(g)$ $k > 0 \Rightarrow O(kg) = O(g)$

Reason for Sufficiency of Highest-order Term

Example: $5n^3 + 2n \in O(n^3)$

- Due to rule for multiplication with a constant:
 - $\blacktriangleright 5n^3 \in O(n^3)$
 - $ightharpoonup 2n \in O(n)$
- ▶ Because of $2n \in O(n)$ and $O(n) \subset O(n^3)$:
 - $ightharpoonup 2n \in O(n^3)$
- Sum rule:
 - $\triangleright 5n^3 + 2n \in O(n^3 + n^3)$
- Multiplication with a constant (for a class):
 - $> 5n^3 + 2n \in O(n^3)$

A8.3 Summary

Summary

- With asymptotic notation, we refer to classes of functions that grow no faster/no slower/...than a function g.
 - \triangleright O(g): Growth no faster than g.
 - $ightharpoonup \Theta(g)$: Growth asymptotically as fast as g.