Algorithms and Data Structures
AT7. Runtime Analysis: Bottom-Up Merge Sort

Gabriele Roger and Patrick Schnider

University of Basel

February 27, 2025



Algorithms and Data Structures
February 27, 2025 — A7. Runtime Analysis: Bottom-Up Merge Sort

A7.1 Runtime Analysis: Bottom-Up Merge Sort

A7.2 Summary

2/16



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

A7.1 Runtime Analysis: Bottom-Up
Merge Sort

3/16



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Content of the Course

selection sort
insertion sort

not comparison-
based

fundamental

-k data structures

searching

overview and
outlook

graph
algorithms

concepts

4/16



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Merge Step

1 def merge(array, tmp, lo, mid, hi):
2 i=1lo
€1l j = mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,ht
5 if j > hi or (i <= mid and array[i] <= arrayl[jl):
6 tmp [k] = array[i]
Co 7 i+=1
8 else:
9 tmp[k] = arrayl[j]
10 j+=1
11 for k in range(lo, hi + 1): # k = lo,...,ht
C3 |12 array[k] = tmpl[k]

We analyze the running time for m := hi—lo+1
(number of elements that should be merged).



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Merge Step: Analysis

T(m) =cC +cm-+c3m

> (2 +c)m
For m > 1:

T(m) =cCc+com+c3m
<cm+cm+4 cam
=(a+c+a)m

Theorem

The merge step has linear running time, i.e., there are constants
¢, c’,ng > 0 such that for all n > ng: cn < T(n) < c’n.



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

We use the following constants in the analysis:
c1 lines 2-4 Assumption: merge requires
¢ lines 6 and 12 ca(hi-lo+1) operations.
c3 lines 8,9,11

16



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis |

Assumption: n = 2 for some k € N+g

Iterations of the outer loop (m for hi-lo+1):
» lteration 1: n/2 times inner loop with merge for m = 2
o+ (s +2a) =+ scn+an
» |teration 2: n/4 times inner loop with merge for m = 4
o+ z(cs+4a)=c+ %C3n + can

v

Outer loop terminates after last iteration £.

» lteration /: n/n =1 time inner loop with merge for m = n
C + %(C3 + nC4) =C + 3+ an

Total T(n) < cr+4(cx+ c3n+can) < l(ci+ o+ 3+ c)n



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis Il

What is the value of ¢7

> In iteration i we have m = 2/ for the merge step.

> In iteration ¢ we have m = 2¢ = n for the merge step.

> Since n = 2k we have £ = k = log, n.

With ¢ :=c1 4+ ¢ + 3+ ¢4 we get T(n) < cnlog, n.

/ 16



A7. Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis Ill

What if n is not a power of two, so 2k=1 « n < 2k?
> Nevertheless k iterations of the outer loop.
» Inner loop does not perform more operations.
» T(n) < cnk = cn(|logy n] + 1) < 2cnlog, n (for k > 2)

10 /

Runtime Analysis: Bottom-Up Merge Sort

16



A7. Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort: Analysis IV

Runtime Analysis: Bottom-Up Merge Sort

Analogous argument possible for lower bound.
— Exercises

Theorem
Bottom-up merge sort has linearithmic running time, i.e.

there are constants c,c’,ng > 0, such that for all n > ng:
cnlog, n < T(n) < c’'nlog, n.

11 /16



A7. Runtime Analysis: Bottom-Up Merge Sort

Linearithmic Running Time

Linearithmic running time nlog, n:
— twice as large input, slightly more than twice the running time

What does this mean in practice?

>

>

vV v v Y

Assumption: ¢ = 1, one operation takes on average 1072 sec.

With 1000 elements, we wait
1078 - 10%log,(10%) ~ 0.0001 seconds.

With 10 thousand elements ~ 0.0013 seconds.
With 100 thousand elements =~ 0.017 seconds.
With 1 million elements =~ 0.2 seconds.

With 1 billion elements =~ 299 seconds.

Running time nlog, n not much worse than linear running time

12/

Runtime Analysis: Bottom-Up Merge Sort

16



A7. Runtime Analysis: Bottom-Up Merge Sort

Merge Sort with Cost Model |

Key comparisons

>
>

Only in merge.

Merging two ranges of length m and n requires in the best
case min(n, m) and in the worst case n+ m — 1 comparisons.

With two ranges of roughly equal length, this is a linear
number of comparisons, i.e., there are ¢, ¢’ > 0 such that the
number of comparisons is between cn and ¢’n.

Number of key comparisons that is performed for sorting the
entire input sequence is linearithmic in the length of the
sequence (analogously to the runtime analysis).

13

Runtime Analysis: Bottom-Up Merge Sort

16



A7. Runtime Analysis: Bottom-Up Merge Sort

Merge Sort with Cost Model Il

Movements of elements

» Only in merge.

> 2n movements for sequence of length n.

» Total for merge sort linearithmic
(analogously to key comparisons).

Runtime Analysis: Bottom-Up Merge Sort

14 /

16



A7. Runtime Analysis: Bottom-Up Merge Sort Summary

A7.2 Summary

15 / 16



A7. Runtime Analysis: Bottom-Up Merge Sort Summary

Summary

> Merge sort has linearithmic running time,
key comparisons and movements of elements.

16 / 16



	Runtime Analysis: Bottom-Up Merge Sort
	

	Summary
	


