
Algorithms and Data Structures
A3. Sorting I: Selection and Insertion Sort

Gabriele Röger and Patrick Schnider

University of Basel

February 20, 2025



Sorting Selection Sort Insertion Sort Summary

Sorting



Sorting Selection Sort Insertion Sort Summary

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts



Sorting Selection Sort Insertion Sort Summary

Relevance

sorting data important for many applications, such as

sorted presentation (e.g. on website)

products sorted by price, rating, . . .
account transactions sorted by transaction date

preprocessing for many efficient search algorithms

How quickly can you find a number in a (physical) telephone
book? How quickly could you do so if the entries were not
sorted?

subroutine of many other algorithms

e.g. a program that renders layered graphical objects might sort
them to determine where objects are covered by other objects

Journal “Computing in Science & Engineering” lists Quicksort as
one of the 10 most important algorithms of the 20th century.



Sorting Selection Sort Insertion Sort Summary

Sorting Problem

Sorting Problem

Input

sequence of n elements e1, . . . , en

each element ei has key ki = key(ei )

partial order ≤ on the keys
reflexive: k ≤ k
transitive: k ≤ k ′ and k ′ ≤ k ′′ ⇒ k ≤ k ′′

antisymmetric: k ≤ k ′ and k ′ ≤ k ⇒ k = k ′

Output

Sequence of the same elements sorted
according to the ordering relation on its keys

Notation: also e ≤ e ′ for key(e) ≤ key(e ′)



Sorting Selection Sort Insertion Sort Summary

Sorting Problem: Examples

Example

Input: ⟨3, 6, 2, 3, 1⟩, key(e) = e, ≤ on the integers
Output: ⟨1, 2, 3, 3, 6⟩

Example

Input: list of all students of the Univ. of Basel,
Input: key(e) = ⟨place of residence of e⟩, lexicographic order
Output: list of all students, sorted by their place of residence

Is the output uniquely defined?

In this course: mostly integers, key(e) = e and ≤ on integers



Sorting Selection Sort Insertion Sort Summary

Interesting Properties of Sorting Algorithms

running time: how many key comparisons and swaps of
elements are executed?

adaptive: algorithms faster if input already (partially) sorted

space consumption: how much space is used on top of the
space occupied by the input sequence?

explicitly or in call stack
in-place: needs no additional storage beyond the input array
and a constant amount of space (independent of input size)

stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

comparison-based: uses only key comparisons and swaps of
elements



Sorting Selection Sort Insertion Sort Summary

Interesting Properties of Sorting Algorithms

running time: how many key comparisons and swaps of
elements are executed?

adaptive: algorithms faster if input already (partially) sorted

space consumption: how much space is used on top of the
space occupied by the input sequence?

explicitly or in call stack
in-place: needs no additional storage beyond the input array
and a constant amount of space (independent of input size)

stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

comparison-based: uses only key comparisons and swaps of
elements



Sorting Selection Sort Insertion Sort Summary

Interesting Properties of Sorting Algorithms

running time: how many key comparisons and swaps of
elements are executed?

adaptive: algorithms faster if input already (partially) sorted

space consumption: how much space is used on top of the
space occupied by the input sequence?

explicitly or in call stack
in-place: needs no additional storage beyond the input array
and a constant amount of space (independent of input size)

stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

comparison-based: uses only key comparisons and swaps of
elements



Sorting Selection Sort Insertion Sort Summary

Interesting Properties of Sorting Algorithms

running time: how many key comparisons and swaps of
elements are executed?

adaptive: algorithms faster if input already (partially) sorted

space consumption: how much space is used on top of the
space occupied by the input sequence?

explicitly or in call stack
in-place: needs no additional storage beyond the input array
and a constant amount of space (independent of input size)

stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

comparison-based: uses only key comparisons and swaps of
elements



Sorting Selection Sort Insertion Sort Summary

Interesting Properties of Sorting Algorithms

running time: how many key comparisons and swaps of
elements are executed?

adaptive: algorithms faster if input already (partially) sorted

space consumption: how much space is used on top of the
space occupied by the input sequence?

explicitly or in call stack
in-place: needs no additional storage beyond the input array
and a constant amount of space (independent of input size)

stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

comparison-based: uses only key comparisons and swaps of
elements



Sorting Selection Sort Insertion Sort Summary

Interesting Properties of Sorting Algorithms

running time: how many key comparisons and swaps of
elements are executed?

adaptive: algorithms faster if input already (partially) sorted

space consumption: how much space is used on top of the
space occupied by the input sequence?

explicitly or in call stack
in-place: needs no additional storage beyond the input array
and a constant amount of space (independent of input size)

stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

comparison-based: uses only key comparisons and swaps of
elements



Sorting Selection Sort Insertion Sort Summary

Interesting Properties of Sorting Algorithms

running time: how many key comparisons and swaps of
elements are executed?

adaptive: algorithms faster if input already (partially) sorted

space consumption: how much space is used on top of the
space occupied by the input sequence?

explicitly or in call stack
in-place: needs no additional storage beyond the input array
and a constant amount of space (independent of input size)

stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

comparison-based: uses only key comparisons and swaps of
elements



Sorting Selection Sort Insertion Sort Summary

Questions

Questions?



