

Algorithms and Data Structures

A7. Runtime Analysis: Bottom-Up Merge Sort

Gabriele Röger and Patrick Schnider

University of Basel

February 27, 2025

Algorithms and Data Structures

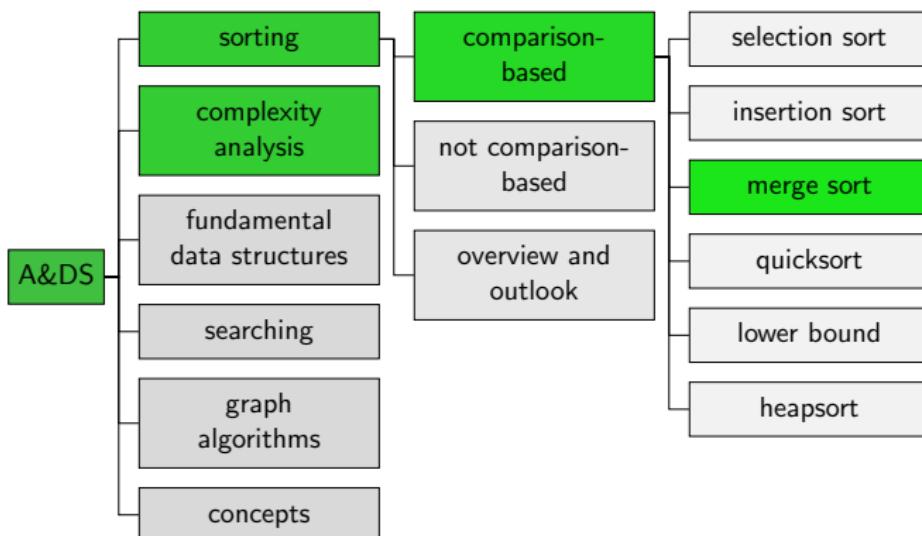
February 27, 2025 — A7. Runtime Analysis: Bottom-Up Merge Sort

A7.1 Runtime Analysis: Bottom-Up Merge Sort

A7.2 Summary

A7.1 Runtime Analysis: Bottom-Up Merge Sort

Content of the Course



Merge Step

```
1 def merge(array, tmp, lo, mid, hi):  
2     i = lo  
3     j = mid + 1  
4     for k in range(lo, hi + 1):  # k = lo, ..., hi  
5         if j > hi or (i <= mid and array[i] <= array[j]):  
6             tmp[k] = array[i]  
7             i += 1  
8         else:  
9             tmp[k] = array[j]  
10            j += 1  
11     for k in range(lo, hi + 1):  # k = lo, ..., hi  
12         array[k] = tmp[k]
```

We analyze the running time for $m := hi - lo + 1$
(number of elements that should be merged).

Merge Step: Analysis

$$\begin{aligned}T(m) &= c_1 + c_2 m + c_3 m \\&\geq (c_2 + c_3)m\end{aligned}$$

For $m \geq 1$:

$$\begin{aligned}T(m) &= c_1 + c_2 m + c_3 m \\&\leq c_1 m + c_2 m + c_3 m \\&= (c_1 + c_2 + c_3)m\end{aligned}$$

Theorem

The merge step has *linear running time*, i.e., there are constants $c, c', n_0 > 0$ such that for all $n \geq n_0$: $cn \leq T(n) \leq c'n$.

