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Exact Runtime Analysis Unrealistic

▶ Would be nice: formula that determines for a specific input
how long the computation will take.

▶ Exact runtime prediction is hard because of too many
influencing factors.
▶ Speed and architecture of the computer
▶ Programming language
▶ Compiler version
▶ Current load (what else is running?)
▶ Caching behavior

We neither can nor want to consider all this in a formula.
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Runtime Analysis: 1st Simplification

Don’t measure time but count operations

What is an operation?

▶ Ideally: one line of machine code or – even more precisely –
one processor cycle

▶ Instead: constant-time operations
▶ Constant time: running time independent of input.
▶ Ignore runtime differences of different operations.
▶ E.g. addition, assignments, branching, function call.
▶ Roughly: operation = one line of code.
▶ But: also consider what’s behind it

e.g. steps inside the called function.

Running time roughly proportional to the number of operations
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Runtime Analysis: 2nd Simplification

Don’t count exactly but use bounds!

▶ Mostly considering upper bounds
How many steps does it take at most?

▶ Sometimes also lower bound
How many steps are at least executed?

”‘running time”’ for bound on number of executed operations
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Runtime Analysis: 3rd Simplification

Bounds only relative to the input size

▶ T (n): running time for input of size n
▶ For adaptive algorithms we distinguish

▶ Best case
running time for best possible input of size n

▶ Worst case
running time for worst possible input of size n

▶ Average case
average running time over all inputs of size n
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Cost Models

Sometimes: analysis wrt. cost model

▶ Identify fundamental operations for the algorithm class
e.g. for sorting algorithms.
▶ Key comparison
▶ Swap of two elements or movement of an element

▶ Analyze number of these operations.
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Example from C++ Reference

http://www.cplusplus.com/reference/algorithm/sort/
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A5.2 Example: Selection Sort
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Selection Sort: Algorithm

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]
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Selection Sort with Cost Model

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

→ n-1 swaps of two elements (“linear”)
→

(n
2

)
= 1

2n(n − 1) key comparisons (“quadratic”)
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Selection Sort: Analysis I

We show: T (n) ≤ c ′ · n2 for n ≥ 1 and some constant c ′

▶ Outer loop (3-10) and inner loop (6-8)
▶ Number of operations for each iteration of the outer loop:

▶ Constant a for no. of operations in lines 7 and 8
▶ Constant b for no. of operations in lines 5 and 10

i # operations
0 a(n − 1) + b
1 a(n − 2) + b

. . .
n-2 a · 1 + b

▶ Total: T (n) =
∑n−2

i=0 (a(n − (i + 1)) + b)
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Selection Sort: Analysis II

T (n) =
∑n−2

i=0
(a(n − (i + 1)) + b)

=
∑n−1

i=1
(a(n − i) + b)

= a
∑n−1

i=1
(n − i) + b(n − 1)

=
1

2
a(n − 1)n + b(n − 1)

≤ 1

2
an2 + b(n − 1)

≤ 1

2
an2 + b(n − 1)n

≤ 1

2
an2 + bn2 = (

1

2
a+ b)n2

⇒ with c ′ = (12a+ b) it holds for n ≥ 1 that T (n) ≤ c ′ · n2
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Selection Sort: Analysis III

Too generous bound?

We show for n ≥ 2: T (n) ≥ c · n2 for some constant c

T (n) = · · · = 1

2
a(n − 1)n + b(n − 1)

≥ 1

2
a(n − 1)n

≥ 1

4
an2 (n − 1 ≥ 1

2
n for n ≥ 2)

⇒ with c = 1
4a it holds for n ≥ 2 that T (n) ≥ c · n2

Theorem
Selection sort has quadratic running time, i.e., there are constants
c > 0, c ′ > 0, n0 > 0 such that for n ≥ n0: cn

2 ≤ T (n) ≤ c ′n2.

17 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

▶ Assumption: c = 1, one operation takes on average 10−8 sec.

▶ With 1000 elements, we wait
10−8 · (103)2 = 10−8 · 106 = 10−2 = 0.02 seconds.

▶ With 10 thousand elements, we wait
10−8 · (104)2 = 1 second.

▶ With 100 thousand elements 10−8 · (105)2 = 100 seconds.

▶ With 1 million elements 10−8 · (106)2 seconds = 2.77 hours.

▶ With 1 billion elements 10−8 · (109)2 seconds = 317 years.
1 billion numbers with 4 bytes/number are ”‘only”’ 4 GB.

Quadratic running time problematic for large inputs
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A5.3 Summary
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Summary

▶ Runtime analysis considers bounds on the number of executed
operations.
▶ We don’t count exactly.
▶ We ignore how long each operation actually takes.
▶ Running time should be roughly proportional to the number of

operations.

▶ Selection sort has quadratic running time and performs a
linear number of swaps and a quadratic number of key
comparisons.
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