Sorting Selection Sort Insertion Sort Summary

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts



Sorting Selection Sort Insertion Sort Summary

Selection Sort



Sorting Selection Sort Insertion Sort Summary

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

quicksort

lower bound

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Informally

0 1 2 3 4 5 6 7

n = 8

identify smallest element at positions 0, . . . , n − 1
and swap it to position 0

identify smallest element at positions 1, . . . , n − 1
and swap it to position 1

. . .

identify smallest element at positions n − 2, n − 1
and swap it to position n - 2



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

3 7 2 9 7 1 4 5

1 7 2 9 7 3 4 5

1 2 7 9 7 3 4 5

1 2 3 9 7 7 4 5

1 2 3 4 7 7 9 5

1 2 3 4 5 7 9 7

1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

3 7 2 9 7 1 4 5

1 7 2 9 7 3 4 5

1 2 7 9 7 3 4 5

1 2 3 9 7 7 4 5

1 2 3 4 7 7 9 5

1 2 3 4 5 7 9 7

1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

3 7 2 9 7 1 4 5

1 7 2 9 7 3 4 5

1 2 7 9 7 3 4 5

1 2 3 9 7 7 4 5

1 2 3 4 7 7 9 5

1 2 3 4 5 7 9 7

1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

3 7 2 9 7 1 4 5

1 7 2 9 7 3 4 5

1 2 7 9 7 3 4 5

1 2 3 9 7 7 4 5

1 2 3 4 7 7 9 5

1 2 3 4 5 7 9 7

1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Algorithm

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5

1 2 1 7 2 9 7 3 4 5

2 5 1 2 7 9 7 3 4 5

3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

looking for minimum
among dark entries

red entry is
found minimum

gray entries already sorted



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5

2 5 1 2 7 9 7 3 4 5

3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

looking for minimum
among dark entries

red entry is
found minimum

gray entries already sorted



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5
2 5 1 2 7 9 7 3 4 5

3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

looking for minimum
among dark entries

red entry is
found minimum

gray entries already sorted



Sorting Selection Sort Insertion Sort Summary

Selection Sort: Example

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5
2 5 1 2 7 9 7 3 4 5
3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

looking for minimum
among dark entries

red entry is
found minimum

gray entries already sorted



Sorting Selection Sort Insertion Sort Summary

Correctness

Correctness of an algorithm

An algorithm for a computational problem is correct if for every
problem instance provided as input, it

halts, i.e. it finishes its computation in finite time, and

determines a correct solution to the problem instance.



Sorting Selection Sort Insertion Sort Summary

Correctness of Selection Sort

invariant: property that is true during the entire execution of
the algorithm

invariant 1: at the end of each iteration of the outer loop,
all elements at positions ≤ i are sorted.

Invariant 2: at the end of each iteration of the outer loop,
all elements at a position > i are larger (≥) than all elements
at a position ≤ i .

correctness of invariants by (joint) induction

after the last iteration, all elements except for the last one are
in the correct order and the last one is larger (≥) than the
second-last. → entire sequence sorted

Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime



Sorting Selection Sort Insertion Sort Summary

Correctness of Selection Sort

invariant: property that is true during the entire execution of
the algorithm

invariant 1: at the end of each iteration of the outer loop,
all elements at positions ≤ i are sorted.

Invariant 2: at the end of each iteration of the outer loop,
all elements at a position > i are larger (≥) than all elements
at a position ≤ i .

correctness of invariants by (joint) induction

after the last iteration, all elements except for the last one are
in the correct order and the last one is larger (≥) than the
second-last. → entire sequence sorted

Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime



Sorting Selection Sort Insertion Sort Summary

Correctness of Selection Sort

invariant: property that is true during the entire execution of
the algorithm

invariant 1: at the end of each iteration of the outer loop,
all elements at positions ≤ i are sorted.

Invariant 2: at the end of each iteration of the outer loop,
all elements at a position > i are larger (≥) than all elements
at a position ≤ i .

correctness of invariants by (joint) induction

after the last iteration, all elements except for the last one are
in the correct order and the last one is larger (≥) than the
second-last. → entire sequence sorted

Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime



Sorting Selection Sort Insertion Sort Summary

Correctness of Selection Sort

invariant: property that is true during the entire execution of
the algorithm

invariant 1: at the end of each iteration of the outer loop,
all elements at positions ≤ i are sorted.

