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Exact Runtime Analysis Unrealistic

Would be nice: formula that determines for a specific input
how long the computation will take.

Exact runtime prediction is hard because of too many
influencing factors.

Speed and architecture of the computer
Programming language
Compiler version
Current load (what else is running?)
Caching behavior

We neither can nor want to consider all this in a formula.
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Runtime Analysis: 1st Simplification

Don’t measure time but count operations

What is an operation?

Ideally: one line of machine code or – even more precisely –
one processor cycle

Instead: constant-time operations

Constant time: running time independent of input.
Ignore runtime differences of different operations.
E.g. addition, assignments, branching, function call.
Roughly: operation = one line of code.
But: also consider what’s behind it
e.g. steps inside the called function.

Running time roughly proportional to the number of operations
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Runtime Analysis: 2nd Simplification

Don’t count exactly but use bounds!

Mostly considering upper bounds
How many steps does it take at most?

Sometimes also lower bound
How many steps are at least executed?

”‘running time”’ for bound on number of executed operations
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Runtime Analysis: 3rd Simplification

Bounds only relative to the input size

T (n): running time for input of size n

For adaptive algorithms we distinguish

Best case
running time for best possible input of size n
Worst case
running time for worst possible input of size n
Average case
average running time over all inputs of size n
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Cost Models

Sometimes: analysis wrt. cost model

Identify fundamental operations for the algorithm class
e.g. for sorting algorithms.

Key comparison
Swap of two elements or movement of an element

Analyze number of these operations.
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Example from C++ Reference

http://www.cplusplus.com/reference/algorithm/sort/

http://www.cplusplus.com/reference/algorithm/sort/
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Questions

Questions?
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Example: Selection Sort
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Selection Sort: Algorithm

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]
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Selection Sort with Cost Model

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

On an input of size n, how often does the algorithm
swap two elements?
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Selection Sort with Cost Model

1 def selection_sort(array):
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3 for i in range(n - 1): # i = 0, ..., n-2
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→ n-1 swaps of two elements (“linear”)

→
(n
2

)
= 1

2n(n − 1) key comparisons (“quadratic”)
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Selection Sort: Analysis I

We show: T (n) ≤ c ′ · n2 for n ≥ 1 and some constant c ′

Outer loop (3-10) and inner loop (6-8)

Number of operations for each iteration of the outer loop:

Constant a for no. of operations in lines 7 and 8
Constant b for no. of operations in lines 5 and 10

i # operations
0 a(n − 1) + b
1 a(n − 2) + b

. . .
n-2 a · 1 + b

Total: T (n) =
∑n−2

i=0 (a(n − (i + 1)) + b)
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Selection Sort: Analysis II

T (n) =
∑n−2

i=0
(a(n − (i + 1)) + b)

=
∑n−1

i=1
(a(n − i) + b)

= a
∑n−1

i=1
(n − i) + b(n − 1)

=
1

2
a(n − 1)n + b(n − 1)

≤ 1

2
an2 + b(n − 1)

≤ 1

2
an2 + b(n − 1)n

≤ 1

2
an2 + bn2 = (

1

2
a+ b)n2

⇒ with c ′ = (12a+ b) it holds for n ≥ 1 that T (n) ≤ c ′ · n2
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Selection Sort: Analysis III

Too generous bound?

We show for n ≥ 2: T (n) ≥ c · n2 for some constant c

T (n) = · · · = 1

2
a(n − 1)n + b(n − 1)

≥ 1

2
a(n − 1)n

≥ 1

4
an2 (n − 1 ≥ 1

2
n for n ≥ 2)

⇒ with c = 1
4a it holds for n ≥ 2 that T (n) ≥ c · n2

Theorem

Selection sort has quadratic running time, i.e., there are constants
c > 0, c ′ > 0, n0 > 0 such that for n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.
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Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

Assumption: c = 1, one operation takes on average 10−8 sec.

With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

With 100 thousand elements 10−8 · (105)2 = 100 seconds.

With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs



Runtime Analysis in General Example: Selection Sort Summary

Questions

Questions?



Runtime Analysis in General Example: Selection Sort Summary

Summary



Runtime Analysis in General Example: Selection Sort Summary

Summary

Runtime analysis considers bounds on the number of executed
operations.

We don’t count exactly.
We ignore how long each operation actually takes.
Running time should be roughly proportional to the number of
operations.

Selection sort has quadratic running time and performs a
linear number of swaps and a quadratic number of key
comparisons.
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