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Merge Step

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

We analyze the running time for m := hi− lo + 1
(number of elements that should be merged).

c1

c2

c3
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Merge Step: Analysis

T (m) = c1 + c2m + c3m

≥ (c2 + c3)m

For m ≥ 1:

T (m) = c1 + c2m + c3m

≤ c1m + c2m + c3m

= (c1 + c2 + c3)m

Theorem
The merge step has linear running time, i.e., there are constants
c , c ′, n0 > 0 such that for all n ≥ n0: cn ≤ T (n) ≤ c ′n.

6 / 16



A7. Runtime Analysis: Bottom-Up Merge Sort Runtime Analysis: Bottom-Up Merge Sort

Bottom-Up Merge Sort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

We use the following constants in the analysis:
c1 lines 2–4
c2 lines 6 and 12
c3 lines 8,9,11

Assumption: merge requires
c4(hi-lo+1) operations.
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Bottom-Up Merge Sort: Analysis I

Assumption: n = 2k for some k ∈ N>0

Iterations of the outer loop (m for hi-lo+1):

▶ Iteration 1: n/2 times inner loop with merge for m = 2
c2 +

n
2 (c3 + 2c4) = c2 +

1
2c3n + c4n

▶ Iteration 2: n/4 times inner loop with merge for m = 4
c2 +

n
4 (c3 + 4c4) = c2 +

1
4c3n + c4n

▶ . . .

▶ Outer loop terminates after last iteration ℓ.

▶ Iteration ℓ: n/n = 1 time inner loop with merge for m = n
c2 +

n
n (c3 + nc4) = c2 + c3 + c4n

Total T (n) ≤ c1 + ℓ(c2 + c3n + c4n) ≤ ℓ(c1 + c2 + c3 + c4)n
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Bottom-Up Merge Sort: Analysis II

What is the value of ℓ?

▶ In iteration i we have m = 2i for the merge step.

▶ In iteration ℓ we have m = 2ℓ = n for the merge step.

▶ Since n = 2k we have ℓ = k = log2 n.

With c := c1 + c2 + c3 + c4 we get T (n) ≤ cn log2 n.
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Bottom-Up Merge Sort: Analysis III

What if n is not a power of two, so 2k−1 < n < 2k?

▶ Nevertheless k iterations of the outer loop.

▶ Inner loop does not perform more operations.

▶ T (n) ≤ cnk = cn(⌊log2 n⌋+ 1) ≤ 2cn log2 n (for k > 2)
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Bottom-Up Merge Sort: Analysis IV

Analogous argument possible for lower bound.
→ Exercises

Theorem
Bottom-up merge sort has linearithmic running time, i.e.
there are constants c , c ′, n0 > 0, such that for all n ≥ n0:
cn log2 n ≤ T (n) ≤ c ′n log2 n.
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Linearithmic Running Time

Linearithmic running time n log2 n:
→ twice as large input, slightly more than twice the running time

What does this mean in practice?

▶ Assumption: c = 1, one operation takes on average 10−8 sec.

▶ With 1000 elements, we wait
10−8 · 103 log2(103) ≈ 0.0001 seconds.

▶ With 10 thousand elements ≈ 0.0013 seconds.

▶ With 100 thousand elements ≈ 0.017 seconds.

▶ With 1 million elements ≈ 0.2 seconds.

▶ With 1 billion elements ≈ 299 seconds.

Running time n log2 n not much worse than linear running time
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Merge Sort with Cost Model I

Key comparisons

▶ Only in merge.

▶ Merging two ranges of length m and n requires in the best
case min(n,m) and in the worst case n +m − 1 comparisons.

▶ With two ranges of roughly equal length, this is a linear
number of comparisons, i.e., there are c , c ′ > 0 such that the
number of comparisons is between cn and c ′n.

→ Number of key comparisons that is performed for sorting the
entire input sequence is linearithmic in the length of the
sequence (analogously to the runtime analysis).
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Merge Sort with Cost Model II

Movements of elements

▶ Only in merge.

▶ 2n movements for sequence of length n.

▶ Total for merge sort linearithmic
(analogously to key comparisons).
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A7.2 Summary
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Summary

▶ Merge sort has linearithmic running time,
key comparisons and movements of elements.
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