Bottom-Up Merge Sort

```
1 def sort(array):  
2     n = len(array)  
3     tmp = list(array)  
4     length = 1  
5     while length < n:  
6         lo = 0  
7         while lo < n - length:  
8             mid = lo + length - 1  
9             hi = min(lo + 2 * length - 1, n - 1)  
10            merge(array, tmp, lo, mid, hi)  
11            lo += 2 * length  
12            length *= 2
```

We use the following constants in the analysis:

c_1 lines 2–4

Assumption: merge requires

c_2 lines 6 and 12

$c_4(hi-lo+1)$ operations.

c_3 lines 8,9,11

Bottom-Up Merge Sort: Analysis I

Assumption: $n = 2^k$ for some $k \in \mathbb{N}_{>0}$

Iterations of the outer loop (m for $\text{hi-lo}+1$):

- ▶ Iteration 1: $n/2$ times inner loop with merge for $m = 2$
 $c_2 + \frac{n}{2}(c_3 + 2c_4) = c_2 + \frac{1}{2}c_3n + c_4n$
- ▶ Iteration 2: $n/4$ times inner loop with merge for $m = 4$
 $c_2 + \frac{n}{4}(c_3 + 4c_4) = c_2 + \frac{1}{4}c_3n + c_4n$
- ▶ ...
- ▶ Outer loop terminates after last iteration ℓ .
- ▶ Iteration ℓ : $n/n = 1$ time inner loop with merge for $m = n$
 $c_2 + \frac{n}{n}(c_3 + nc_4) = c_2 + c_3 + c_4n$

Total $T(n) \leq c_1 + \ell(c_2 + c_3n + c_4n) \leq \ell(c_1 + c_2 + c_3 + c_4)n$

Bottom-Up Merge Sort: Analysis II

What is the value of ℓ ?

- ▶ In iteration i we have $m = 2^i$ for the merge step.
- ▶ In iteration ℓ we have $m = 2^\ell = n$ for the merge step.
- ▶ Since $n = 2^k$ we have $\ell = k = \log_2 n$.

With $c := c_1 + c_2 + c_3 + c_4$ we get $T(n) \leq cn \log_2 n$.

Bottom-Up Merge Sort: Analysis III

What if n is not a power of two, so $2^{k-1} < n < 2^k$?

- ▶ Nevertheless k iterations of the outer loop.
- ▶ Inner loop does not perform more operations.
- ▶ $T(n) \leq cnk = cn(\lfloor \log_2 n \rfloor + 1) \leq 2cn \log_2 n$ (for $k > 2$)

Bottom-Up Merge Sort: Analysis IV

Analogous argument possible for lower bound.

→ Exercises

Theorem

Bottom-up merge sort has linearithmic running time, i.e. there are constants $c, c', n_0 > 0$, such that for all $n \geq n_0$:

$$cn \log_2 n \leq T(n) \leq c'n \log_2 n.$$

Linearithmic Running Time

Linearithmic running time $n \log_2 n$:

→ twice as large input, slightly more than twice the running time

What does this mean in practice?

- ▶ Assumption: $c = 1$, one operation takes on average 10^{-8} sec.
- ▶ With 1000 elements, we wait $10^{-8} \cdot 10^3 \log_2(10^3) \approx 0.0001$ seconds.
- ▶ With 10 thousand elements ≈ 0.0013 seconds.
- ▶ With 100 thousand elements ≈ 0.017 seconds.
- ▶ With 1 million elements ≈ 0.2 seconds.
- ▶ With 1 billion elements ≈ 299 seconds.

Running time $n \log_2 n$ not much worse than linear running time

Merge Sort with Cost Model I

Key comparisons

- ▶ Only in `merge`.
- ▶ Merging two ranges of length m and n requires in the best case $\min(n, m)$ and in the worst case $n + m - 1$ comparisons.
- ▶ With two ranges of roughly equal length, this is a **linear** number of comparisons, i.e., there are $c, c' > 0$ such that the number of comparisons is between cn and $c'n$.
- Number of key comparisons that is performed for sorting the entire input sequence is **linearithmic** in the length of the sequence (analogously to the runtime analysis).

Merge Sort with Cost Model II

Movements of elements

- ▶ Only in `merge`.
- ▶ $2n$ movements for sequence of length n .
- ▶ Total for merge sort **linearithmic** (analogously to key comparisons).

A7.2 Summary

Summary

- ▶ Merge sort has linearithmic running time, key comparisons and movements of elements.