Algorithms and Data Structures
February 27, 2025 — A7. Runtime Analysis: Bottom-Up Merge Sort

Algorithms and Data Structures
A7. Runtime Analysis: Bottom-Up Merge Sort
A7.1 Runtime Analysis: Bottom-Up Merge Sort

Gabriele Roger and Patrick Schnider

University of Basel A7.2 SU mmary

February 27, 2025

1/16 2/16

A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Content of the Course

selection sort

A7.1 Runtime Analysis: B U
7.1 Runtime Analysis: Bottom-Up not comparizan
Merge Sort | | fundamental
data structures overview and
outlook
algorithms

concepts

3/16 4/ 16

A7. Runtime Analysis: Bottom-Up Merge Sort

Merge Step
1 def merge(array, tmp, lo, mid, hi):
2 i=1lo
€l 3 j = mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,h%
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp [k] = array[il]
C 7 i+=1
8 else:
9 tmp[k] = array[j]
10 jg+=1
11 for k in range(lo, hi + 1): # k = lo,...,h%
c3 |12 array[k] = tmp[k]

We analyze the running time for m := hi —lo+1
(number of elements that should be merged).

Runtime Analysis: Bottom-Up Merge Sort

A7. Runtime Analysis: Bottom-Up Merge Sort

Merge Step: Analysis

T(m)=ca+cam+cam

> (c2+c3)m
For m>1:

T(m)=c+ cm+cm
<cm-+cm+czm
= (c1 + o + C3)In

Theorem

The merge step has linear running time, i.e., there are constants
¢, c’,ng > 0 such that for all n > ny: cn < T(n) < ¢'n.

Runtime Analysis: Bottom-Up Merge Sort

A7. Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge(array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

We use the following constants in the analysis:
c1 lines 2—4 Assumption: merge requires
¢ lines 6 and 12 ¢4 (hi-lo+1) operations.
c3 lines 8,9,11

Runtime Analysis: Bottom-Up Merge Sort

A7. Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2% for some k € N+

Iterations of the outer loop (m for hi-lo+1):
» |teration 1: n/2 times inner loop with merge for m = 2
e+ 8(cs+2cs) = 2+ 5c3n+ can
» |teration 2: n/4 times inner loop with merge for m = 4
o+ i(a+ida)=c+ %C3n + can

A\

Outer loop terminates after last iteration /.

» |teration /: n/n =1 time inner loop with merge for m = n
o+ o(c3+ncg) =co+c3+an

Total T(n) < ¢y +4(ca+ csn+ can) < l(ci + o+ c3+ ca)n

Runtime Analysis: Bottom-Up Merge Sort

A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis Il

What is the value of £7
» In iteration i we have m = 2/ for the merge step.
» In iteration £ we have m = 2 = n for the merge step.
> Since n = 2K we have £ = k = log, n.

With ¢ :=c1 + ¢ + c3 + ¢4 we get T(n) < cnlog, n.

A7. Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis Il

What if n is not a power of two, so 2K=1 < n < 2k?
» Nevertheless k iterations of the outer loop.
» Inner loop does not perform more operations.
» T(n) < cnk = cn([logyn| +1) < 2cnlog, n (for k > 2)

Runtime Analysis: Bottom-Up Merge Sort

A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis IV

Analogous argument possible for lower bound.
— Exercises

Theorem

Bottom-up merge sort has linearithmic running time, i.e.
there are constants c,c’,ng > 0, such that for all n > nq:
cnlogy, n < T(n) < c’nlog, n.

11 /16

A7. Runtime Analysis: Bottom-Up Merge Sort

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?
» Assumption: ¢ = 1, one operation takes on average 1078 sec.

> With 1000 elements, we wait
108 -10%log,(10%) ~ 0.0001 seconds.

With 10 thousand elements ~ 0.0013 seconds.
With 100 thousand elements ~ 0.017 seconds.

With 1 million elements &~ 0.2 seconds.

vV v vy

With 1 billion elements ~ 299 seconds.

Running time nlog, n not much worse than linear running time

Runtime Analysis: Bottom-Up Merge Sort

A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Merge Sort with Cost Model |

Key comparisons
» Only in merge.

> Merging two ranges of length m and n requires in the best
case min(n, m) and in the worst case n + m — 1 comparisons.

» With two ranges of roughly equal length, this is a linear
number of comparisons, i.e., there are ¢, ¢’ > 0 such that the
number of comparisons is between cn and ¢’n.

— Number of key comparisons that is performed for sorting the
entire input sequence is linearithmic in the length of the
sequence (analogously to the runtime analysis).

13 /16

A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Merge Sort with Cost Model Il

Movements of elements
» Only in merge.
» 2n movements for sequence of length n.

» Total for merge sort linearithmic
(analogously to key comparisons).

A7. Runtime Analysis: Bottom-Up Merge Sort Summary

A7.2 Summary

15 / 16

14 / 16
A7. Runtime Analysis: Bottom-Up Merge Sort Summary
Summary
> Merge sort has linearithmic running time,
key comparisons and movements of elements.
16 / 16

	Runtime Analysis: Bottom-Up Merge Sort
	

	Summary
	