Invariant 2: at the end of each iteration of the outer loop,
all elements at a position > i are larger (≥) than all elements
at a position ≤ i .

correctness of invariants by (joint) induction

after the last iteration, all elements except for the last one are
in the correct order and the last one is larger (≥) than the
second-last. → entire sequence sorted

Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime



Sorting Selection Sort Insertion Sort Summary

Correctness of Selection Sort

invariant: property that is true during the entire execution of
the algorithm

invariant 1: at the end of each iteration of the outer loop,
all elements at positions ≤ i are sorted.

Invariant 2: at the end of each iteration of the outer loop,
all elements at a position > i are larger (≥) than all elements
at a position ≤ i .

correctness of invariants by (joint) induction

after the last iteration, all elements except for the last one are
in the correct order and the last one is larger (≥) than the
second-last. → entire sequence sorted

Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime



Sorting Selection Sort Insertion Sort Summary

Correctness of Selection Sort

invariant: property that is true during the entire execution of
the algorithm

invariant 1: at the end of each iteration of the outer loop,
all elements at positions ≤ i are sorted.

Invariant 2: at the end of each iteration of the outer loop,
all elements at a position > i are larger (≥) than all elements
at a position ≤ i .

correctness of invariants by (joint) induction

after the last iteration, all elements except for the last one are
in the correct order and the last one is larger (≥) than the
second-last. → entire sequence sorted

Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime



Sorting Selection Sort Insertion Sort Summary

Properties of Selection Sort

in-place: additional storage does not depend on input size

running time: does only depend on the size of the input
(not adaptive)
exact analysis: later chapter

not stable: can swap the element at position i behind an
element with an equal key, which will not be “repaired” later.



Sorting Selection Sort Insertion Sort Summary

Jupyter Notebook

Jupyter notebook: selection sort.ipynb



Sorting Selection Sort Insertion Sort Summary

Questions

Questions?



Sorting Selection Sort Insertion Sort Summary

Insertion Sort



Sorting Selection Sort Insertion Sort Summary

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

quicksort

lower bound

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts



Sorting Selection Sort Insertion Sort Summary

Insertion Sort: Informally

similar to common method for sorting a hand of playing cards

elements subsequently moved to correct position in the
already sorted part of the sequence

larger elements correspondingly moved to the right



Sorting Selection Sort Insertion Sort Summary

Insertion Sort: Example

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5

2 2 3 7 9 7 1 4 5

3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

gray entries
not moved

red entry moved
into sorted range

black entries moved
one position to the right



Sorting Selection Sort Insertion Sort Summary

Insertion Sort: Example

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5

3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

gray entries
not moved

red entry moved
into sorted range

black entries moved
one position to the right



Sorting Selection Sort Insertion Sort Summary

Insertion Sort: Example

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5
3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

gray entries
not moved

red entry moved
into sorted range

black entries moved
one position to the right



Sorting Selection Sort Insertion Sort Summary

Insertion Sort: Example

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5
3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

gray entries
not moved

red entry moved
into sorted range

black entries moved
one position to the right



Sorting Selection Sort Insertion Sort Summary

Insertion Sort: Algorithm

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 j = i

7 while j > 0 and array[j - 1] > array[j]:

8 # not yet at final position.

9 # swap array[j] and array[j-1]

10 array[j], array[j-1] = array[j-1], array[j]

11 j -= 1



Sorting Selection Sort Insertion Sort Summary

Insertion Sort: Algorithm (Slightly Faster)

previous variant: most assignments to array[j-1] unnecessary

1 def insertion_sort(array):

2 for i in range(1, len(array)):

3 val = array[i]

4 j = i

5 while j > 0 and array[j - 1] > val:

6 array[j] = array[j - 1]

7 j -= 1

8 array[j] = val

runtime analysis (later): no fundamental difference
nevertheless: preferable if direct assignment possible



Sorting Selection Sort Insertion Sort Summary

Properties of Insertion Sort

in-place: additional storage does not depend on input size

running time: adaptive for partially sorted inputs

with already sorted input, immediate exit from inner loop
with reversely sorted input, every element moved step-by-step
to the front

exact analysis: later

stable: elements only moved to the left as long it is swapped
with a strictly larger element.
→ cannot change relative order with an equal element



Sorting Selection Sort Insertion Sort Summary

Questions

Questions?



Sorting Selection Sort Insertion Sort Summary

Summary



Sorting Selection Sort Insertion Sort Summary

Summary

selection sort and insertion sort are two simple sorting
algorithms.

selection sort builds the sorted sequence from left to right by
successively swapping a minimal element from the unsorted
range to the end of the sorted range.

insertion sort considers the elements from left to right and
moves them to the correct position in the already sorted range
at the beginning of the sequence.


	Sorting 
	

	Selection Sort
	

	Insertion Sort
	

	Summary
	


