Algorithms and Data Structures

A5. Runtime Analysis: Introduction and Selection Sort

Gabriele Roger and Patrick Schnider

University of Basel

February 26, 2025

/20

Algorithms and Data Structures

February 26, 2025 — A5. Runtime Analysis: Introduction and Selection Sort

A5.1 Runtime Analysis in General

A5.2 Example: Selection Sort

A5.3 Summary

2/20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in Genera

A5.1 Runtime Analysis in General

3/20

A5. Runtime Analysis: Introduction and Selection Sort

Content of the Course

sorting

fundamental
data structures

searching

graph
algorithms

concepts

Runtime Analysis in General

4/20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Exact Runtime Analysis Unrealistic

» Would be nice: formula that determines for a specific input
how long the computation will take.

» Exact runtime prediction is hard because of too many
influencing factors.

» Speed and architecture of the computer
» Programming language

» Compiler version

» Current load (what else is running?)

» Caching behavior

We neither can nor want to consider all this in a formula.

/ 20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Runtime Analysis: 1st Simplification

Don't measure time but count operations

What is an operation?

> Ideally: one line of machine code or — even more precisely —
one processor cycle

> Instead: constant-time operations

>

vvyyvyy

Constant time: running time independent of input.
Ignore runtime differences of different operations.
E.g. addition, assignments, branching, function call.
Roughly: operation = one line of code.

But: also consider what's behind it

e.g. steps inside the called function.

Running time roughly proportional to the number of operations

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Runtime Analysis: 2nd Simplification

Don’t count exactly but use bounds!

» Mostly considering upper bounds
How many steps does it take at most?

» Sometimes also lower bound
How many steps are at least executed?

" "

‘running time" " for bound on number of executed operations

7/20

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Runtime Analysis: 3rd Simplification

Bounds only relative to the input size

» T(n): running time for input of size n
» For adaptive algorithms we distinguish
» Best case
running time for best possible input of size n
» Worst case
running time for worst possible input of size n
» Average case
average running time over all inputs of size n

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Cost Models

Sometimes: analysis wrt. cost model

> Identify fundamental operations for the algorithm class
e.g. for sorting algorithms.
> Key comparison
> Swap of two elements or movement of an element

» Analyze number of these operations.

A5. Runtime Analysis: Introduction and Selection Sort Runtime Analysis in General

Example from C++ Reference

function template
std:SOrt
template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

<algorithm>

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity
On average, linearithmic in the distance between first and /ast: Performs approximately N*1og;(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/

10 / 20

http://www.cplusplus.com/reference/algorithm/sort/

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

A5.2 Example: Selection Sort

11 /20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Content of the Course

not comparison-
based

fundamental

-k data structures

searching

overview and
outlook

graph
algorithms

concepts

12 /20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Algorithm

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):
n = len(array)

for i in range(n - 1): # ¢ =0, ..., n-2
find index of minimum element at postitions %, ..., n-1
min_index = i
for j in range(i + 1, n): # j = 4+1, ..., n-1

if array[j] < array[min_index]:
min_index = j
swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[il

13 /20

A5. Runtime Analysis: Introduction and Selection Sort

Selection Sort with Cost Model

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):

= len(array)
for i in range(n - 1): # 4 =0, ..., n-2
find index of minimum element at positions 7, ..., n-1
min_index = i
for j in range(i + 1, n): # j = i+1, ..., n-1

if array[j] < array[min_index]:
min_index = j
swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[il

aps of two elements (“linear”)

—n-ls
— (5) = 3n(n — 1) key comparisons (“quadratic”)

Example: Selection Sort

14 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis |

We show: T(n) < c’-n? for n > 1 and some constant ¢’
» OQuter loop (3-10) and inner loop (6-8)

» Number of operations for each iteration of the outer loop:

> Constant a for no. of operations in lines 7 and 8
» Constant b for no. of operations in lines 5 and 10

i | # operations

a(ln—1)+b
1]an—2)+b
n2|a-1+b

> Total: T(n)=>""2(a(n— (i +1)) + b)

15

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis Il

T(n) = Z:(]z(a(n —(i+1)+0b)
=" a(n— i)+ b)
n—1

= aZi:l (n—1i)+b(n—1)

= %a(n —1)n+b(n—1)

< %an2 + b(n—1)

< %an2 +b(n—1)n

< %an2—1—bn2 = (%ajtb)n2

= with ¢’ = (3a+ b) it holds for n > 1 that T(n) < ¢’ - n?

16 / 20

A5. Runtime Analysis: Introduction and Selection Sort Example: Selection Sort

Selection Sort: Analysis Il

Too generous bound?

We show for n > 2: T(n) > c - n> for some constant ¢

T(n):---:%a(n—l)n—kb(n—l)

v
RN

a(n—1)n
5 1

> Zan (n—12§nforn22)

= with ¢ = Za it holds for n > 2 that T(n) > c - n?

Theorem
Selection sort has quadratic running time, i.e., there are constants
c>0,c" >0,n9 > 0 such that for n > ng: cn®> < T(n) < c'n?.

17 / 20

A5. Runtime Analysis: Introduction and Selection Sort

Selection Sort: Analysis IV

Quadratic running time: twice as large input, fourfold running time

What does this mean in practice?

>
>

>

v

Assumption: ¢ = 1, one operation takes on average 1078 sec.
With 1000 elements, we wait

1078 . (10%)? = 1078 - 10° = 1072 = 0.02 seconds.

With 10 thousand elements, we wait

1078 - (10%)? = 1 second.

With 100 thousand elements 1078 - (10%)? = 100 seconds.
With 1 million elements 1078 - (10°)? seconds = 2.77 hours.

With 1 billion elements 1078 - (10%)? seconds = 317 years.
1 billion numbers with 4 bytes/number are "‘only”’ 4 GB.

Quadratic running time problematic for large inputs

Example: Selection Sort

18 / 20

A5. Runtime Analysis: Introduction and Selection Sort Summary

A5.3 Summary

19 / 20

A5. Runtime Analysis: Introduction and Selection Sort Summary

Summary

» Runtime analysis considers bounds on the number of executed
operations.
»> We don't count exactly.
» We ignore how long each operation actually takes.
» Running time should be roughly proportional to the number of
operations.
> Selection sort has quadratic running time and performs a
linear number of swaps and a quadratic number of key
comparisons.

20

20

	Runtime Analysis in General
	

	Example: Selection Sort
	

	Summary
	

